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A sequence of re-expansions is developed for the remainder terms in the well-known
Poincaré series expansions of the solutions of homogeneous linear differential equa-
tions of higher order in the neighbourhood of an irregular singularity of rank one.
These re-expansions are a series whose terms are a product of Stokes multipliers,
coefficients of the original Poincaré series expansions, and certain multiple integrals,
the so-called hyperterminants. Each step of the process reduces the estimate of the
error term by an exponentially small factor.

The method of this paper is based on the Borel-Laplace transform, which makes
it applicable to other problems. At the end of the paper the method is applied to
integrals with saddles.

Also, a powerful new method is presented to compute the Stokes multipliers. A
numerical example is included.
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1. Introduction

We shall investigate solutions of differential equations of the form

d™w d"tw
dzn +fn71(Z)W+"'+fo(Z)w:0, (1.1)
in which the coeflicients f,,(z), m =0,1,...,n — 1 can be expanded in power series
> fS’WL
m = 5 1.2
fnle) = 2 (12)

that converge on an open annulus |z| > a, and the point at infinity is an irregular
singularity of rank one. Formal series solutions in descending powers of z are given
by

[ee]
72N a2t j=1,2,..m (1.3)
s=0
The constants Aj;, i; and a,; are found by substituting into the differential equation

and equating coefficients after setting ag; = 1. In this way we obtain the characteristic
equation

> X fom =0, (1.4)
m=0
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2 A. B. Olde Daalhuis

where we take f;, = 1, to compute A;. The constants u; are given by

n—1 n
[ = 7( > /\}"flm)/ > mAP fom. (1.5)
m=0 m=1

For the coefficients a,; we obtain the recurrence relation

t

n B S n m —
(s—1)as_1,, Z mA; o = Zas_t’j Z(uj—i—t—s)p Z (p)Aj Pfipms (1.6)
m=1 t=2 =

p=0 m=p

where Pochhammer’s symbol (), is defined by (a), =I'(« + p)/T(c).
We shall impose the restriction

NE N GEE (1.7)
This restriction ensures that the left-hand side of (1.6) does not vanish. We shall also
assume that the ;; are non-integers. At the end of §6 we will remove this restriction
on the f1;.

It is well known (see, for example Wasow 1976; Olver 1997) that for any ray £
there is a set of n linearly independent solutions of (1.1) that are represented asymp-
totically by the formal series (1.3) as z — oo on L. In general, these solutions are not
uniquely determined by their asymptotic expansion on L. In this paper we will give
hyperasymptotic expansions for solutions of (1.1). These hyperasymptotic expansions
will determine the solutions uniquely on £ and give more accurate approximations.

We follow existing terminology for these new types of asymptotic expansions.
The original Poincaré expansions (1.3) are regarded as being level zero. We shall
obtain a level one expansion by truncating the level zero expansion at, or beyond,
its optimal stage and re-expanding the remainder term in generalized exponential
integrals. These level one expansions are called exponentially improved expansions.
Further re-expansions are the higher levels in the hyperasymptotic expansion.

One way to derive the hyperasymptotic expansions is to extend the method that
was developed in Olde Daalhuis & Olver (1994, 1995a) for the case n = 2. In this
approach, we begin with the Poincaré expansions of the solutions (Wasow 1976; Olver
1997), and construct an integral representation of Stieltjes type for the remainder
term. This integral is then re-expanded repeatedly in series of hyperterminants, fol-
lowed by an optimization procedure. In the present paper, however, we shall obtain
the hyperasymptotic expansions via the Borel-Laplace transform. The Borel trans-
forms of formal series solutions (1.3) are convergent expansions. In §2 we give the
important properties of these Borel transforms, including the local behaviour near
the singularities in the bounded Riemann plane, and their growth near infinity. This
is in fact all the knowledge that we will use, and in this and succeeding sections it is
not necessary that the Borel transforms originate from differential equations. In §9
we will show that our method is also applicable to integrals with saddles.

The solutions of (1.1) that we shall analyse are the Borel-Laplace transforms of
(1.3). In this way we obtain double integral representations for the remainder terms.
By deforming the contours of integration into special contours that are defined in
§2, we are able to obtain good estimates in §3 for the minimal remainders of the
truncated level zero expansions. In § 2 we will define a sequence of increasing positive
numbers oz,i”, 1=0,1,2,..., k=1,...,n. We shall show that the minimal remainder
terms of the original Poincaré expansions are of the order exp( —ozko |z|) times a power
of z.

Proc. R. Soc. Lond. A (1998)
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Figure 1. An example of admissible and non-admissible directions.

The method that we use to obtain the re-expansions is the substitution of a trun-
cated Taylor series expansion for the Borel transforms. In §4 we obtain the level one
expansions, and we determine the optimal numbers of terms in these expansions.

In §§5 and 6 this method is continued to the second and higher levels. The minimal
remainders at level [ will be of the order cxp(fa,(cl)\zb times a power of z. We also
determine the optimal numbers of terms of all branches of the hyperasymptotic
expansion.

The hyperasymptotic expansions are a series whose terms are a product of Stokes
multipliers, the original coefficients a4, and hyperterminants. At the end of §2 we
define the hyperterminants. In § 7 we give an efficient method to compute the required
Stokes multipliers to sufficient precision. In §8 we provide a numerical example.

In §9 we sketch the application of the Borel-Laplace transform to integrals with
saddles, and then give conclusions and generalizations in the final section §10.

2. Definitions and lemmas

We define
Or; = Ph(A; — Ax),
Akj = A — Aj, j#k and f=max{Reps,...,Reu,}. (2.1)
HEj = Mk — Hj,
We call
1 € R is admissible <= 7 # 0;;(mod27), 1<j,k<n, j#k. (2.2)

For an example with n = 3 see figure 1.

For fixed admissible 1 we consider a ¢-plane together with parallel cuts from each
Ar to oo along the ray ph(t — Agy) = 7 (see figure 2). If we specify for k =1,2,...,n,

log(t — M) = log |t — Ax| + im, (2.3)

for all ¢ such that ph(t — \g) = 7, then we denote the t-plane with these cuts and
choices of logarithms by P,. Thus log(t — A;) is continuous within P,, and is defined
by (2.3) on ph(t — A\x) = 7.

Let n be admissible. Then we define

n~ = inf{5 < |7 is admissible for all 7 € (7, 7]}, (24a)
nt = sup{h > 1|7 is admissible for all 7 € [n,7)}, (2.4b)
Iy =(n"n"). (24¢)

Note that n* are not admissible. In the example, n~ is the value 613 (mod 27) for
which |n — 613] is least, and 1" is the value 615 (mod 27) for which |01 — 7| is least.
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4 A. B. Olde Daalhuis

Ay
Figure 2. Cuts for P,,.

With these definitions for n* we define the z sectors

S(n) = {z|Re(ze") < —a and Jm—nt <phz<im—n} (2.5)

S(n) = {#|Re(z¢"") < —a and 7—n" <phz<m—7n"}, (2.6)
The main tools that we will use in this paper are theorems 1 and 2 of Balser et al.

(1981). If we translate the results of these theorems to our notation we obtain the
following.

Lemma 2.1. The function y(t) defined by

e(t) =D apl (e + 1= p)(t = AP = M| < min|A; — Al (27)

p=0
is analytic in P, satisfies

K.
yk(t) = s

= 17ef2ﬁmkyj(t) +reg(t —A;), J#k, (28)
where the K, are constants, and can be continued analytically along every path
that does not intersect any of the points Ay, ..., \,. Furthermore, if S is any sector
in the t-plane of the form S = {|t| > R, o < pht < 8} with 0 < f —a < 27 and
R > max|\;|, then

Jim o=@y, (1)) =0, te S, (2.9)

for € > 0 arbitrary.

In (2.8) reg(t — A;) denotes a function that is regular (or analytic) in a neighbour-
hood of t = A;.

