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We study finite-size scaling of the roughness of signals in systems displaying Gaussian 1�f power
spectra. It is found that one of the extreme value distributions, the Fisher-Tippett-Gumbel (FTG) distri-
bution, emerges as the scaling function when boundary conditions are periodic. We provide a realistic
example of periodic 1�f noise, and demonstrate by simulations that the FTG distribution is a good
approximation for the case of nonperiodic boundary conditions as well. Experiments on voltage fluctua-
tions in GaAs films are analyzed and excellent agreement is found with the theory.
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It was about 70 years ago that a current-carrying resistor
was first observed to exhibit voltage fluctuations with a
power spectra nearly proportional to the inverse of the
frequency [1]. Since then it has been shown that such a 1�f
noise is present in an extraordinary variety of phenomena
[2], examples being the light emission of white dwarfs
[3], the flow of sand through an hourglass [4], the ionic
current fluctuations in membranes [5], and the number of
stocks traded daily [6]. Most of the 1�f fluctuations are
Gaussian, although non-Gaussian cases are also known
[2,5]. The universality of this scale invariant phenomenon
led to suggestions that part of the explanations should come
from a generic underlying mechanism. Despite a large
body of works, however, such a mechanism has not been
discovered yet.

In this Letter, we establish a connection between 1�f
noise and extreme statistics that may provide a new angle
at the generic aspect of the phenomena. Namely, we shall
show that Gaussian 1�f power spectra in periodic systems
imply that the distribution of fluctuations in the finite-size
“width” of the signal is one of the extreme value distribu-
tions, the FTG distribution [7].

As we shall see, the FTG distribution emerges as a finite-
size scaling function in the above connection. Thus the re-
sult can also be viewed as an interesting contribution to
the gallery of nonequilibrium scaling functions that can
be effectively used in investigating far from equilibrium
processes. Indeed, imagine that a distribution function is
measured in experiments (or simulations). Comparing this
function with those in the theoretically built gallery (note
the absence of fitting parameters), one can identify the rele-
vant features of the underlying dynamics in the experimen-
tal (or model) system. Such an approach was initiated in
connection with surface growth problems [8–11], and the
results have been used to establish universality classes in
rather diverse processes such as massively parallel algo-
rithms [12] and the interface dynamics in the d � 2 Fisher
equation [13]. This line of reasoning [14] has also led to a
connection between the dissipation fluctuations in a turbu-
lence experiment [15] and the interface fluctuations in the
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d � 2 Edwards-Wilkinson model (XY model) [16,17,19]
and, furthermore, it helped in a parameter-free analysis
of the upper critical dimension of the Kardar-Parisi-Zhang
equation [20].

Derivation of the FTG distribution follows the steps of
a similar calculation for the width distribution of random-
walk interfaces [8]. Let the time evolution of the physical
quantity of interest in the interval 0 # t # T be given by
h�t�. This time series is equivalent to a surface configura-
tion with h�t� being the height of the surface over a d � 1
dimensional substrate of length T with t being the coor-
dinate along the substrate. The quantity of interest is the
mean-square fluctuations of the surface (also called rough-
ness or width-square of the surface) given by

w2�h� � �h�t� 2 h�2 , (1)

where the overbar denotes the average of a function over t,

F �
1
T

Z T

0
F�t� dt . (2)

Let us assume now that the path probability of a given time
series h�t� is known P �h�t�� � exp�2S�h��. Then the
probability distribution of the surface fluctuations, P�w2�,
can be expressed as a path integral [21]

P�w2� �
Z

Dh�t�d�w2 2 �h2 2 h
2��P �h�t�� . (3)

We shall restrict the above functional integral to periodic
paths h�t� � h�t 1 T� and, in order to keep P normaliz-
able, the integration is carried out with h̄ kept fixed.

