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We obtain uniform asymptotic approximations for the monic Meixner-Sobolev polyno-
mials Sn(x). These approximations for n→∞, are uniformly valid for x/n restricted to

certain intervals, and are in terms of Airy functions. We also give asymptotic approxi-
mations for the location of the zeros of Sn(x), especially the small and the large zeros

are discussed. As a limit case we also give a new asymptotic approximation for the large

zeros of the classical Meixner polynomials.
The method is based on an integral representation in which a hypergeometric func-

tion appears in the integrand. After a transformation the hypergeometric functions can
be uniformly approximated by unity, and all that remains are simple integrals for which
standard asymptotic methods are used. As far as we are aware, this is the first time

that standard uniform asymptotic methods are used for the Sobolev-class of orthogonal

polynomials.
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1. Introduction

The monic Meixner-Sobolev polynomials Sn(x) are orthogonal with respect to the

discrete inner product

(p, q)S =

∞∑

k=0

{p(k)q(k) + λ∆p(k)∆q(k)} c
k (β)k
k!

, (1.1)

where 0 < c < 1, β > 0, λ>0, and ∆ is the usual forward difference operator defined

by ∆p(k) = p(k + 1)− p(k). When λ = 0 the Meixner-Sobolev polynomials reduce

to the classical Meixner polynomials. These polynomials were introduced in [1],

1
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and a recurrence relation involving Sn, Sn−1 and 2 classical Meixner polynomials

are given in [2] and [7]. This recurrence relation is very useful for generating the

polynomials. The large n asymptotics in [2] is for non-oscillatory regions.

In this paper we give large n asymptotic approximations that are valid on the

real x axis, hence, they include the oscillatory region 06x/n < 1+
√
c

1−√c . The starting

point is the generating function given in [7]:

G(t) =

∞∑

n=0

Sn(x)tn, (1.2)

where

G(t) =
1

1− t

(
1− t

a

)−x−β+γ+1

(
1− t

ac

)−x
(1− act)γ

2F1

(−x, γ
β − 1

; z(t)

)
, (1.3)

in which

z(t) =
−t(1− c)(1− a2c)
(1− act)(ac− t) , =⇒ 1− z(t) =

(1− at)(1− t
a )

(1− act)(1− t
ac )

, (1.4)

and

γ =
(1− a)(β − 1)

1− a2c , a =
1 + ηc−

√
(1 + ηc)

2 − 4c

2c
, (1.5)

where η = 1+λ
(
1− 1

c

)2
> 1. Note that 0 < a < 1 and that ca2− (1+ηc)a+1 = 0.

In (1.3) the function 2F1

(
a, b

c
; t

)
is the standard Gauss hypergeometric function.

(See [8].) Note that the definition of γ differs from the one used in [7].

From the generating function G(t) we will obtain an integral representation for

Sn(x). The integrand will involve the Gauss hypergeometric function, and it seems

not easy to obtain asymptotic approximations. However, we will use some of the

linear transformations for hypergeometric functions, to express Sn(x) as a sum of 3

integrals in which the hypergeometric functions can be approximated uniformly by

unity. Hence, the result is a simple integral approximation where standard methods

can be used.

The structure of the paper is as follows. In §2, we study the asymptotics as

n → ∞ and x is bounded. The analysis is based on Darboux’s method. We will

obtain simple asymptotic approximations, and observe that the small zeros of Sn(x)

are located at x = 0, 1, 2, · · ·, with an exponentially small error.

In §3 we use several transformations to obtain an integral representation that

can be used for the uniform asymptotic approximations. We discuss the location of

the saddle points of the phase functions of the integrals. When x/n = Y±, where

Y− =
1−√c
1 +
√
c
, and Y+ =

1 +
√
c

1−√c , (1.6)

these saddle points will coalesce, and Airy functions are needed in the uniform

asymptotic approximations.
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The multi-valuedness of the hypergeometric functions is discussed in §4, and

we conclude that along the contours of integration of the integrals given in §3, the

hypergeometric functions can be approximated uniformly by unity.

In the following 4 sections, we discuss the uniform asymptotic approximations.

Only one saddle point dominates in the case Y− < x/n < Y+ and a simple saddle

point method approximation is given in §5, where we also give a relative simple

formula for the location of the zeros.

