
Sūrikaisekikenkyūsho Kōkyūroku, 1088, 68–78, (1999)

On the computation of Stokes multipliers via Hyperasymptotics

A. B. Olde Daalhuis

Department of Mathematics and Statistics, King’s Buildings,

University of Edinburgh, Edinburgh, EH9 3JZ, UK

adri@maths.ed.ac.uk

Abstract. In this paper we explain how the hyperasymptotic expansion of late terms in

divergent asymptotic expansions can be used to compute all the Stokes multipliers to arbitrary

precision.

1. Introduction

We shall investigate the computation of the Stokes multipliers of the solutions of differential equations
of the form

dnw

dzn
+ fn−1(z)

dn−1w

dzn−1
+ · · · + f0(z)w = 0, (1.1)

in which the coefficients fm(z), m = 0, 1, · · · , n − 1 can be expanded in power series

fm(z) =

∞
∑

s=0

fsm

zs
, (1.2)

that converge on an open annulus |z| > a, and the point at infinity is an irregular singularity of rank 1.
Formal series solutions in descending powers of z are given by

eλjzzµj

∞
∑

s=0

asjz
−s, j = 1, 2, · · · , n. (1.3)

The constants λj , µj and asj are found by substituting into the differential equation and equating
coefficients after setting a0j = 1. In this way we obtain the characteristic equation

n
∑

m=0

λm
j f0m = 0, (1.4)

where we take f0n = 1, to compute λj . The constants µj are given by

µj = −
(

n−1
∑

m=0

λm
j f1m

)

/

(

n
∑

m=1

mλm−1
j f0m

)

. (1.5)
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For the coefficients asj we obtain the recurrence relation

(s − 1)as−1,j

n
∑

m=1

mλm−1
j f0,m =

s
∑

t=2

as−t,j

t
∑

p=0

(µj + t − s)p

n
∑

m=p

(

m

p

)

λm−p
j ft−p,m, (1.6)

where Pochhammer’s symbol (α)p is defined by (α)p = Γ(α + p)
/

Γ(α).

We shall impose the restriction

λj 6= λk, j 6= k. (1.7)

This restriction ensures that the left-hand side of (1.6) does not vanish.

The set up of this paper is as follows. In §2 we define the solutions of (1.1), which will be the
Borel-Laplace transforms of (1.3), Stokes multipliers, some important numbers that will determine the
optimal number of terms in the hyperasymptotic expansions, and the hyperterminants. We finish §2 with
the hyperasymptotic expansion of the coefficients ask, as s → ∞.

§3 is a short section in which we explain why we need hyperasymptotic expansions at all.

In §4 we illustrate how the hyperasymptotic expansion of ask can be used to compute all the Stokes
multipliers to arbitrary precision. We will see that all the numerical work can be reduced to solving linear
systems of equations.

We finish this papers with some remarks in §5.

2. Definitions and lemmas

We define
θkj = ph (λj − λk),

λkj = λk − λj ,

µkj = µk − µj ,











j 6= k, and µ̃ = max{<µ1, · · · ,<µn}. (2.1)

We call

η ∈ R is admissible ⇐⇒ η 6= θkj (mod 2π), 1 6 j, k 6 n, j 6= k. (2.2)

For an example with n = 3 see Figure 1.

λ1

λ2

λ3

ph t = θ32

ph t = θ13

ph t = θ12

ph t = η

Figure 1. An example of admissible and non admissible directions.

For fixed admissible η we consider a t-plane together with parallel cuts from each λk to ∞ along the
ray ph (t − λk) = η. See Figure 2. If we specify for k = 1, 2, · · · , n,

log(t − λk) = log |t − λk| + iη, (2.3)
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70 Computing Stokes multipliers via Hyperasymptotics

λ1

λ2

λ3

Figure 2. Cuts for Pη.

for all t such that ph (t − λk) = η, then we denote the t-plane with these cuts and choices of logarithms
by Pη. Thus log(t − λk) is continuous within Pη, and is defined by (2.3) on ph (t − λk) = η.