Lemma 2.2. Let n € R be admissible. If we define

1 / zt
wi(z,n) = — ey (t) dt, 2.10
G =g | n) (2:10)
where v,(n) is the contour in P, from oo along the left-hand side of the cut
ph(t — A\¢) = m, around Ay in the positive sense, and back to oo along the right-
hand side of the cut, then wy(z,n) is a solution of (1.1), w(z,7) = wi(z,n) for all
7 €Z,, and

o0
wi(z,m) ~ e i g Hn Z aspz” °, (2.11)
s=0
as z — oo in S§(n).
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)

Figure 3. (7)) before the rotation. Figure 4. v, (7) after the rotation.

For each admissible n we have n solutions wi(z,7),...,w,(z,n). Since (1.1) is
a linear ordinary differential equation of order n, for each admissible 77 and k €
{1,...,n} there are connection coefficients C;;(7,n) such that

wk-(27 ﬁ) = Clk(flv 77)101 (27 77) +-+ an(f]v n)wn(zv 77)' (212)

If 7 € Z,, then Cjx(7,m) = ;5. Hence, the connection coefficients can change only
when we cross a non-admissible direction. The corresponding directions in the z-
plane are generally known as Stokes lines. To compute all the connection coefficients
it suffices to compute the connection coefficients of two neighbouring intervals Z,,.

Take n < 77 in two neighbouring intervals Z,, and Z, and let 7 be the non-admissible
direction between n and 7. Fix k € {1,...,n} and let ji, ..., J, be all the j # k such
that 0; = 77 (mod 27) (see figure 3). If we rotate the contour (7)) across the Stokes
line at ph(t — Ax) = 77 we obtain the contour 7;(n) plus for each j; contours ~;, (1)
and 7, (7). The contour 4,,(n) is the inner contour of the two contours encircling A;,
in figure 4, it is contour 7;, (1) with the opposite direction of integration and it lies on
the Riemann sheet log(t — \,) € [+ 27, n+4n); furthermore log(t — ;) € [, n+27),
j # k. Hence, with (2.8) we obtain

6*27“/»%

(Z n)—wkzn +ZT/< etyk(t)dt
'Yu'ﬂ

277+Z ﬂ’“/ 7y (1) d

Vi, (n)

=1
The constants K, are called the Stokes multipliers, and if we can compute the
Stokes multipliers, then we can compute all the connection coefficients. In §7 we
give a numerical method to compute the Stokes multipliers.

The reason that we write the constant in front of y;(¢) in (2.8) in such a complicated
way is that with this choice the last line of (2.13) is in the simplest form. By trying to
present (2.13) in its simplest form we show a slight preference for expressing wy(z,7)
in terms of w;(z,m), j =1,...,n, over expressing wy(z,n) in terms of w;(z,7), that
is, we prefer ‘right’; the original n, over ‘left’. This choice will be reflected further on
in this section in the definition of special contours and hyperterminants.

Proc. R. Soc. Lond. A (1998)



6 A. B. Olde Daalhuis

The Stokes multipliers play an important role in the definitions of the following
numbers. Let

o™ = min{|Ax = Xl + gy = X[+ D = Al
Jo £k, Kjok #0, Ji # ji-1, Kjg, #0}. (2.14)
If G = (V,E) is a directed graph with vertices V = {A,..., A, } and edges E =
{p, X)L < p,g < n,p # q, Kyp # 0}, then oe,(cm) is the length of the shortest directed
path of m steps starting at A.
In the technical parts of the following sections we shall use the following two
lemmas.

Lemma 2.3. Let r be a positive constant and C' be a contour that begins at
Aj +rel%i | encircles Aj once in a positive sense, and returns to its starting point. Let
t be a complex number outside C' such that for all T € C' we have |t — 7| > (a/|z]),
where « Is a positive constant. Also, take N = (3|z|+~, where (3 is a positive constant,
and vy is a real constant. Then for all s € {1,2,3,...}, s < N +Rep;, — 1 we have

RS e
C

T—1

dr = 2| Azl

I'(s —Rep;)T(N — s+ Repjp, — 1)
F(N - Reuk - 1)

O0(1), (2.15)
as |z| — oo.

Proof. If Re(s — p;) > 0, then we can collapse the contour of integration on to the
join of \; and A; + rel%i. We obtain

/ (r— /\j)s_“ﬂ_l(T — A ) tl=N ar
c

T—1

re'®*i s i1 +1-N
— (o2 _ 1)/ TETRITL (T 4 Ny )M &
0

T+ )\j —t
r/|N; S— i — . _
= (e~ — 1)(Nyy) N Himeit /( [Pl o= =1(7 4 T)uet1-N ar
0 T)‘,jk + )\j —t

= el [ e gy N drog)
(s —Rep;)I'(N — s+ Repjr — 1)
F(N — Reuk — ].)

If Re(s — pj) < 0, then we take an integer P such that 0 < P+ s — Rep; < 1. Note
that P = O(1) as |z| — co. We obtain

T
= el

o(). (2.16)

[ g,
c T—1
P-1 1
= 3 G LA Y ar
p=0
(it /\j)—P/ (- )\j)S+P_“j_1(T — AN dr. (2.17)
c T—1

Proc. R. Soc. Lond. A (1998)



Hyperasymptotic solutions of higher order linear differential equations 7

If we apply P — p integrations by parts, then we can estimate the pth term in the

sum of (2.17) by

(s+p—Rep;)’(N —s —p+Repj, — 1)
F(N — Re M — 1)

O(1), as|z| — 0.

(2.18)
Furthermore, if we apply the first part of this proof to the final term of the right-hand
side of (2.17), then we can estimate this term by means of (2.18) with p = P. Hence,

[T g
C

T—1

|Z|p-¢-1‘/\jk|s+p—NF

P
:Z|z|p“\)\-k|s+P’Nr(5+p_Reuj)F(N_5_p+ReMjk_1)(’)(l)
= ! (N —Rep, — 1)
(s —Rep;)I(N — s+ Rep, — 1)
(N —Rep, — 1)

r
= P|z||\ji|*Y O(1), aslz] - o00. (2.19)

[ |
The following lemma is proved in a similar way.

Lemma 2.4. Let U be an open set that contains {\; +ze'|0 < <r}. Let b(7)
be analytic on U, and let C' be a contour in U that begins at \; +rel%i encircles \;
once in a positive sense, and returns to its starting point. Then

/ b(T) (T — X)) H (1 — )N dr
c

= max [b(T)|[Ajx| N NEerO(1), as N — oo. (2.20)
TE

The main step needed to reach subsequent levels in the hyperasymptotic expansion
for solutions of (1.1) is the following version of Taylor’s theorem.

Lemma 2.5. Let C be a closed contour encircling t and A\, such that \;, j # k,
is in the exterior of C'. Then
N-1
ye(t) = Y @Dl +1 = p)(t = M) 7

p=0

(t = X )Nt Loy () (7 = AN
+ /C dr.  (2.21)

27 T—1

In the next sections we take for the contour C' of lemma 2.5 the following spe-
cial contours. Let gy be a fixed number such that 0 < gy < imin#k |Aji]. Take
Ry > max;j ;| Ajk| + (e0/(a+1)) and R, = (n+1)Ry, n=1,2,3,....

In the case |t — Ax| < Ry — (e0/|z|) we define C,EO) (t) to be the contour indicated
in figure 5, with m = 0. In the cases when Ry — (g0/]2]) < |t — Me| < Ro + (0/]2])
and [t — Ax| > Ro + (0/]2]) we adjust C’IEO) (t) as indicated in the middle and right
parts of figure 6.

Let ¢g > €1 > €2 > --- > 0, and define C,im), m = 1,2,..., as the contours
indicated in figure 5. Since max,z; [Aji| < Ry < Ry < ---, all of the A; are in the
interior of the large circle of Ckm>.