The cases 0 6 x/n < Y−, 0 < x/n < Y+ and Y− < x/n are discussed in the

next 3 sections. In the first case, we give a uniform asymptotic approximation in

terms of a gamma function, and in the other 2 cases, Airy functions are needed

in the asymptotic approximations. The later case also gives information about the

location of the large zeros of Sn(x), which are discussed in the final section. Our

three term asymptotic approximation for the large zeros is in terms of the zeros of

the Airy function Ai(z). When we let λ→ 0, that is, a→ 1, we obtain a three term

asymptotic approximation for the large zeros of the classical Meixner polynomials,

and our result agrees with [6], in which a two term asymptotic approximation is

given. The additional term in our approximation is surprisingly simple.

In figure 1 we display the graph of

2

3
nSn(x)

erfc(20(Y− − y))Γ(x+ 1)√
nanc(n+x)/2Γ(x+ γ + 1)

+
erfc(20(y − Y−))Γ(x+ 1)Γ(n− x− γ)

n!(ac)n(1− c)x
. (1.7)

With this rescaling the function is O(1) on the whole interval. It clearly displays

the oscillatory region x ∈ [0, nY+], and the dramatic change near x ≈ nY−.

Fig. 1. The graph of a rescaled version of S30(x), where a = 5
6

, c = 1
3

and β = 9
8

. Note the
dramatic changes at x = nY− ≈ 8 and at x = nY+ ≈ 112.
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2. Large n and fixed x asymptotics

For the large n asymptotics, we will study the singularities of G(t) in the complex

t plane. These are at

ac, a, 1, 1/a, 1/ac, with 0 < ac < a < 1 < 1/a < 1/ac. (2.1)

Hence, the singularity that is nearest to the origin is t = ac. For an asymptotic

expansion that holds as n→∞ and a, c, β and x fixed, we need the local expansion

of G(t) at this singularity. It is convenient to start with the identity

G(t) = G1(t) +G2(t), (2.2)

(use (15.8.2) in [8]), where

G1(t) = K1
tγ−β+1(1− at)x+β−γ−1

(1− t) (1− act)x+γ 2F1

(
1− γ, β − γ − 1

1− γ − x ;
1

z(t)

)
, (2.3)

with

K1 =

(
(1− c)( 1

ac
− a)

)γ−β+1
Γ(β − 1)Γ(x+ γ)

Γ(γ)Γ(x+ β − 1)
, (2.4)

and

G2(t) = K2

t−γ
(
1− t

a

)−x−β+γ+1

(1− t)
(
1− t

ac

)−x−γ 2F1

(
γ, 2 + γ − β
1 + γ + x

;
1

z(t)

)
, (2.5)

with

K2 =

(
(1− c)( 1

ac
− a)

)−γ
Γ(β − 1)Γ(−x− γ)

Γ(β − γ − 1)Γ(−x)
. (2.6)

The function G1(t) has no singularity at t = ac. Hence, the main contributions to

the large n asymptotics will come from G2(t). We expand

G2(t) = K2

∞∑

m=0

bm

(
1− t

ac

)m+x+γ

, (2.7)

with

b0 =
(1− c)−x−β+γ+1

(ac)
−γ

1− ac , (2.8)

and obtain via Darboux’s method (see §2.10(iv) in [10])

Sn(x) ∼ K2

∞∑

m=0

bm
2πi

∮

{0}

(
1− t

ac

)m+x+γ

tn+1
dt

∼ K2
(ac)

−n

n!

∞∑

m=0

bm (−m− γ − x)n , (2.9)

as n→∞, where the Pochhammer symbol is (z)n = z(z + 1)(z + 2) · · · (z + n− 1).
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Just to illustrate: Taking a = 5
6 , c = 1

3 and β = 9
8 , then S50(1.5) = 3.256665×

1023 and taking 4 terms on the right-hand side of (2.9) gives us the approximation

3.256592× 1023. Hence, the relative error is 0.000023.

It follows from the gamma function Γ(−x) in (2.6) that Sn(x) has zeros at

approximately x = m, where m is a bounded nonnegative integer. In fact, since

K2 multiplies all terms in (2.9) and the contribution of G1(t) to the asymptotics of

Sn(x) will be exponentially small, it follows from Theorem 1 in [5], that the small

zeros are located approximately at x = m with an exponentially small error. In [6]

the authors make the same observation for the small zeros of the classical Meixner

polynomials.

3. Large n and x

Our analysis will be based on the observation that (see §15.12(ii) in [8])

2F1

(
A,B

x+ C
; z

)
= 1 +O(1/x), x→∞, |ph(1− z)| < π. (3.1)

We will use this result for x→ +∞. The result even holds for x→∞ in the sector

|phx| 6 1
2π − ε, (where ε is an arbitrary small positive constant), with the same

restriction on z. For larger sectors in the complex x-plane the z-region of validity

will be smaller.