Let η be admissible. Then we define

η− = inf{η̌ < η | η̃ is admissible for all η̃ ∈ (η̌, η]}, (2.4a)

η+ = sup{η̂ > η | η̃ is admissible for all η̃ ∈ [η, η̂)}, (2.4b)

Iη = (η−, η+). (2.4c)

Note that η± are not admissible. In the example η− is the value θ13 (mod 2π) for which |η− θ13| is least,
and η+ is the value θ12 (mod 2π) for which |θ12 − η| is least.

With these definitions for η± we define the z-sectors

S(η) = {z | <(zeiη) < −a and
π

2
− η+ < ph z <

3π

2
− η−}, (2.5)

The main tools that we will use in this paper are Theorems 1 and 2 of [1]. If we translate the results
of these theorems to our notation we obtain:

Lemma 1. The function yk(t) defined by

yk(t) =
∞
∑

p=0

apkΓ(µk + 1 − p)(t − λk)p−µk−1, |t − λk| < min
j 6=k

|λj − λk|, (2.6)

is analytic in Pη, satisfies

yk(t) =
Kjk

1 − e−2πiµk
yj(t) + reg(t − λj), j 6= k, (2.7)

where the Kjk are constants, and can be continued analytically along every path that does not intersect

any of the points λ1, · · · , λn. Furthermore, if S is any sector in the t-plane of the form S = {|t| > R, α <
ph t < β} with 0 < β − α < 2π and R > max |λj |, then

lim
t→∞

e−(a+ε)|t|yk(t) = 0, t ∈ S, (2.8)

for ε > 0 arbitrary.

In (2.7) reg(t − λj) denotes a function that is regular (or analytic) in a neighbourhood of t = λj .

Lemma 2. Let η ∈ R be admissible. If we define

wk(z, η) =
1

2πi

∫

γk(η)

eztyk(t) dt, (2.9)
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where γk(η) is the contour in Pη from ∞ along the left-hand side of the cut ph (t − λk) = η, around λk

in the positive sense, and back to ∞ along the right-hand side of the cut, then wk(z, η) is a solution of

(1.1), wk(z, η̃) = wk(z, η) for all η̃ ∈ Iη, and

wk(z, η) ∼ eλkzzµk

∞
∑

s=0

askz−s, (2.10)

as z → ∞ in S(η).

For each admissible η we have n solutions w1(z, η), · · · , wn(z, η). Since (1.1) is a linear ordinary
differential equation of order n, for each admissible η̃ and k ∈ {1, · · · , n} there are connection coefficients
Cjk(η̃, η) such that

wk(z, η̃) = C1k(η̃, η)w1(z, η) + · · · + Cnk(η̃, η)wn(z, η). (2.11)

If η̃ ∈ Iη, then Cjk(η̃, η) = δjk. Hence, the connection coefficients can change only when we cross a
non admissible direction. The corresponding directions in the z-plane are generally known as Stokes
lines. To compute all the connection coefficients it suffices to compute the connection coefficients of two
neighbouring intervals Iη.

λk

λj1

λj2

η̆

γk(η̃)

Figure 3. γk(η̃) before the rotation.

λk

η̆

γj1(η)

γj2(η)

γk(η)

Figure 4. γk(η̃) after the rotation.

Take η < η̃ in two neighbouring intervals Iη and Iη̃, and let η̆ be the non admissible direction
between η and η̃. Fix k ∈ {1, · · · , n} and let j1, · · · , jp be all the j 6= k such that θkj = η̆ (mod 2π).
See Figure 3. If we rotate the contour γk(η̃) across the Stokes line at ph (t − λk) = η̆ we obtain the
contour γk(η) plus for each jl contours γjl

(η) and γ̃jl
(η). The contour γ̃jl

(η) is the inner contour of the
two contours encircling λjl

in Figure 4, it is contour γjl
(η) with the opposite direction of integration and

it lies on the Riemann sheet log(t − λk) ∈ [η + 2π, η + 4π); furthermore log(t − λj) ∈ [η, η + 2π), j 6= k.
Hence, with (2.7) we obtain

wk(z, η̃) = wk(z, η) +

p
∑

l=1

1 − e−2πiµk

2πi

∫

γjl
(η)

eztyk(t) dt

= wk(z, η) +

p
∑

l=1

Kjlk

2πi

∫

γjl
(η)

eztyjl
(t) dt

= wk(z, η) +

p
∑

l=1

Kjlkwjl
(z, η).