The contour C,i}'” will be the loop of C,g'") that encircles );, that is, the contour

Proc. R. Soc. Lond. A (1998)



8 A. B. Olde Daalhuis

Figure 5. Contour C{™

280\

1Z|

Ak Ak Ak

Figure 6. Contour C,io) (t) for |t — Ax| < Ro — (e0/|z]) (left),
Ro — (e0/]2]) < |t — Ae] < Ro + (€0/|#]) (middle) and [t — Ax| > Ro + (€0/|2|) (right).

that starts at Ay + R,,e'%7, encircles Aj once in a positive sense, and returns to its
starting pomt Notice that this loop enmrcles )\] in the opposlte direction to the
loop of O™ . The choices for Em, m=1,2,3,..., are such that C ki ) is in the interior

of C "Wd{ Notice that again we prefer rlght’ over ‘left’: in figure 5 the contour Ck'")
passes C’ ™ on the rlght hand side.

Flnally7 let C =0,1,2,..., denote C (™) Mminus the loops C,ij ), thus
o _ i S,
J#k

We finish this section with the definition of hyperterminants. In the definition we

Proc. R. Soc. Lond. A (1998)



Hyperasymptotic solutions of higher order linear differential equations 9

2igy 2y
AHO+72)e" AH)~721)e"

2, . 2e,
A=z e o - AH Tz

A Ak

Figure 7. (Left) Contour P when n~ <7 < 3(n~ 4+ n™). (Right) Contour P when
s+t <n<nt

"] ocoe'”
/ _ / ., neR. (2.22)
A A

Let I be a non-negative integer, Re M; > 1,0, € C, 0; #0, j =0,...,l. Then

shall use the notation

FO(z) =1,
[r—60] _ootopMo—1
e <Z; Mo) :/ ! %dto,
ago 0 zZ— to
2.23
Fa+) [ . Mo, -+, My (223)
’ 00, **", O]
B [m—0o] plm—0.] e(00t0+'“+dztl)téul)*l .. tllwlfl
— dt; - - - dto,
0 0 (z = to)(to — t1) -~ (i1 — 1)

where 6; = phoj, j = 0,1,...,1. In the case pho; = phoj;; (mod27) we have
to make the choice between the t; contour being on the ‘left’ or ‘right’ of the t;;
contour. We make the choice via the definition

FOD (4 Mo, -+, My 04 o Moy‘ M, I szh‘ M, 7
gg, * v, O] <10 O-Oeflsl’ 0-167(171)517 e 0'1716751, oy

(2.24)
which means that once again we prefer ‘right’ over ‘left’. The multiple integrals
converge when —m — 6y < phz < 7w — 6.

3. Superasymptotics

In this section we show how the remainder
No—1
R (2,15 No) = wi(z2,m) — M52 3~ a2, (3.1)

s=0

depends on Np. Let n be admissible. Throughout this section, we suppose that
z € 8(n). We permit Ny to be a linear function of |z|. More precisely, we assume
that

No = B91z2] + 2, (3.2)

Proc. R. Soc. Lond. A (1998)



10 A. B. Olde Daalhuis

where ﬁ is a positive constant at our disposal and 7 ) is bounded. If we apply
lemma 2.5 with N = Ny and C = C ( ) in (2.10), we obtain the integral represen-
tation

M No—pr—1 (,]_)
) u(7)
R, (z,m; No) = 2771 / " /c“’) (T — /\k> S— drdt. (3.3)

We assume throughout that |z| is sufficiently large to ensure that

Ny > Re k- (34)
We may then collapse 'yk(n) in (3.3) on to [Ag, 0ce'”). We obtain
- =2\ ()
R (z,m; N / / i o Sdrdt. (35
k (27777 U) 27T1 " C(O) T — )\k F— ( )

Split C,(go) (t) into C(J and ij , j # k, and use (2.8). We then have

e—2mine ] t— A\ No—pr—1 ( )
RO (z,m: N, / / k IRT) Qrdt
(2,1 No) = #k C(2m)? C(O) T— X\ T —

J

+59(z,n)
[n] No—pir—1
Y;\T
B Z ]k / /cm) (T - )\k) T](— 2 drdt + 5.7 (z,n),
e (3.6)

where

7271'1;% _ 7] No—pr—1
) yi(T)
S (zm) = Co(2mi)2 //\k /<0> (T - )\k) T—t drdt. (8.7)

To estimate S( )( 7>77) as |z| — oo, we take 7 = m—ph z. When |t — ;| < ?—&— (eo/|z])
we take Cj,_ and when [t—\g| > Ro+(g0/]2|) we take Cy_ to be C without
the small circle enmrchng t (see figure 6). If we use (2.9) we obtain

—om No—
21;%_ / / t_)\k 0—Hk— lyk()ddt
27r1 An Ckf T— Ak —1
672771;“, .
+— / ey (t) dt
27i A+ (Ro+(g0/|2]))ein

:c)‘“/ e l#ltgNo—Repu—1 dtRaN“\zK’)(l)
0

—|—eA’““/ e~ (Flma=2)t 4t o(1)
Ro+(e0/l2])

= eA’“ZzRC“’C“’N"RgN”F(NO —Reur)O1) + e’\kzz’le"z‘R"o(l), (3.8)

Sz

~

as z — 0o in S(n). To obtain the final estimate for S,(CO)(Z, 1) we substitute into (3.8)
by means of (3.2) and apply Stirling’s formula for I'(Ny — Re ). We obtain

SO (z,m) = X2 (B /Roe)® F20/D0(1) + M IR0 o(1), (3.9)
as z — 0o in S(n).

Proc. R. Soc. Lond. A (1998)



Hyperasymptotic solutions of higher order linear differential equations 11

To estimate the other terms on the right-hand side of (3.6) we adjust the ¢ contour
of integration. Again take n = m—ph 2z, and let P be the contour indicated in figure 7.
We assume that %(7]_ +n%) < n < n'. In the following derivation we shall use

lemma 2.4 with max |b(7)| = |2|O(1). We have

Jk // Nope= ly]( )d dt
0(0) T — )\k T—

2O (92 /1516l 1
eAkz Kjk ( k o/l eZttN[)_lLk—l Y (7—) (T - Ak)”k-'—l o drdt
(271)? Jo Ci T~

. No—pr—1
Az Kk ) 2(t—(2ieo/|z])e™) (4 2iey 5, o
+e <5 e t———e
(27“) aig)ei” |Z|

) _ pi+1—No
5 / B (DT = M)’ __drdt
o0 T A — (t — (2igo/|2])e)

. — 2 No—pr—1
e K 2ico (771D 00 ey apen) ( (0)gin 4 2€Ueiﬁ> e
@mi)? |z Jy)r ||

e At
cO T\, — afﬁo)ei” — (2e0/|2])et®

o0
= Ky TN / el gNo— e g0(1)

No
(0) a(0> Re
FE et B S N (1)
|)‘Jk‘
= K e A NN 2 IRe“*’“‘NT(NofReuk)O(l)
A (0) a(()) Rep
+K et 2| o] N0 "10(1), (3.10)
J

as z — oo. Again, we use (3.2) and Stirling’s formula, and we obtain

K a (=T T ()
- e d dt
2mi)? Jp Jo© T— A T—

© \P
— Kjke)\kz < k ) ‘Z‘Rcu*7+(1/2)0(1)

[Ajkle

(0)

Ol

«

R et 12| (Iﬁ) |2[Rem O(1), (3.11)
IR

as z — oo. We notice that both terms on the right-hand side of (3.11) contain a
factor Kjg|Ajx|™ 5”1l Hence, the main contribution to the final sum in (3.6) comes

from the value of j for which
IAjk| = min{| M| 1 1 # k, Ky #0} = al”.