The hypergeometric function in the right-hand side of (2.5) is already of the

form (3.1). For the one in the representation (2.3) of G1(t) we need one more

transformation.

Note that the function G1(t) is analytic at t = ac. For that function we push t

to ac < <t < a, and we use the transformation

G1(t) = G3(t)−G4(t), (3.2)

(combine (15.8.4) with (15.8.1) in [8]), where

G3(t) = K3
tγ−β+1(1− at)x+β−γ−1

(1− t) (1− act)x+γ 2F1

(
β − γ − 1, 1− γ

x+ β − γ ; 1− 1

z(t)

)
(3.3)

with

K3 =

(
(1− c)( 1

ac
− 1)

)γ−β+1
Γ(β − 1)Γ(x+ 1)

Γ(γ)Γ(x+ β − γ)
, (3.4)

and

G4(t) = K4

t−γ
(
1− t

a

)−x−β+γ+1

(1− t)
(
t
ac − 1

)−x−γ 2F1

(
γ, 2 + γ − β
1 + γ + x

;
1

z(t)

)
, (3.5)

with

K4 =

(
(1− c)( 1

ac
− 1)

)−γ
Γ(β − 1)Γ(x+ 1)Γ(−x− γ)

Γ(γ)Γ(1− γ)Γ(β − γ − 1)
. (3.6)
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We observe that G2(t) and G4(t) are in terms of the same hypergeometric

function, but that in G2(t) we start at 0 < t < ac, and in G4(t) we consider

ac < t < a. Combining these two functions we obtain

G±(t) = G2(t)−G4(t) = e∓xπiK

( t
ac − 1

1− t
a

)x
g(t)2F1

(
γ, 2 + γ − β
1 + γ + x

;
1

z(t)

)
, (3.7)

valid in the half-plane ±=(t) > 0, where

K =

(
(1− c)( 1

ac
− a)

)−γ
Γ(β − 1)Γ(x+ 1)

Γ(β − γ − 1)Γ(x+ 1 + γ)
, (3.8)

and

g(t) =
t−γ

(
1− t

a

)γ−β+1

(1− t)
(
t
ac − 1

)−γ . (3.9)

Combining these results we obtain

Sn(x) =
1

2πi

∮

{0}

G(t)

tn+1
dt

=
1

2πi

∫

C3

G3(t)

tn+1
dt+

1

2πi

∫

C+

G+(t)

tn+1
dt− 1

2πi

∫

C−

G−(t)

tn+1
dt (3.10)

where C3 is for the moment a vertical contour that crosses the real t-axis in the

interval (ac, a) and C± is a contour that emanates from t = ac and goes to infinity

in the upper/lower half-plane. Again, the integrands in (3.10) have singularities at

the points mentioned in (2.1), and possibly a branch-point at t = 0.

From here onwards, we will take

x = ny, where y > 0, bounded. (3.11)

We will now replace the hypergeometric functions by unity, Hence, the phase-

function for integrand G3(t) is f3(t) and for integrands G±(t) it is f(t), where

f3(t) = ln(t) + y ln

(
1− act
1− at

)
, f(t) = ln(t) + y ln

(
1− t

a
t
ac − 1

)
. (3.12)

The saddle-points are located at

Sp3± =
1

2ac

(
y(c− 1) + c+ 1±

√
(y(c− 1) + c+ 1)

2 − 4c

)
,

Sp± =
a

2

(
y(c− 1) + c+ 1±

√
(y(c− 1) + c+ 1)

2 − 4c

)
. (3.13)

Note that the saddle-points ‘coalesce’ when y2 + 2y c+1
c−1 + 1 = 0, that is, when

y = Y±, where Y± are defined in (1.6).

One very useful observation: let

cos θ =
1 + c− (1− c)y

2
√
c

, then Sp± = a
√
ce±θi, Sp3± =

1

a
√
c
e±θi.(3.14)
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It follows from these representations that for 0 < y < Y−, we have

ac < Sp+ < a
√
c < Sp− < a < 1 <

1

a
< Sp3+ <

1

a
√
c
< Sp3− <

1

ac
,

(compare (6.1)), for Y− 6 y 6 Y+ we have |Sp±| = a
√
c < 1 < |Sp3±| = 1/(a

√
c),

and finally for y > Y+, we have

Sp− < −a
√
c < Sp+, Sp3− <

−1

a
√
c
< Sp3+, and Sp3± < Sp± < 0,

(compare (8.1)). See figure 3, in which we indicate the location of the dominant

saddles in the case a = 5
6 , c = 1

3 and β = 9
8 .
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It follows from these representations that for 0 < y < Y�, we have