(2.12)
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72 Computing Stokes multipliers via Hyperasymptotics

The constants Kjk are called the Stokes multipliers, and if we can compute the Stokes multipliers, then
we can compute all the connection coefficients.

The Stokes multipliers play an important role in the definitions of the following numbers. Let

α
(m)
k = min

{

|λk −λj0 |+ |λj0 −λj1 |+ · · ·+ |λjm−1 −λjm
|
∣

∣ j0 6= k, Kj0k 6= 0, jl 6= jl−1, Kjljl−1
6= 0
}

. (2.13)

If G = (V, E) is a directed graph with vertices V = {λ1, · · · , λn} and edges E =
{

(λp, λq)
∣

∣ 1 6 p, q 6 n,

p 6= q, Kqp 6= 0
}

, then α
(m)
k is the length of the shortest directed path of m steps starting at λk.

In definition (2.13) we assume that we can determine whether Kpq 6= 0 or Kpq = 0. Usually we do
not have this knowledge. Hence, we have to use the definition

α
(m)
k = min

{

|λk − λj0 | + |λj0 − λj1 | + · · · + |λjm−1 − λjm
|
∣

∣ j0 6= k, jl 6= jl−1

}

. (2.13a)

To define the hyperterminants we shall use the notation

[η]
∫

λ

=

∞eiη
∫

λ

, η ∈ R. (2.14)

Let l be a nonnegative integer, <Mj > 1, σj ∈ C, σj 6= 0, j = 0, · · · , l. Then

F (0)(z) = 1,

F (1)

(

z;
M0

σ0

)

=

[π−θ0]
∫

0

eσ0t0tM0−1
0

z − t0
dt0,

F (l+1)

(

z;
M0,

σ0,

· · · ,
· · · ,

Ml

σl

)

=

[π−θ0]
∫

0

· · ·
[π−θl]
∫

0

eσ0t0+···+σltltM0−1
0 · · · tMl−1

l

(z − t0)(t0 − t1) · · · (tl−1 − tl)
dtl · · ·dt0,

(2.15)

where θj = phσj , j = 0, 1, · · · , l. In the case ph σj = phσj+1 (mod 2π) we have to make the choice
between the tj-contour being on the ‘left’ or ‘right’ of the tj+1-contour. We make the choice via the
definition

F (l+1)

(

z;
M0,

σ0,

· · · ,
· · · ,

Ml

σl

)

= lim
ε↓0

F (l+1)

(

z;
M0,

σ0e−lεi,

M1,

σ1e−(l−1)εi,

· · · ,
· · · ,

Ml−1,

σl−1e−εi,

Ml

σl

)

. (2.16)

The multiple integrals converge when −π − θ0 < ph z < π − θ0. In [12] it is explained how to compute
these hyperterminants.

The main tool to compute the Stokes multipliers will be the following theorem. The proof of this
theorem is given in §7 of [11].
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Theorem 1. Let l be an arbitrary nonnegative integer, then

a
N

(0)

k
k

= −
∑

k1 6=k

Kk1k

2πi

{

−
N

(1)

k1
−1

∑

s=0

ask1

Γ(N
(0)
k − s + µk1k)

λ
N

(0)

k
−s+µk1k

kk1

+
∑

k2 6=k1

Kk2k1

2πi

{N
(2)

k2
−1

∑

s=0

ask2F
(2)

(

0;
(N

(0)
k + 1) − N

(1)
k1

+ µk1k + 1,

λk1k,

N
(1)
k1

− s + µk2k1

λk2k1

)

. . .

+
∑

kl 6=kl−1

Kklkl−1

2πi

{N
(l)

kl
−1

∑

s=0

askl
F (l)

(

0;
(N

(0)
k + 1) − N

(1)
k1

+ µk1k + 1,

λk1k,

· · · ,
· · · ,

N
(l−2)
kl−2

− N
(l−1)
kl−1

+ µkl−1kl−2
+ 1,

λkl−1kl−2
,

N
(l−1)
kl−1

− s + µklkl−1

λklkl−1

)

}

· · ·
}}

+ r
(l)
k (N

(0)
k ).