Proc. R. Soc. Lond. A (1998)



12 A. B. Olde Daalhuis

It follows that
No—puje—
S [ e (AT gy
o (27)? Jp c© T — Xk T—t

(0) ﬁ;(c[])‘z‘
_( © ) |22 0(1) + Ml Fl2RO(1), (3.12)
Oék €

as z — 00. Since the right-hand side of (3.9) can be absorbed into the right-hand
side of (3.12), we have

(0)
0) By, 1zl
Ré")(z?n;No)—e“Z( ) ) A2 0(1) + Mol f0(1),  (3.13)
a’e

as z — 00, where n = m —phz € [1(n~ +7n7),n"]. In the same way we can show that
(3.13) holds for n € [n~, 3(n~ + n™)]. Hence, (3.13) holds for z € S(n).

The estimate (3.13) a&)plies with any value of the positive constant ﬁ,io) , but it is
minimal when g;, ) = 045C ). Then letting z — 0o in S (n) we arrive at the main result
of this section: if z — oo in S(n) and Ny = a}f’)|z\ + O(1), then

RO (2, m; No) = M=ol 2|+ (172 0(1). (3.14)

4. Level one

Throughout this section we shall assume that 2 € S(n). Since S,io)(z,n) is the
subdominant term in (3.6) we concentrate our analysis on the other terms on the
right-hand side of (3.6). The main step is the substitution of (2.21), with k& = j, into
the right-hand side of (3.6). We obtain

N
K- J
0
R,(C >(Z»77§ No) = Z (27:1)2 Z as; T +1 = 5)
i#k s=0
b\ No—pr—1 e
. eto <t0 )\k) (t1 — A" 1
X/ / : - dt dtg +R1(cl)(zv77)v (4.1)
e v (0k5) hi=to
where
(1) — K
R, (z,m) = Z (2mi)?
i#k

No—pp—1 ND -1
ztg to — )\k " tl — )\] ’ " (t )
L S t— A Yitk2
y / / / L 274 dtadt dt
n Je© Jow (tr —to)(ta — t1)

NP1
Kk —2mip; \

+3 G =) X Tl +1-9)

J#k s=0

z to — Ak o=t s—p;—1
o o € (t Y ) (=) "

X / L dtydto + S (z,m). (4.2)

A J Roe'%hi 42, t1 —to

Proc. R. Soc. Lond. A (1998)



Hyperasymptotic solutions of higher order linear differential equations 13

If we substitute into the double integral of (4.1) by means of the transformation

- to— A - -
to =2z ( 0 k) 5 tl = to(tl — )\j)7 (43)
t1 — Ak

and use Hankel’s loop integral representation for the reciprocal Gamma function (see
Temme 1996, §3.2.6), we obtain

N® -1
R( (z,m; No) = Z Jk Z Qs e)‘kzz‘“c+1 No

j#k

[m—0k;] C/\]kiot No—s+pjp—1
></ 0 dt0+R](€l)(Z,17)

0 z—to

NP1 N
— 8 J’_ .
= oM gti—no 3 Kk z e N By o)
ik gk

(4.4)
This is the desired re-expansion of R (z7 n; No). We now seek to optimize the new
remainder term R( )(z n) by assuming that (3.2) applies and also that

N = V) 4440, (4.5)

where /3](-1> € (0, ﬂ,(co)) is another constant at our disposal, and 'y](-l) is bounded. Again,
we assume that (3.4) holds and that
NV >Rep,, No— N > Re g + 1. (4.6)

We may then collapse the ¢; contours of integration of the triple integrals in (4.2) on
to the join of A; and Rye% + ). We will show that this sum w1th tr1ple mtegralb 15
the dominant term in the right-hand side of (4.2). We split C into C Y and C

1 # j, and use (2.8). We obtain

Roe' kl+)\
R(l)(z n) = KK ] o k
kA (2mi)3 Jy, o

7;ék l#?

(1)
e*to to — Ak Moz b= A e (t2)
t— A th— A itz
X
(ty —to)(t2 — 11)

dtodtydt + S (2,m),

(4.7)

where

i6
Sz =Y e / ’ / o /
koA = (2mi)3 A o
), _
o (o= A YT =g\ e
oo (o= b= (1)
t1 — Ak to — )\]

(t1 —to)(ta — 1)
(1)
NP 0]

J
—e ) N g Ty + 1 - 8)/ /
s=0 Ak Roelekf + Ak

X

dtodt diy

7#k
Proc. R. Soc. Lond. A (1998)



14 A. B. Olde Daalhuis
to — A No—pr—1 B
eztg ( 0 k) (tl _ >\ )5 pi—1

SR dhdto+ SOz m).  (48)
t1—to
In order to take n = ™ — phz, z € S(n), we have to adjust the t, contour of
integration. If we take this contour to be P, then the contribution of the stral ht lines
of P can be estimated by e*+#|z|Re#s+1=No(Ny — Re puy,). And if we take ﬁk > (0)
then the contribution of the quarter circle part of P is smaller than the estimate for
the straight lines. To simplify the technical details in the following analysis, we omit
this adjustment.
To estimate the triple integrals in (4.8) we use (t; — to)~! = |2]O(1) and

(to — 1)~ = O(1). We obtain
o — /\k No—pr—1 t — /\j N]ﬂl)_ﬂj—l
P y;(t2)

(1] rRoe®%i £ e*to (t

n toe kI k t _ /\ _ .

/ / / L7k d dtodt, dto
A A o (t1 —to)(t2 — t1)

o0
~|2ltosNo—Re pp—1
:C/\’“Z|z|/ e Fltog o Re =1 g
0

N(l)—REMJ—l

[e%s) 1)
></ : b aur Y o
0

b+ el Yoo

= e)"cZ|Z|RC pur+2—No |/\jk|N](l)7N0

N
xD(N® — Re i, )T(Ng = N + Repje — )R, 7 O(1)

(0) ﬁ(l) (ﬁ,im—ﬁ;l))\zl ﬂ(l) ﬁ;l)m
=Bz J s o1 4.9
b - ), (19
as z — in S(n). To estlmate the sum of double integrals of (4.8) we use
0<s< N(l) < Ny, and (t; —to) ™t = |2]O(1). We obtain
o#to to — Ak o=t (t — )\_)sfu_,fl
[0k;] tl — )\k 1 J
asir(p; +1—3) / / dtdty
A J Roct®Ri 42, t1 — 1o

= M F| g RemtI=No (N — Re iy )as; T(uy + 1 — 8)
x / ¢ NorResk 41 0(1)
Ro

= eAkZ‘Z‘RCllk+17NOF(NO - Re ,uk)afs]r‘(#] + 1- S)
Rs Ny

O(1
No—s—&—Reu]k—l (1)
1) _
= 7|z [Rem N (Ny — Rep )Ry’
x (1) N 0Ty +1 - 8)(3a”)y0(1), (4.10)

as z — oo in §(n). From (2.7) we see that 3 oo |as;T(u; + 1 — s)(%algo))ﬂ is bounded.