ac < Sp+ < a
p

c < Sp� < a < 1 <
1

a
< Sp3+ <

1

a
p

c
< Sp3� <

1

ac
,

(compare (6.1)), for Y� 6 y 6 Y+ we have |Sp±| = a
p

c < 1 < |Sp3±| = 1/(a
p

c),

and finally for y > Y+, we have

Sp� < �a
p

c < Sp+, Sp3� <
�1

a
p

c
< Sp3+, and Sp3± < Sp± < 0,

(compare (8.1)). See figure 2, in which we indicate the location of the dominant

saddles in the case a = 5
6 , c = 1

3 and � = 9
8 .

ac s1

s2

s3

s4

s5

Fig. 2. Steepest descent contours C+ in the cases y = yj , where y1 = 1
5

< Y�, y2 = 2
5
, y3 = 7

5
,

y4 = 17
5

and y5 = 4 > Y+. The saddle points are located at sj . Note that the contours emanate
from ac and that s2, s3, s4 are located on the circle |t| = a

p
c.

4. The multi-valuedness of the hypergeometric function

The principal branch for the hypergeometric function 2F1

✓
a, b

c
; z

◆
is |ph(1�z)| <

⇡. Hence, the branch-cut is z > 1. Thus, for the functions G±(t) the t-branch-cuts

are at points where 1/z(t) > 1, that is, 0 < z(t) < 1. The reader can check that

this happens on the intervals (�1, 0), (a, 1/a) and on the unit circle |t| = 1.

For the function G3(t) the t-branch-cuts are at points where 1 � 1/z(t) > 1,

that is, z(t) < 0. This happens on the intervals (0, ac) and ( 1
ac ,1).

If we continue to use the principal branches for the hypergeometric functions in

the definition for G±(t), then we have for =t > 0

G(t) = G+(t) + G3(t), for |t| < 1,

G(t) = G+(t) + e2(����1)⇡iG3(t), for |t| > 1. (4.1)

Below we will see that the contributions of G3(t) are exponentially small compared

with the contributions of G±(t). It follows from (4.1) that we can use (3.1) for the

Fig. 2. Steepest descent contours C+ in the cases y = yj , where y1 = 1
5
< Y−, y2 = 2

5
, y3 = 7

5
,

y4 = 17
5

and y5 = 4 > Y+. The saddle points are located at sj . Note that the contours emanate
from ac and that s2, s3, s4 are located on the circle |t| = a

√
c.

4. The multi-valuedness of the hypergeometric function

The principal branch for the hypergeometric function 2F1

(
a, b

c
; z

)
is |ph(1−z)| <

π. Hence, the branch-cut is z > 1. Thus, for the functions G±(t) the t-branch-cuts

are at points where 1/z(t) > 1, that is, 0 < z(t) < 1. The reader can check that

this happens on the intervals (−∞, 0), (a, 1/a) and on the unit circle |t| = 1.

For the function G3(t) the t-branch-cuts are at points where 1 − 1/z(t) > 1,

that is, z(t) < 0. This happens on the intervals (0, ac) and ( 1
ac ,∞).

If we continue to use the principal branches for the hypergeometric functions in

the definition for G±(t), then we have for =t > 0

G(t) = G+(t) +G3(t), for |t| < 1,

G(t) = G+(t) + e2(β−γ−1)πiG3(t), for |t| > 1. (4.1)

Below we will see that the contributions of G3(t) are exponentially small compared

with the contributions of G±(t). It follows from (4.1) that we can use (3.1) for the
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hypergeometric functions in the right-hand side of (3.7) along the entire contour of

integration.

5. The case Y− < y < Y+

Since

< (f (Sp±)− f3 (Sp3±)) = ln
(
a2c
)
< 0, (5.1)

it follows that theG±(t)-integrals in (3.10) dominate the asymptotics. For theG+(t)

integral the steepest-descent contour of integration in the upper half t-plane, starts

at t = ac passes through the saddle-point at t = Sp+ and goes to infinity. (See

figure 3.) The contour of the G−(t) integral in the lower half plane is the complex

conjugate of the contour in the upper half plane.