(2.17)

If we take

N
(j)
kj

=
β

(j)
kj

β
(0)
k

N
(0)
k + O(1), j = 1 · · · l, (2.18)

where

β
(0)
k = α

(l)
k and β

(j)
kj

= max
(

0, β
(j−1)
kj−1

− |λkjkj−1 |
)

, j = 1 · · · l, (2.19)

then

r
(l)
k (N

(0)
k ) = Γ(N

(0)
k )

(

α
(l)
k

)−N
(0)

k O
(

(

N
(0)
k

)µ̃−µk+(l+2)/2
)

, (2.20)

as N
(0)
k → ∞.

3. Why do we need hyperasymptotics?

In the case l = 1, Theorem 1 reads

a
N

(0)

k
k

=
∑

k1 6=k

Kk1k

2πi

N
(1)

k1
−1

∑

s=0

ask1

Γ(N
(0)
k − s + µk1k)

λ
N

(0)

k
−s+µk1k

kk1

+ r
(1)
k (N

(0)
k ).

(3.1)

By taking N
(1)
k1

=
(

β
(1)
k1

/β
(0)
k

)

N
(0)
k , we obtain an optimally truncated asymptotic expansion, which

can also be obtained via Darboux’s method. See §II.6 in [15]. Since we can use (1.6) to compute the
coefficients apq in (3.1), and since we have estimate (2.20), we can use (3.1) to approximate some of the
Stokes multipliers.

Note that in (3.1), we multiply Kk1k times a factor Qk1 which is of order λ
−N

(0)

k

k1k Γ(N
(0)
k +µk1k)O(1),

as N
(0)
k → ∞. When we compare the order estimate of Qk1 with (2.20), in the case l = 1, we see that in
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74 Computing Stokes multipliers via Hyperasymptotics

the case |λk1k| > α
(1)
k the order estimate of Qk1 is smaller than r

(1)
k (N

(0)
k ). Since, in the case l = 1, we

take βk1 = max(0, α
(1)
k − |λk1k|), this observation is integrated in the definition of βk1 , and hence, in the

definition of N
(1)
k1

.

Hence, only Stokes multipliers Kk1k for which |λk1k| < α
(1)
k , can be computed via (3.1). If we want

to compute Kk1k for which |λk1k| > α
(1)
k , we have to use (2.17) up to level l, where l is a positive integer

such that |λk1k| < α
(l)
k . Note that, since we have α

(l)
k > (l + 1)minp6=q |λpq |, we know that a positive

integer l exists such that |λk1k| < α
(l)
k .

In the next section, we illustrate how hyperasymptotic expansion (2.17) can be used to compute all
Stokes multipliers.

4. An example

We use the example

w(4)(z) − 3w(3)(z) +
(

9
4 + 1

2z−2
)

w(2)(z) −
(

3 + 3
4z−2

)

w′(z) +
(

5
4 + 9

16z−2
)

w(z) = 0, (4.1)

and our goal will be to compute K13, K23 and K43 up to 8 digits precision. Hence, we take k = 3 in
Theorem 1. In this example we have n = 4 and

λ1 = 1
2 , λ2 = 5

2 , λ3 = i, λ4 = −i, µj = 0, j = 1, · · · , 4. (4.2)

−i

i

1
2

5
2

Figure 5. The distribution of the λ’s.

4.1. Computing Stokes multipliers via the level 1 version of Theorem 1. We will first use
Theorem 1 in the case l = 1. Since,

λ13 = 1
2 − i, λ23 = 5

2 − i, λ43 = −2i, (4.3)

we obtain from (2.13a) α
(1)
3 = |λ13| + |λ41| =

√
5 = 2.236 · · ·. Hence,

β
(0)
3 = α

(1)
3 = 2.236 · · · ,























β
(1)
1 = max

(

0, β
(0)
3 − |λ13|

)

= 1
2

√
5 = 1.118 · · · ,

β
(1)
2 = max

(

0, β
(0)
3 − |λ23|

)

= 0,

β
(1)
4 = max

(

0, β
(0)
3 − |λ43|

)

=
√

5 − 2 = 0.236 · · · .