Proc. R. Soc. Lond. A (1998)



Hyperasymptotic solutions of higher order linear differential equations 15

Hence
to — )\ No—pr—1
N® 1 0] ezlo (to - )\:) (b —Ag) !
Z abjf(,u] +1-— S)/ / . ! p p dtldto
5=0 Ak JRoe%ki 4 1—to

—No

= M|z |Rem =N (N, — Re Nk)R / (zo“gO))_N;l)O(l)

ﬂ(()) ﬁk ] 2R ﬁ;l)‘z‘

0

P N = . 250 0(1), (4.11)
Ry oz;-())

as z — oo in S§(n).
From (3.9), (4.9) and (4.11) we observe that for every positive constant «, we can
find a positive number Ry, such that if Ry > Ry, then

S (z,m) = =1, (4.12)

as z — 0o in S(n).
Finally, we estimate the triple integral in (4.7). We use (t; —to)~! = |2|O(1),
(ta —t1)™! = |2]O(1) and lemma 2.4. We obtain

dtodt diy

)
to— A\ O =\ e
]R3+ eto (S —F yilta)
/”/0 / t— M ts — \;
e I o

(t1 — to)(t2 — t1)
= C/\kzlz|2 /oo C_‘Z‘intéVO*Rcllkfl dto
0

N( >—Re/tj—l

t - e
g ‘/0 (tl 1‘>‘ k|)ND*Rer 1 dt1|)‘lj| N (N(l))R Mzo(l)
J

— e>\ch|Z|RAC(/l'k:+Nl)+37NU |)‘jk‘N;1)7ND |)\lj‘7N]€1)

xD(NM — Re 11)T(No — NV + Re pyp, — 1)O(1)

0 _ g\ A gy (97
_ aAkez|o|Rep+1 ko P 5
- ‘ Nnle O(1), 4.13
. ( Aswle ) <|A1je> @ (4.13)

as z — 0o in S(n).

Remark 4.1. When A, A;, A; are not collinear, or when A, is \;, then we can
use (t; —t1)~! = O(1). Hence, we can sharpen estimate (4.13) and all the succeeding
estimates in this section by a factor |z|~'. With a method that is similar to the
analysis between (5.17) and (5.19) of Olde Daalhuis & Olver (1995a) we can sharpen
these estimates by an extra factor |z|~(1/2),

We combine (4.12) and (4.13) into the following result:

0) _ 5(1)
ﬁ ﬁ (8, =65z (1) 2]
R (z,1) = M KKy | ? 2[Remtlo(1),
D= S Ky (B ZEY o)

J#k I#]

(4.14)

Proc. R. Soc. Lond. A (1998)



16 A. B. Olde Daalhuis

as & — in S(n). Each term on the right-hand side of (4.14) is minimal for
ﬁk(,, ﬁ(l |Aji| and ﬂ = |A;j|. Thus these minimal terms are
KB exphiz = (el + ) l2l][2] %1 O(1).

Hence, we are interested in

min{| gl + Ay 1 5 # kL # K # 0, Ky # 0} = af, (4.15)
which means that we have
R (2,m) = M=l Fl 1 i10(1), (4.16)

as the final estimate of this section. We obtained (4.16) by taking ﬁ,io) = a,(cl), which
fixes No up to an additive term O(1). But we still have to find the optimal choices
for 5<1) that is, the minimal number of terms in the re-expansion (4.4), such that
(4. 16§ holds. The optimal choice for ﬂ follows from

1)

©) _ g 2 =6 3L 8
k J ot <1, 4.17
( A ) <|>\1j|) &1

for all [ # j, such that K;; # 0. We can always solve this equation numerically.
However, a reasonable choice is given by

A = max(0, B — [Aji]). (4.18)

5. Level two

Again, we assume that z € S(n). We want to re-expand R;Cl)(z, 7n) and we proceed
in a manner analogous to the preceding section. Accordingly, we substitute into (4.7)
by means of (2.21), with & = [, and obtain

N

1
K Ny [l p[Ok;]
R o) =SS R S -9 [
s=0 Ak Aj 7(051)

J#k 1#]

No— g — N® -
gt (L= AN (= AN
y t— A ty— N 2

dtodtdt
(t1 —to)(t2 — t1) S
+RP(z,m), (5.1)
where
[n] Roe'%ki 42y,
(2 ]kKl]
R Z "7 ;; / / L(l) /C(z)
tO_Ak No—pr—1 t _A *#]*1 )\l l *l"l 1
zto 2 t
¢ <t1—)\k> ty— A t3—)\l ui(ts)
o dtsdtodt dig
(t1 —to)(ta — t1)(ts — t2)
N1
K Ky s Okl pl05]
+ = aal(w+1—3s) [(1—e ’“‘”)/ / /
#Zkg (271'1)3 ;0 Ak by Rye /l+)\.
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Hyperasymptotic solutions of higher order linear differential equations 17

No—pp— N _
Czta M e u ’ e (tg _ )\l)s—m—l
% t1 — )\k to — )\j

(t —to)(ta —t1)

/ /ak] /
A J Roe®ki 4 J O

No—pr— NO_
e to — Ak o—pr—1 t — Aj J 1 Ry
e —_— (tz — l)
% t — /\k to — /\j

(tr —to)(ta — 1)

dtodt diy

dts dtq dto

+50(z,n). (5.2)

Again, we wish to express the re-expansion in terms of our hyperterminants. We
substitute into the triple integral of (5.1) by means of the equations

. to—MY\ - - (=N -
tg = , t1 =1 , ta=1t1(ta — N\), 5.3
0 Z(tl_)\k> 1 0<t2_)\j 2 1(2 l) ( )
and obtain
K K5
(1) Az +1-Np Jk 15
B = oo 35
J#k 1#j
N1 N*NO)“F ) +1N(1>75+ )
3 aar® ( BV Y ””)*Rf%z,m- (5.0
IR J

This is the desired re-expansion. We now seek to optimize the new remainder term
by assuming that

No =B 47", NP =B+, NF =8P 44D, (55)
where ﬁ,(co), 6](.1), ﬁlz) are constants such that 0 < ﬂl@) < ﬁ](-l) < ﬁ,io), and 'y,(co), 'y](-l),
712 are bounded. We also assume that

Ny >Re,uk, Nj(l) >R6/Lj, Nl(2> >Reﬂl: }

NO—NQ) > Re py; + 1, N](l) —N(Z) > Repj + 1,

(5.6)

so that we can collapse the ¢ contours of mtegratlon of the %uadruple integrals in
(5.2) onto the join of \; and Rye% + \;. We split C ) into C and C’lq ,q# 1, and
use (2.8). We obtain

szKz (1] pRoe'’%i+Xp  pRie'’it4);
Syycase L /

JEk 1#5 gl

w_, -
X CztO (to B )\k>NOHk1 (tl_/\3>N] —Hj 1 ( )\l> p—1
tl_)\k t2—>\J 3_)\[
o Ya(ty) dtydtydtydty
(t1 = to)(t2 — t1)(ts — t2)
+82 (2,m), .
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18 A. B. Olde Daalhuis

where
. K M pRoe'®*i+X,  pRicl%il4);
2 —27i kL]
>ZU):ZZ(62M_ 5771]/ / / /(2)
ik 1 A o
No—pr—1 ,P‘171 *#l 1
Y R =N \" t2 = M \" lts)
t1 — Ak t2 )\] t3 _ )\l
« dtsdtodt dig
(t1 —to)(ta — t1)(ts — t2)
N®_q
JkKl] l —27ip
+ZZ Z agl(y +1—s)| (1 —e #™H)
ik £ =0
L e
A Rye'%il ) 1 — A to — Aj
T
) Aty dtydt,

(t1 —to)(t2 — t1)

/ /9’” / ezto (to /\Jg)NO_Mk_1 (t —Aj ) § ==t
A Roe'%%i £\, Cg(ll) t1 — )\k to — /\J

(tg — Ny)s—m—t

(t1 —to)(ta —t1)
519 59
The details for obtaining estimates for the sums in (5.8) are very similar to those of

the previous section. The only real difference is that we use lemma 2.3. We omit the
details and give the estimates

S (zm) = AT |z|<3/2>

(0) (1) (5,&0)*[3v (1) ﬁ(l)*ﬁl@))\ﬂ 5 B2z
% . — B B ﬁl @ l o)
| Ajiel ol Ry

(0) ) (ﬁ,io)—ﬁjl))\z\
+e*k2ﬂ,(co)2< e =0 )

dtodty dto}

[ s
W), @, 2 _ g
x(87)% ey (R 0)
) @ _ gy, g,
e By 21| g [Rem+(1/2) (R B3 =B ) ‘(%0‘1(0)) 851 ‘0(1)4‘5121)(2771)’ (5.9)

as z — 00 in S(n). Again, for each positive constant «, we can find a positive number
Ry, such that for Ry > Ry