Let us study the integral

1

2πi

∫

C+

G̃+(t)

tn+1
dt, (5.2)

where

G̃+(t)

tn+1
= e−xπiKe−nf(t)g(t)/t, (5.3)

with K, g(t) and f(t) defined in (3.8), (3.9) and (3.12), respectively. Using the

saddle point method (see §2.4(iv) in [10]), the above integral, and hence Sn(x) can

be approximated by

Sn(x) ∼ 2<




Ke−xπi
(
a
√
ceθi

)−n−γ

(1− a√ceθi)
√

2πn (e2θi − 1)

(
eθi√
c
− 1
)x+γ+1/2

(1− eθi√c)x+β−γ−3/2


 , (5.4)

as n→∞, where x = ny and θ is defined in (3.14).

The saddle-point approximation gives good results: Taking the same a, c, β as

before, and y = 0.7 then S50(35) = −8.24876× 1022 and the dominant approxima-

tion from the 2 saddle points gives us −8.27800× 1022. Hence, only one term gives

us already a good approximation.

Regarding the zeros, it follows from (5.4) that these are approximately located

where

n
(
θ + y(π − θ)

)
+
(
2ny + β − 1

)
ph
(
1−√ceθi

)
+ ph

(
1− a√ceθi

)
= (k + 1

4 )π,(5.5)

where k is an integer. For example, one solution of (5.5) is y ≈ 0.709082395. Hence,

approximately there should be a zero at x = 35.45412. The ‘exact’ zero is located

at x = 35.45469.

The approximations in this section hold for Y− < y < Y+, that is, 0 < θ < π.

(Note the factor e2θi−1 in (5.4).) The saddle points Sp± = a
√
ce±θi coalesce when

θ = 0, π. In the next sections we will obtain asymptotic approximations that hold

in larger intervals, including the turning points at θ = 0, π.
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6. The case y ≈ Y−

We write (3.14) as

cos θ = 1− 1− c
2
√
c

(y − Y−) , and take
y < Y− =⇒ − θi > 0,

y > Y− =⇒ θ > 0.
(6.1)

Hence, if y ≈ Y− then θ ≈ 0.

To obtain a uniform asymptotic approximation, we will use the cubic transfor-

mation suggested by Chester, Friedman and Ursell [4]

f(t) = 1
3u

3 + ωu+ ψ. (6.2)

The right-hand side of (6.2) has saddle-points at u = ∓i√ω, and we will insist that

these correspond to t = Sp± = a
√
ce±θi, respectively. This gives us the following

two results

ψ = ln(a) + 1
2 (1 + y) ln(c), (6.3)

and

− 2
3 iω

3/2 = θi(1 + y) + y ln

(
e−θi −√c
eθi −√c

)
. (6.4)

The reader can check that for the right-hand side in (6.4), we have

θi(1 + y) + y ln

(
e−θi −√c
eθi −√c

)
∼ − 2

3 i
c−1/4 (1 +

√
c)

2

√
1− c (y − Y−)

3/2
, (6.5)

as y → Y−. Hence,

ω ∼ c−1/6 (1 +
√
c)

4/3

(1− c)1/3
(y − Y−) , as y → Y−. (6.6)

It is not difficult to show that on the interval y ∈ (0, Y+), ω(y) is an increasing

analytic function of y with

ω(0) = −
(
3
4 ln(1/c)

)2/3
, ω (Y−) = 0, ω (Y+) =

(
3π
√
c

1−√c

)2/3

. (6.7)

The local behaviour of transformation (6.2) near t ≈ a√ceθi and u ≈ −i√ω is

−ie−2θi sin θ

a2
√
c(1− c)y

(
t− a√ceθi

)2 ≈ −i√ω
(
u+ i

√
ω
)2
, (6.8)

from which it follows that in the case ω < 0 we have to take
√
ω = i

√
|ω|.

Integral (5.2) becomes

1

2πi

∫

C+

G̃+(t)

tn+1
dt =

e−xπiKe−nψ

2πi

∫ ∞

∞e−2πi/3

e−n(
1
3u

3+ωu)g0(u) du, (6.9)

where

g0(u) = t−1g(t)
dt

du
= t−1g(t)

u2 + ω

f ′(t)
. (6.10)
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The orientation of the u-integral in (6.9) follows when one takes the obvious square-

hoods in (6.8). Note that from l’Hôpital’s rule we obtain

dt

du |u=±i√ω
=

√
±2i
√
ω

f ′′(a
√
ce∓θi)

. (6.11)

It follows that

g0(±i√ω) =

√√
w(1− c)y√
c sin θ

(
(1− c)y
ac

)γ (1−√ce∓θi
)1−β

1− a√ce∓θi . (6.12)