(4.4)
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Hence, in the case l = 1 we will be able to compute Stokes multipliers K13 and K43 to the required

precision. The factor multiplying K13 is of order |λ13|−N
(0)
3 Γ(N

(0)
3 ) and the factor multiplying K43 is

of order |λ43|−N
(0)
3 Γ(N

(0)
3 ). If we compare these factors with (2.20), which is in this case r

(1)
3 (N

(0)
3 ) =

(

α
(1)
3

)−N
(0)
3

Γ(N
(0)
3 )O

(

(

N
(0)
3

)3/2
)

, we see that we need N
(0)
3 such that approximately

(

|λ13|
α

(1)
3

)N
(0)
3

6 10−9, and

(

|λ43|
α

(1)
3

)N
(0)
3

6 10−9. (4.5)

The reader can check that N
(0)
3 = 186 is the first satisfactory number of terms. Note that the high

number of terms is due to |λ43|/α
(1)
3 being so close to unity.

If we take in (3.1) N
(0)
3 = 186, N

(1)
1 = 93, N

(1)
4 = 44 and compute the coefficients apq via (1.6) then

we obtain

(1.00133073255 · · ·− i0.97320367636 · · ·) × 10331

=
K13

2πi
(0.61708613155 · · ·− i3.95787812069 · · ·) × 10331

− K43

2πi
(4.19763793947 · · ·+ i0.00004407518 · · ·) × 10284

(4.6a)

And if we take N
(0)
3 = 187, N

(1)
1 = 93, N

(1)
4 = 44 we obtain

−(2.19311035862 · · ·+ i0.76592313764 · · ·) × 10333

= − K13

2πi
(6.34843047388 · · ·− i2.02641047191 · · ·) × 10333

− K43

2πi
(0.00004055835 · · ·− i3.90383078089 · · ·) × 10286

(4.6b)

We combine the two results and obtain

K13 = −1.31673553004+ 1.75027074192i,

K43 = 0.35534060046− 2.11723774454i.
(4.7)

One reason to use the level 2 version of Theorem 1 is to compute K23. We will see that a second reason
might be that in the level 2 version of Theorem 1 we need less terms.

Remark 1. It follows from the 10331 and 10284 in (4.6a) that we have to perform our computation
to 56 significant figures. Hence, by computing K43 to 8 significant figures we obtain K13 to 55 significant
figures.

4.2. Computing Stokes multipliers via the level 2 version of Theorem 1. In the case l = 2

we have β
(0)
3 = α

(2)
3 = 3

2

√
5 and

β
(0)
3 = 3.354 · · · ,



























































β
(1)
1 = 2.236 · · · ,



















β
(2)
2 = 0.236 · · · ,

β
(2)
3 = 1.118 · · · ,

β
(2)
4 = 1.118 · · · ,

β
(1)
2 = 0.661 · · · , β

(2)
j = 0, j = 1, 3, 4,

β
(1)
4 = 1.354 · · · ,







β
(2)
1 = 0.236 · · · ,

β
(2)
j = 0, j = 2, 3.

(4.8)
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76 Computing Stokes multipliers via Hyperasymptotics

To compute the three Stokes multipliers to the required precision we need N
(0)
3 such that approximately

(

|λ13|
α

(2)
3

)N
(0)
3

6 10−9,

(

|λ23|
α

(2)
3

)N
(0)
3

6 10−9, and

(

|λ43|
α

(2)
3

)N
(0)
3

6 10−9. (4.9)

Now N
(0)
3 = 95 is the first satisfactory number of terms. According to (2.18) and (4.8) we have to take

N
(1)
1 = 64,



















N
(2)
2 = 7,

N
(2)
3 = 32,

N
(2)
4 = 32,

N
(1)
2 = 19, N

(2)
j = 0, j = 1, 3, 4,

N
(1)
4 = 39,







N
(2)
1 = 7,

N
(2)
j = 0, j = 2, 3.

(4.10)

The level 2 version of Theorem 1 is in this example:

a
N

(0)
3 3

= − K13

2πi







N
(1)
1 −1
∑

s=0

as1(−)N
(0)
3 −s(1

2 − i)s−N
(0)
3 Γ(N

(0)
3 − s)

+
K21

2πi

N
(2)
2 −1
∑

s=0

as2F
(2)

(

0;
N

(0)
3 − N

(1)
1 + 2,

1
2 − i,

N
(1)
1 − s

2

)

+
K31

2πi

N
(2)
3 −1
∑

s=0

as3F
(2)