S0 (z.m) = M rl0(1), (5.10)

as z — 00 in S(n).
Finally, we estimate the quadruple integrals in (5.7). We use the equations
(t1 —to)™! = |2]O(1), (ta — t1)~! = |2]O(1), (t3 — t2)~! = |2]O(1) and lemma 2.4.
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Hyperasymptotic solutions of higher order linear differential equations 19

We obtain

/["7] /Roeiew"’)\k /Rleiej’+Aj/
2
PV A o

No—pp—1 N® 1 N® -1
sorto (Lo = An A A A TP A ya(ts)
t— A ta — A ts — A e

y dtsdtadtdty
(tr —to)(t2 — t1)(ts — t2)
0o 9] tNJ(I)*Rel"J'*l
_  Akz 3 —|z|to 4 No—Re pur—1 1
= ez e t dt dt
| | A 0 0/0 (tl + ‘)\jk|)N‘)7RCuk71 1

0 tNl(Q)—RC;A,;—l o
X / 2 N _Rep 1 dt2|)\ql|_Nz (Nl(2))ReﬂqO(1)
0 (t2+|)\lj‘) J > K
™ (2) 1) 2
= MR N [T NN N T (N — Re )
F(N;l) — Re ;) )I(No — N}l) +Repjr —1)
F(NO — Repy — 1)
(N — Rep)T(N;” = N + Repu; — 1)

X o(1
F(N;l) —Rep; —1) M

(0) (1)
(0) )\ B =B85 )=l
v =B )

X

[Ajkle

5O _ g (B =)z 5 B2
x [ L L o(1), 5.11
( Pole ) (qu|e> W (510

as z — 00 in S(n).

_ e)xkz|Z|Re,uq+(3/2) (

Remark 5.1. When Ay, Aj, A; are not collinear, or when A, is \;, then we can use
(ta —t1)~' = O(1). Also, when )\, \;, A, are not collinear, or when \; is \,, then we
can use (t3 —ty) ' = O(1). Hence, in the case that none of the sets {\;,, A1, i, |\, #
A, # Ay # Ay} is collinear, we can sharpen the estimate (5.11) and all succeeding
estimates in this section by a factor |z|~2. And an extra factor |z|~("/?) can be
obtained with the method explained in Olde Daalhuis & Olver (1995a, § 4 (Remark)).

We now combine (5.10) and (5.11) into the following result:

B (zm) = 23 0% 0% Ky Kl e/
i 127 0

(0) (1) B -z ) @ (B 2) o e
N B =6~ 8 o)
|/\]1€‘6 ‘/\lj|e |)\ql|e ,

(5.12)

as z — oo in S(n). Each term on the right-hand side of (5.12) is minimal
for S)) - ﬁ;l) = |Ajkls /BJ(.I) - ﬁl(2) = |A;| and 61(2) = Ayl Again, we see that the
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20 A. B. Olde Daalhuis

best choice for ﬁ,i = ak . Reasonable choices for the number of terms in the re-
expansions are given by
1 0
B = max(0, 8" — Nl B = max(0, 57 — ny)). (5.13)
With these choices, we obtain the final estimate for the remalnder at level two, i.e.

R (z,1) = M=l Fl |1 0/20(1), (5.14)

as z — oo in S(n).

6. Main theorems

The pattern of resubstitution of (2.21) into successive remainder terms is now clear.
The general results can be written down by inspection and verified by induction.

Theorem 6.1. Let ! be an arbitrary non-negative integer and N,£0>, N,S), R Nlif)
be integers such that

N =50+, NG =801 ), =12 (6)
in which the s are constants that satisfy
1 -1 1 0
0< By <8y < <8y <8 (6:2)
and the s are bounded as |z| — oo. Then
N -1
wi(z,m) = GAMZM< Z aspz*
s=0
NP1 ©
_N© Ky ra N7 = s+ piyk
+Zl N, [ 1. { o )( 1
klzqék 27 Z ! )\klk
i - (0) (1) (1)
°2
+ Z Kkz{ﬂl { Z askzF@) <z; Ny" = N+ i + 1, Ny " — s+ Mk2k1)
K = Ak ks Absky
2#£k1 s=0

N1

Kip, NO = N 4 g + 1,
by M { Z aklpw( i
ki1 kiks )

1—2) 1-1) 1-1)
NIEZ 2 N]il PR Y +1, Nliz 1 7S+'uklk'z—1>

)\kl—lkl—27 )‘kzkl—l

}...}H)JFRS)(ZJ]), (6.3)

and as z — oo in S(n),

l € Ui
ROGm) =M 3 e S0 Ko Ky g 2[Fes H@D/2)
k1#k kip1#k;

O _ gu\ BT ADEL g e g0 RS RN
|Ak1k|e |>\klkl—l‘e |>‘k1+1k1|e ( )
(6.4)
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Hyperasymptotic solutions of higher order linear differential equations 21

In theorem 6.1 the remainder terms Rfcw(z,n) are not optimized. Optimization
yields are as follows.

Theorem 6.2. Let

Y=o By = max(0, 5 — Nel) o B = max(0, 507 — P, D,
(6.5)
where o) is defined by (2.14). Then, as z — oo in 8(n),

Rl(cl)(z7 n) = C/\kvz—ai‘”\z\|Z|ﬂ+<(l+1)/2)@(1). (6.6)

If none of the sets {\i,, Ay, iz |\, # A, # Ay # A, } are collinear, then as z — oo
in (),

Rg)(zm) _ e,\szafc”lzl|z‘ﬂf(l/2)l@(1), (6.7)

Remark 6.3. In deriving these two theorems, we assumed that all the p; are
non-integers. If this is not the case, then we can multiply all the solutions of (1.1)
by z%, where « is chosen so that all the u; + « are non-integers. We observe that
this multiplication does not affect the ;. Hence, if we multiply the hyperasymptotic
expansions of W(z) = z%w(z) by z~%, then we obtain the hyperasymptotic expansions
of w(z). In this way, we remove the restriction on the ;.

7. Computation of the Stokes multipliers

In order to make theorem 6.1 usable in numerical computation for the solutions
of (1.1) we need to be able to compute the Stokes multipliers K. In this section we
give a method to compute these multipliers to sufficient precision.

To analyse what precision we require in the Stokes multiplier Ky, . _,, write (6.3)

as
wi(z) = P+ Y Kk, @ + R (2.), (7.1)
kmF#km -1
and take
0 l 1 0
() 061(6)7 ():maX(Ovﬁlg)il)‘klk‘L I (72)
(m—1) _ 0 ('m, 2) A (m) _ . _ p) _ 0 :
K —1 = max( ﬁ =Mk |)s km = ﬁkl =

Then from (6.4) we have

e

m ﬁ m—1
)\kz—aw\z| a+((141)/2) ﬁkm 11) '
Q,, =€ k¥l Y| O(1). (7.3)

_—

Comparing this estimate with (6.6), we see that in the computation of Ky, i we

mRm—1
can permit a relative error
(m—-1)
(m 1) —By 2]
OB,/ Abkuy ) om0

m—1 m—1

Notice that if |Ag, g, _,| = ﬁkm , then Q.. can be absorbed into R( >(z 1), which
means that this branch of the hyperasymptotlc expansion does not contribute
to the level [ hyperasymptotlc expansion. This is in agreement with our choice

B =max(0, 87" — A,k |) in (6.5).

m—1
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22 A. B. Olde Daalhuis
From (6.3) and (2.23) we obtain
a0, =N (RO (5 N ) — RO (2, NI + 1)

(1)

. 2m{ Z asle“( (M +1) - S+Mk1k>+ 3 K;;fl

)\klk

(0)
N,k

k1#£k ko7k:
N@-1
{ Z . F(z)( (N +1) = N + g + 1L, N — s+ Mkm)
® )‘klka )\kal
N -1 © &
Kono [ (N7 +1) = N+ g +1,0
: s F(l) 0; k ky ! ’ ’
+k§ 2mi Z0 ok ’ )‘k1k7 B
1 1—1 S=!