To obtain a uniform asymptotic approximation, we use Bleistein’s Method [3]

and substitute into (6.9)

g0(u) = p+ qu+ (u2 + ω)h0(u), (6.13)

where

p =
g0(i
√
ω) + g0(−i√ω)

2
, q =

g0(i
√
ω)− g0(−i√ω)

2i
√
ω

, (6.14)

and obtain

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ e−xπiKe−nψ

2πi

(
p

∫ ∞

∞e−2πi/3

e−n(
1
3u

3+ωu) du

+q

∫ ∞

∞e−2πi/3

ue−n(
1
3u

3+ωu) du

)
.(6.15)

Using the change of variable u = e−πi/3n−1/3t, we get

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ e−xπiKe−nψ

2πi

(
pe−πi/3

n1/3

∫ ∞eπi/3

∞e−πi/3
e

1
3 t

3−ωn2/3e−πi/3t dt

+
qe−2πi/3

n2/3

∫ ∞eπi/3

∞e−πi/3
te

1
3 t

3−ωn2/3e−πi/3t dt

)
. (6.16)

Which is equivalent to

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ e−xπiKe−nψ

(
pe−πi/3

n1/3
Ai
(
ωe−πi/3n2/3

)

−qe
−2πi/3

n2/3
Ai′
(
ωe−πi/3n2/3

))
,(6.17)

as n→∞, where Ai(z) is the Airy function, see (9.5.4) in [9].

Since the polynomials are real-valued and the contribution of the C− will be just

the complex conjugate of (6.17), we conclude that

Sn(x) ∼ 2<
{
e−xπiKe−nψ

(
pe−πi/3

n1/3
Ai
(
ωe−πi/3n2/3

)

−qe
−2πi/3

n2/3
Ai′
(
ωe−πi/3n2/3

))}
, (6.18)

as n→∞, uniformly for y ∈ [ε, Y+ − ε], where ε is a small positive constant.
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Fig. 3. The graph of a rescaled version of S20(x), where a = 5
6

, c = 1
3

, β = 9
8

(black), and
approximation (6.18) (grey). Note that only near y = 0 and y = Y+ the difference is visible.

7. The case 0 6 y < Y−

We will use the notation of the previous section. In §2, we dealt with the case of

large n and finite x, that is, y ≈ 0, and in the previous section we covered the case

0 < y < Y+. In the case of 0 6 y < Y−, the active saddle-point of phase function

f(t) is at t = Sp+, and we have ac6 Sp+ < a
√
c. In integral representation (3.10)

the main integrals are still the ones involving G±. We write

1

2πi

∫

C±

G±(t)

tn+1
dt =

e∓xπiK
2πi

∫

C±
e−nf(t)g̃(t) dt, (7.1)

where

g̃(t) =
t−γ−1

(
1− t

a

)γ−β+1

(1− t)
(
t
ac − 1

)−γ 2F1

(
γ, 2 + γ − β
1 + γ + x

;
1

z(t)

)
(7.2)

Since x appears in the bottom entry of the hypergeometric function, a possible

large value for x has only a positive influence in the expansion of this function near

t = Sp+.

Note that as y → 0, the saddle-point of phase function f(t) at t = Sp+ coalesces

with the branch-point at t = ac. The local behaviour of f(t) near t = ac is

f(t) ∼ −y ln

(
t

ac
− 1

)
+ ln(ac) + y ln(1− c), as t→ ac. (7.3)

For these reasons, we choose the transformation

f(t) = u− α ln(u) + ln(ac) + y ln(1− c). (7.4)

The right-hand side has a saddle-point at u = α and a branch-point at u = 0.

Furthermore,

t

ac
− 1 ∼ uα/y, as u→ 0. (7.5)

We insist that the saddle-point at t = Sp+ is mapped to u = α. Hence, α is defined

via

f (Sp+) = α(1− lnα) + ln(ac) + y ln(1− c), (7.6)

and the property that α ∼ y as y → 0. Since

dt

du
=
u− α
uf ′(t)

=
t(t− a)(t− ac)(u− α)

(t− Sp+)(t− Sp−)u
, (7.7)
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it follows that

dt

du |u=α
=

1√
αf ′′(Sp+)

. (7.8)

We have

1

2πi

∫

C±

G±(t)

tn+1
dt =

e∓xπiK

(ac)
n

(1− c)ny 2πi

∫ ∞

0

e−n(u−α lnu)g̃0(u)u
α
y (γ+1)−1 du, (7.9)

where

g̃0(u) = g̃(t)
dt

du
u1−

α
y (γ+1). (7.10)

The power of u in (7.10) is chosen such that g̃0(u) has no branch-point at u = 0.