(

0;
N

(0)
3 − N

(1)
1 + 2,

1
2 − i,

N
(1)
1 − s

i − 1
2

)

+
K41

2πi

N
(2)
4 −1
∑

s=0

as4F
(2)

(

0;
N

(0)
3 − N

(1)
1 + 2,

1
2 − i,

N
(1)
1 − s

−i − 1
2

)







− K23

2πi

N
(1)
2 −1
∑

s=0

as2(−)N
(0)
3 −s(5

2 − i)s−N
(0)
3 Γ(N

(0)
3 − s)

− K43

2πi







N
(1)
4 −1
∑

s=0

as4(−)N
(0)
3 −s(−2i)s−N

(0)
3 Γ(N

(0)
3 − s)

+
K14

2πi

N
(2)
1 −1
∑

s=0

as1F
(2)

(

0;
N

(0)
3 − N

(1)
1 + 2,

−2i,

N
(1)
1 − s

i + 1
2

)







+ r
(2)
3 (N

(0)
3 ).

(4.11)

Although our goal is the computation of K13, K23 and K43, other Stokes multipliers appear in (4.11).
We will compute the other Stokes multipliers via the level 1 version of Theorem 1 and then use their
values in (4.11). To compute the Stokes multipliers K21, K31 and K41 we use the level 1 hyperasymptotic

expansion of a
N

(1)
1 ,1

, a
N

(1)
1 +1,1

and a
N

(1)
1 +2,1

. If we take the value of N
(1)
1 that is given in (4.10), then we

compute the three Stokes multipliers exactly to the precision that is required in (4.11). The details of
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the computations are very similar to §4.1, and the result is

K21 = 0.326930886422i,

K31 = −0.335184742943− 0.173943737206i,

K41 = 0.335184742943− 0.173943737206i.

(4.12)

The level 1 hyperasymptotic expansion of a
N

(1)
4 −1,4

yields

K14 = 1.31673552831+ 1.75027074369i. (4.13)

If we substitute (4.12) and (4.13) into (4.11) and use (1.6) then the only unknowns are K13, K23 and

K34. By taking (4.10) and N
(0)
3 = 95, 96, 97, and ignoring r

(2)
3 (N

(0)
3 ), we obtain three linear equations

with three unknowns. The solution of this system is

K13 = −1.31673553004+ 1.75027074192i,

K23 = 0.959989170107− 0.325764659748i,

K43 = 0.35534060049− 2.11723774458i.

(4.14)

Remark 2. Note that by first computing K21, K31, K41 and K14 via level 1 versions of Theorem 1,
and then using their values in (4.11), the numerical computations are reduced to solving linear systems
of equations.

Remark 3. In §4.1 we needed N
(0)
3 = 186 coefficients as3, and in §4.2 we needed N

(0)
3 = 95 of

these coefficients. Hence, by increasing the level l the number of coefficients that we need to achieve the
required precision decreases.

5. Conclusions and generalisations

The method that we described in this paper can also be used to compute Stokes multipliers for integrals
with saddles. In the case of integrals the Stokes multipliers can only have a finite number of values, which
means that in order to determine the exact value of Stokes multipliers for integrals with saddles we need
to approximate them only to a very low precision.

The Stokes multipliers for integrals with saddles contain the following important information:

Kjk 6= 0 ⇐⇒ saddle point j is adjacent to saddle point k.

For more details see [2], [3], [5] and [11].
There are several results in the literature ([4], [6]–[10] and [13]) on the computation of Stokes mul-

tipliers. Our results can be seen as a direct generalisation of those in [13]. Many of the other results are
of the form (3.1), but with the right-hand side replaced by its dominant term. With additional terms
available on the right-hand side we have a more powerful way of computing the Stokes multipliers. As
is explained in §3 and illustrated in §4, it is in general not possible to compute all the Stokes multipliers
from (3.1). Theorem 1 is a generalisation of (3.1), and with this expansion we can compute the ‘difficult’
Stokes multipliers as well.

Other analytical methods for computing the difficult Stokes multipliers are based on conformal
mappings in the t-plane (Borel-plane). See, for example, [10]. However, construction of the correct
conformal mappings is still a difficult problem.

A numerical method for computing all the Stokes multipliers is discussed in [13] and [14]. This
method is based on direct numerical integration of the differential equation.
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