-2 (-1 (-1
N£1,2>_Nk; 1)+p’kl 1ki— 2+1 Nk, 1)_5+Mkzk11>
)‘sz1sz27 )\klk?l,—l

} }} +r (N, (7.4)

This may be regarded as a hyperasymptotic expansion for the late coefficients as
N ko — 00. In order to use this result for the computation of the Stokes multipliers
n (6.3), we suppose that the numbers of coefficients are given by (6.1), and that
(6 2) holds. Thus, instead of N 0 we take |z| as the large parameter.
It follows from the previous section that if (6.5) holds, then

r(NO) = e 2l N A1) /2) 0 (1), (7.5)

as |z| — oo.
The expansion (7.4) is of the form

5 ~ 1
ayo =Pt D Kk Qu, + 10 (). (7.6)
T
Again, we can show that

_ 1)
rON®) /G, = OB /At [) ot ],

'ml

which means that we can use (7.4) to compute Ky,

mRm—1

First we analyse the case | = 1. Then (7.4) reads

to the required precision.

NVt
Ky, (0) L s N _
_ 1 N —s pp pmiy$ k Hiqk (0)
ay©), = E i E sk (—1) T TeMMETIN PNy — s+ piyk)
[ s=0

+r (V). (1)

This is an optimally truncated (Darboux) asymptotic expansion for the late coeffi-
cients. In the notatlon of (7.6) we have Py = 0. In (7.7) the factor of Ky, contributes
a relative error (’)(ﬂ /|)\;C k)™ 5712 We neglect the terms for which |Ag, x| >[‘8,(€0)7
and we assume that there are ny terms such that |Ag, x| < ﬁk On replacing N, by
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.
Qi pht=7—w o

S(n)

r\)|r—‘<>
~|m<>

o-

N,g()) -1, N,EO) —2,..., N,EU) — ny, in turn, and ignoring the error terms, we arrive at
a system of n; linear equations. In this way we can compute the Ky, to the required
precision.

We now analyse the cases | = 2,3,.... Let m € (1,...,1). We assume that we
already know all the required Stokes multipliers of the form Ky . ,, m <m </,
to the required precision. This means that if we write the level (I — m + 1) hyper-
asymptotic expansion of

Figure 8. The admissible directions.

Q nr(m—1)
Nk'm—lk'm—l
as
_ X (I—m+1) (m—1)
ayom-n = Kk, @, i (N (7.8)
177. k:m
! ' km#km—1

(cf. (7.4) and (7.6)), then we can compute @y, to the required precision. Again, we

neglect the terms for which

(m—1)
|)\k7nkm—l‘ Z Pkp_1
and we assume that there are n,, terms such that

Moo | < B0,

On replacing N =D by N '" Vo1, Nk:f 11) 2,.. .,N,g:; Y ., in turn, and
ignoring the error terrns we arrlve at a system of n,, linear algebraic equations
for the Ky, k,, . In this way we are able to compute all the Stokes multipliers in the
[th level hyperasymptotic expansion to the required precision.

The reason that we choose this method to compute the Stokes multipliers is so
that we can use all the coefficients a,; that we need in the /th level hyperasymptotic

expansion.

8. An example
We use the example
w®(2) =3w® (2) + (§+1272)w® (2) = B+ 227w/ (2)+ 3+ L2 Hw(z) = 0. (8.1)
In this case we have n = 4 and

M=1 X=3 N=i M=-i p=0, j=1,....4. (8.2)

29

Nt

We take n = %ﬂ and assume that we wish to compute ws(z,7) at z = 10e(t/47,
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Since,

)\13 = 35— 17 )\23 =3 l )\43 = —21, (83)
we obtain from (2.14) « \/\13| =16 = 1 118 . Hence, the optimal number of
terms in the original Pomcare expansmn 1s N 0= 11

In the level-one expansion we have 8" = al" = |Ais|+ [As1| = [Ais| + || =

/5 =2.236.... Hence,
A = max(0, B — |\ig]) = 1v/5 = 1.118...,
(0 = /5 =2236..., (Y = max(0, ﬂ“’) |Aos|) = 0,
B = max(0, 8 — [Ass]) = /5 —2=0.236....
(8.4)
Thus the optlmal numbers of terms at the level one hyperasymptotic expansion are
N =22, N =11, N{ = 0 and N{'

To compute the Stokes multipliers K 13 and K43 to the required precision, we first
compute

= (—2.6246115745148737538 - - - 4 17.7381487701887858960 - - -) x 10'°,
= (—3.2145346630254340602 - - - — 13.2463846167062710532 - - -) x 10'°.

a
NSO 1,3

AN©O _23

On replacing N,io) by N?EO) — 1, and Néo) — 2in turn in (7.7), and ignoring the error
terms, we arrive at a system of two linear equations. On solving these equations we
find that

Ki3 = —1.3167355550447009754 + 1.7502706941028591333i, (8.5)
K43 = 0.3443668989089293253 — 2.1203898698716294832i. .

Further on we shall see that in these approximations the value of K13 is correct to
eight decimal places and that of Ky3 1s correct to two decimal places. The required
precision for K3 is approximately 63 / |z‘ =1.9x 1077, and the required
precision for K3 is approximately, ﬂg é|)\43\ ﬁs 17l = 8.3 x 102

In the level-two expansion we have ﬁ a = 3\/5 Hence,
(2 = 0.236.. .,
D =92.236..., <2> =1.118...,
) (2) =1.118...,
=3.354..., 8.6
D =0.661..., B =0, j=1,34, (86)
B =1.354. .. ) = 0.236.
’ ﬁ =0, ]:za
Thus we take
N =2
N =22 { N =11,
o N® =11,
Ny =33, . ) (8.7)
NV =6, N® =0, j=134,
NP =2
Niw — 13’ 1(2) I
NP =0, j=23
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Hence the level-two hyperasymptotic expansion of ws(z,n), with z = 10e(//97 s of
the form
32

21
iz o as3 _32 K13 (1) . 33—s
e ’LU3(Z7’I7)—Z —+z TZG“F Zq .
— 2 m = 5—1

K. 33—s
—3223 } : (1) .
+z 271'1 : ast (2{7 %71 )

12 1
LK 33— s WK [K 12, 22— s
52 Kas W (4 52 K3 [ Ko @[, 1%
F F
=PI (Z —2 )+z omi {27& ;‘“2 (Z —i, 2 )

1
s=0 2
K31 12, 22— s K41 12, 22—s
< F@{ . ) na @) ,. ’
+27rizs:0“3 TR Z B R gy
Kis K 21, 13
,32 43 214 (2) A (2)
\F .
ngmz ( 2171+§)+R (2,m)- (8.8)

To compute the Stokes multipliers K1, K31 and K41 we use the level-one hyper-
asymptotic expansions of AN _y 15 Oy0 gy and Anm g1 We obtain
K5 = 0.32220037911218913862i,
K31 = —0.33518471810856053233 — 0.17394369472610190908i, (8.9)
K41 = 0.33518471810856053233 — 0.17394369472610190908i.
The level-one hyperasymptotic expansion of aya_, , yields
K4 = 1.3175812208411643253 + 1%74924443667772551101. (8.10)

If we use (8.9) and (8.10) in the level-two hyperasymptotic expansions of ayw _, .,
5§71,

AN© 53 and anN© g3 then we obtain
K3 = —1.3167355300409799821 + 1.7502707419178753228i, (8.11)
K3 = —0.9600011769004704206 — 0.3257656311181001083i, (8.12)
K43 = 0.3553405998176582756 — 2.1172377431478990710i. (8.13)

To compute the level-two hyperasymptotic expansion of ws(z,m), we use these
values for the Stokes multipliers in (8.8) and the methods described in Olde Daal-
huis (1996, 1998) to compute the hyperterminants. To compute the ‘exact’ value
of ws(z,m) at z = 10e(!/2™ we first use 47 terms of the asymptotic expansion of
ws(z,1m) to compute this function at the point z 4 35i, and then use numerical inte-
gration of the differential equation (8.1) from z + 35i to z. For more details on the
stability of the numerical integration process see Olde Daalhuis & Olver (1998). The
numerical results are given in table 1.