To obtain a uniform asymptotic expansion we have to expand g̃0(u) near u = α.

Hence,

Sn(x) ∼ − sin(xπ)Kg̃0(α)

(ac)
n

(1− c)ny π n
−αn−αy (γ+1)Γ

(
αn+

α

y
(γ + 1)

)
, (7.11)

as n→∞, uniformly for y ∈ [0, Y− − ε], where ε is a small positive constant. Again

we can see that Sn(x) has zeros at approximately x = m, where m is a bounded

nonnegative integer. This is in agreement with the final paragraph of §2.

8. The case y ≈ Y+

When y ≈ Y+ we have for the θ in (3.14) θ ≈ π. We will replace θ by π − ϕ and

the link between the new ϕ and y is now

cosϕ = 1 +
1− c
2
√
c

(y − Y+) , and take
y > Y+ =⇒ − ϕi > 0,

y < Y+ =⇒ ϕ > 0.
(8.1)

Hence, if y ≈ Y+ then ϕ ≈ 0.

In this case we use the cubic transformation

f(t) = 1
3u

3 − ωu+ ψ. (8.2)

The right-hand side of (8.2) has saddle-points at u = ∓√ω, and we will insist that

these correspond to t = Sp± = a
√
ce(π±ϕ)i, respectively. This gives us

ψ = ln(a) + 1
2 (1 + y) ln(c) + iπ(1− y), (8.3)

and

2
3ω

3/2 = (1 + y)ϕi+ y ln

(
e−ϕi +

√
c

eϕi +
√
c

)
. (8.4)

The reader can check that for the right-hand side in (8.4), we have

(1 + y)ϕi+ y ln

(
e−ϕi +

√
c

eϕi +
√
c

)
∼ 2

3

c−1/4 (1−√c)2√
1− c (y − Y+)

3/2
, (8.5)
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as y → Y+. Hence,

ω ∼ c−1/6 (1−√c)4/3

(1− c)1/3
(y − Y+) , as y → Y+. (8.6)

It is not difficult to show that on the interval y ∈ (Y−,∞), ω(y) is an increasing

analytic function of y with

ω (Y−) = −
(

3π
√
c

1 +
√
c

)2/3

, ω (Y+) = 0. (8.7)

The local behaviour of transformation (8.2) near t ≈ a√ce(π−ϕ)i and u ≈ √ω is

−ie2ϕi sinϕ

a2
√
c(1− c)y

(
t− a√ce(π−ϕ)i

)2
≈ √ω

(
u−√ω

)2
, (8.8)

from which it follows that in the case ω < 0 we have to take
√
ω = −i

√
|ω|.

Using substitution (8.2) integral (5.2) becomes

1

2πi

∫

C+

G̃+(t)

tn+1
dt =

e−xπiKe−nψ

2πi

∫ ∞e−2πi/3

∞
e−n(

1
3u

3−ωu)g0(u) du, (8.9)

where

g0(u) = t−1g(t)
dt

du
= t−1g(t)

u2 − ω
f ′(t)

. (8.10)

The orientation of the u-integral in (8.9) follows when one takes the obvious square-

hoods in (8.8). Note that from l’Hôpital’s rule we obtain

dt

du |u=±√ω
=

√
±2
√
ω

f ′′(a
√
ce(π∓ϕ)i)

. (8.11)

It follows that

g0(±√ω) = −
√
i
√
w(1− c)y√
c sinϕ

(
(1− c)y
ac

)γ (1 +
√
ce∓ϕi

)1−β

1 + a
√
ce∓ϕi

. (8.12)

Again, we substitute into (8.9)

g0(u) = p+ qu+ (u2 − ω)h0(u), (8.13)

where

p =
g0(
√
ω) + g0(−√ω)

2
, q =

g0(
√
ω)− g0(−√ω)

2
√
ω

, (8.14)

and obtain

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ −e

−xπiKe−nψ

2πi

(
p

∫ ∞

∞e−2πi/3

e−n(
1
3u

3−wu) du

+q

∫ ∞

∞e−2πi/3

ue−n(
1
3u

3−wu) du

)
. (8.15)
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Note that in this case e−xπie−nψ = (−a)−nc−(n+x)/2. Using again the change vari-

able u = e−πi/3n−1/3t, we get

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ K(−a)−n

2πic(n+x)/2

(
pe2πi/3

n1/3

∫ ∞eπi/3

∞e−πi/3
e

1
3 t

3−wn2/3e2πi/3t dt

+
qeπi/3

n2/3

∫ ∞eπi/3

∞e−πi/3
te

1
3 t

3−wn2/3e2πi/3t dt

)
, (8.16)

which is equivalent to,

1

2πi

∫

C+

G̃+(t)

tn+1
dt ∼ K(−a)−n

c(n+x)/2

(
pe2πi/3

n1/3
Ai
(
ωe2πi/3n2/3

)