9. Integrals with saddles

In this section we show that theorems 6.1 and 6.2 also apply to integrals of the
form

/ e Wg(t) dt. (9.1)
C
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Table 1. Hyperasymptotic approzimations to wz(z,n) for z = 10et/H7i

level approximation [relative error|
0 0.00059870442702324531293 1.9 x107¢
+0.00059285912251762980202i
1 0.00059870426695596695104 1.7x 10713
+0.00059286076905849279426i
2 0.00059870426695611033390 1.9 x 1071
+0.00059286076905847214738i
exact  0.00059870426695611033376 0

+0.000592860769058472147461

Ordina number of term
20 40 60 80 100

10-3

106

[term|

10-9

1012

10 -15

Figure 9. The terms in (8.8), the level two hyperasymptotic expansion of ws(z, 7).

We assume that f(t) has n simple saddle points ¢1, ..., t,, and that f(¢) and g(¢) are
analytic in certain regions in the complex plane. We omit the description of these
regions, and refer the reader to Berry & Howls (1991) and Boyd (1993) and especially
Howls (1997). We take A\; = f(¢;), i =1,...,n, and

Apj

I'(p+ 3) q(t) .
=23 fg(f(t)—f(tj))ﬁ(l/?)dt’ j=1,...,n, p=0,1,2,..., (9.2)

where the subscript j indicates that the contour of integration is a small positive
loop around ¢;. From the results in Berry & Howls (1991) we see that the function
yi (), defined by

_ CT(L — V(£ — AP (1/2) _ i — .
(0 = 2l =)= POl <mipy =M, (99)
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is analytic in P,, and satisfies
yi(t) = 3K y;(t) +reg(t — X;), j# k. (9.4)

Note that in this case p; = f%, j=1...,n.
If n is admissible and C(n) is the steepest descent path through ¢, given by

ph(f(t) — f(tx)) = 7, then

e 1
R [ efOgna= o [ et (95)
Ci(n) T Sy ()
and
Li(z,m) ~ @22 DY P27, (9.6)
s=0

as z — oo in §(n).

Since the proof of theorem 6.1 does not depend on y;(t) originating from (1.1),
theorem 6.1 also applies to I (z,7). In this way we re-obtain the results of Berry &
Howls (1991). The only difference is that we specify the optimal number of terms at
all levels.

There are two main differences between the results for integrals with saddles and
solutions of linear differential equations. The first is that in the case of the linear
differential equations we have the freedom to take agr = 1; the second is that in the
case of integrals with saddles the constant K, has only three possible values, +27i
and zero. If K, = 0, then saddle point j is not adjacent to k, and if K, = +27i, then
saddle point j is adjacent to k. The sign in front of 27i depends on the orientation
of the steepest descent paths. Hence, in the case of integrals with saddles we are in a
fortunate situation in that we need to approximate the Stokes multipliers K, only
to a very low precision; we can then decide immediately the exact value of K. For
more details see Howls (1997).

10. Conclusions and generalizations

In this paper we have obtained hyperasymptotic expansions for solutions of nth
order linear differential equations having a singularity of rank one at infinity. The
hyperasymptotic expansion (6.3) is in its optimal form: a series whose terms are
a product of Stokes multipliers, coefficients of the formal series solutions (1.3) and
hyperterminants. These expansions can be seen as generalizations of the results in
Berry & Howls (1990), Olde Daalhuis (1995) and Olde Daalhuis & Olver (1994,
1995a, b).

The method used was based on the properties of the Borel transforms of the formal
series solutions. Once we have these Borel transforms and know their properties, we
can forget that they originate from differential equations, and still obtain the hyper-
asymptotic expansions. The Borel transforms of formal series expansions of integrals
with saddles are a special case of the Borel transforms studied. In §9 we re-obtain
the results of Berry & Howls (1991) for hyperasymptotic expansions of integrals with
saddles. The case of multidimensional integrals with saddles is discussed in Howls
(1997).

It is also not difficult to modify the methods of this paper to obtain the results
of Murphy & Wood (1997), that is, hyperasymptotic expansions for solutions of
second-order linear differential equations having a singularity of arbitrary rank. But
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the general case of higher order linear differential equations having a singularity of
arbitrary rank is more complicated. Paris (1992) contains some preliminary results.
In that paper the smoothing of the Stokes phenomenon is given for higher order
linear differential equations.

The first part of the method that we use in this paper is similar to the method used
in Lutz & Schifke (1994). In that paper the authors obtain the optimal number of
terms in the original Poincaré asymptotic expansions for systems of linear differential
equations with an irregular singular point of rank one at infinity. But instead of re-
expanding the minimal remainder in terms of hyperterminants, the authors re-expand
the minimal remainder in powers of 1/z. The coefficients in these re-expansions are
complicated, and these re-expansions are valid only in sectors that do not contain
Stokes lines.

There are several results in the literature (Braaksma 1991; Immink 1990; Jurkat
et al. 1976a, b; Loday-Richaud 1990; Lutz & Schéfke, unpublished research; Olde
Daalhuis & Olver 1995b) on the computation of Stokes multipliers. Our results can
be seen as a direct generalization of those in Olde Daalhuis & Olver (1995b). Many
of the other results are of the form (7.7), but with the right-hand side replaced by
its dominant term. With additional terms available on the right-hand side we have a
more powerful way of computing the Stokes multipliers. In general, it is not possible
to compute all the Stokes multipliers from (7.7). In fact, with (7.7) we can compute
only the Stokes multipliers that are required in the level-one hyperasymptotic expan-
sions. Our result, (7.4), is a generalization of (7.7), and with this expansion we can
compute the ‘difficult’ Stokes multipliers as well.

Other analytical methods for computing the difficult Stokes multipliers are based
on conformal mappings in the ¢ plane (Borel plane) (see, for example, Lutz & Schéfke,
unpublished research). However, construction of the correct conformal mappings is
still a difficult problem.

A numerical method for computing all the Stokes multipliers is discussed in Olde
Daalhuis & Olver (1995b, 1998). This method is based on direct numerical integration
of the differential equation. B

The region of validity supplied by theorem 6.1 is the closed sector S(n). Values of
the analytic continuation of wy(z,7n) to other sectors of the complex plane can be
calculated by repeated application of connection formula (2.13). Furthermore, with
a method that is similar to the method in §10 of Olde Daalhuis & Olver (1995a),
we can show that at all levels the region of validity of theorem 6.1 can be extended
beyond S(n), although at the cost of weakening the asymptotic estimates of the
remainder terms. We omit further details.

As in Olde Daalhuis & Olver (1995a) the hyperasymptotic expansion, (6.3), for
large | may be numerically unstable. This may be remedied in the same manner as
in Olde Daalhuis & Olver (1995a). The optimal numerically stable scheme uses fewer
terms than the corresponding optimal hyperasymptotic expansions, but yields less
precision.

This research was stimulated by a workshop on Fzponential Asymptotics at the Isaac New-
ton Institute for Mathematical Sciences in Cambridge, UK, from January 1995 through June

1995. The author is pleased to acknowledge the support of the Institute and the Netherlands
Organisation for Scientific Research (NWO).
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