−qe
πi/3

n2/3
Ai′
(
ωe2πi/3n2/3

))
, (8.17)

as n→∞. Hence,

Sn(x) ∼ 2K(−a)−n

c(n+x)/2
<
{
pe2πi/3

n1/3
Ai
(
ωe2πi/3n2/3

)
− qeπi/3

n2/3
Ai′
(
ωe2πi/3n2/3

)}
,(8.18)

as n→∞. Using the fact that p and q are real-valued and the connection relation

Ai (ω) + e−2πi/3Ai
(
ωe−2πi/3

)
+ e2πi/3Ai

(
ωe2πi/3

)
= 0, (8.19)

(see (9.2.12) in [9]), we get

Sn(x) ∼ K(−a)−n

c(n+x)/2

{ −p
n1/3

Ai
(
ωn2/3

)
− q

n2/3
Ai′
(
ωn2/3

)}
, (8.20)

as n→∞, uniformly for y ∈ [Y− + ε, 1/ε], where ε is a small positive constant.

Fig. 4. The graph of a rescaled version of S20(x), where a = 5
6

, c = 1
3

, β = 9
8

(black), and
approximation (8.20) (grey). Note that only near y = Y− the difference is visible.

9. Large zeros

Let ak be the kth zero of the Airy function Ai(x) with k = 1, 2, 3, · · ·. Thus a1 =

−2.338 · · ·, a2 = −4.088 · · ·. (See §9.9 in [9].) The dominant term in (8.20) includes

the factor Ai
(
ωn2/3

)
, and the zeros of this function are located at

ωk = akn
−2/3. (9.1)
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Hence, for fixed k these will approach zero as n→∞, and we can use (8.6)

akn
−2/3 ∼ 1−√c

(c+
√
c)

1/3
(yn,k − Y+) , (9.2)

as n→∞, where x = nyn,j are the zeros of Sn(x) with

0 < yn,n < yn,n−1 < . . . < yn,1 <∞. (9.3)

Thus for the large zeros we obtain,

yn,k ∼ Y+ +
(c+

√
c)1/3

1−√c
ak
n2/3

, (9.4)

as n→∞, where k = 1, 2, 3, · · · is fixed.

To obtain a better approximation for the zeros we use both terms in the right-

hand side of (8.20). Its small zeros are located at ωk = akn
−2/3 + δ, where δ =

o
(
n−2/3

)
, as n→∞. We substitute this expression for ω into the right-hand side of

(8.20), approximate Ai
(
ωkn

2/3
)
≈ δn2/3Ai′(ak) and Ai′

(
ωkn

2/3
)
≈ Ai′(ak). Hence,

δ ≈ −q/(pn). From (8.14), (8.12) and (8.4) we can obtain the limit of q/p as ω → 0.

The result is the approximation

ωk ∼ akn−2/3 +

(
a

1 + a
√
c
− 1− β

1 +
√
c

)
(c+

√
c)

2/3

n
, as n→∞. (9.5)

Hence,

yn,k ∼ Y+ +
(c+

√
c)1/3

1−√c
ak
n2/3

+

(
a

1 + a
√
c
− 1− β

1 +
√
c

)
c+
√
c

(1−√c)n, (9.6)

as n→∞, where k = 1, 2, 3, · · · is fixed.

When we let λ→ 0, that is, a→ 1, we obtain a two term approximation for the

large zeros of the classical Meixner polynomials:

yn,k ∼ Y+ +
(c+

√
c)1/3

1−√c
ak
n2/3

+
β
√
c

(1−√c)n, (9.7)

as n→∞, where k = 1, 2, 3, · · · is fixed. The first two terms in this approximation

agree with the result (2.42) given in [6]. The third term appears to be a new term,

and is surprisingly simple.

We finish with a numerical illustration. Taking n = 100 and k = 1 in (9.4) we

obtain yn,1 ≈ 3.4831614, and from (9.6) we obtain yn,1 ≈ 3.4969920. The ‘exact’

location is yn,1 = 3.4999640. The errors seem to be of the correct order.
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