The next step is to introduce the generating function for
the moments of P�w2�:

G�s� �
Z `

0
dy P� y�e2sy . (4)

Substituting P �h�t�� � exp�2S�h�� into (3) and evaluat-
ing the integral (4), we find the following functional inte-
gral

G�s� � N
Z

D h�t� exp�2S�h� 2 s�h2 2 h
2�� , (5)

where N is a normalization constant to ensure G�0� � 1.
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The key question now is how to choose S in the proba-
bility density functional. The mathematical representation
of 1�f noise has been pioneered by Mandelbrot and Van
Ness [22], and since then a quite intricate theory (involv-
ing, e.g., fractional derivatives) has emerged [23]. Here we
propose that the path probability of a Gaussian, periodic,
random phase, and perfectly 1�f noise with the dispersion
being linear for all frequencies, can be described by the
following simple action:

S � s

LX
n�2L

jnj jcn j
2 � 2s

LX
n�1

njcnj
2, (6)

where s is a parameter setting the effective surface tension
and the cn-s are the Fourier coefficients of the signal

h�t� �
�N21��2X

n�2�N21��2

cne2pint�T , c2n � c�
n . (7)

Here h�t� is given on N equidistant points (t � kDt, T �
NDt), and we introduced the notation L � �N 2 1��2
with N assumed to be odd.

Using (6) the functional integral (5) can be written as

G�s� � N̄
Z

D �c� exp

∑
2

LX
n�1

2�sn 1 s� jcnj
2
∏

. (8)

The integrals over the real and imaginary parts of cn�n �
1, 2, . . . , L� yield a simple form for the generating function
once we have used the condition G�0� � 1 to determine
the normalization constant Ñ in (8):

G�s� �
LY

n�1

µ
1 1

s

sn

∂21

. (9)

The moments of P�w2� can now be calculated and, in
particular, one finds that the average of w2 diverges for
large L as

�w2� � 2
dG
ds

Ç
s�0

�
1
s

LX
n�1

n21 	
1
s

�lnL 1 g� ,

(10)

with g � 0.577 . . . being the Euler constant. On the other
hand, the fluctuations of w2 are finite

�w2
2 � 2 �w2�2 �

a2

s2 ; a �
p
p

6
. (11)

This means that the scaling variable w2��w2� usually con-

sidered [8] in cases when
q

�w2
2 � 2 �w2�2 � �w2� is not

the best choice since the distribution function reduces to
a delta function. Just as in case of the fluctuations of the
d � 2 EW interface [16], the nontrivial shape underlying
the delta function can be made visible by introducing

x �
w2 2 �w2�q
�w2

2 � 2 �w2�2
. (12)

Then the L ! ` limit of the inverse Laplace transform of
G�s� yields P�w2� in the following scaling form:
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F�x� 

q

�w2
2� 2 �w2�2 P�w2�

�
Z i`

2i`

ds

2pi
exs

Ỳ
n�1

es�an

1 1
s

an
. (13)

The infinite product in (13) is equal to e�gs�a�G�1 1 s�a�,
so the inverse Laplace transform can be evaluated using
Euler’s integral formula for the G function, and one obtains

F�x� � ae2�ax1g�2e2�ax1g�
. (14)

This scaling function, shown in Fig. 1, is one of the central
results of our paper. In F�x� one recognizes the FTG
distribution [7] which is one of the three limiting forms
of extreme value statistics.

Extreme statistics has been studied in many contexts and
the FTG distribution emerges frequently [24]. A recent ex-
ample in connection with surfaces is the study of the scal-
ing behavior of the growth of the maximal relative height
of a surface [25]. Since in most of these studies an ex-
treme property is investigated, it is not entirely surpris-
ing to see the FTG distribution appearing. For 1�f noise,
however, this is not the case. A simple quantity such as
the mean-square fluctuations (roughness of the interface)
is distributed according to extreme (FTG) statistics. Al-
though we do not see a simple physical reason that neces-
sitates this mathematical result, we speculate that it may be
a key feature that underlies a unified treatment of systems
displaying 1�f noise.

When trying to compare the scaling function F�x� with
experimental results the following problem arises. An
experimental signal is analized by moving a window of
length L and building a histogram from the values of w2
computed for the windows. The problem now is that the
boundary conditions for the windows are not periodic and
it is known that the boundary conditions affect the scaling
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FIG. 1. The analytical form (14) of the roughness distributions
for a 1�f signal in the periodic case (N � `, solid line) as
compared to the numerical result for the nonperiodic case for
several values of N varying from 64 to 32 768 (dashed lines).
The inset shows the same curves on semilog scale.
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functions [26]. Thus two questions should be answered.
First, is there a physical system with an effective action
(6) of the 1�f noise where periodic boundary conditions
are realized? Second, how sensitive is F�x� to the bound-
ary conditions.

Let us begin with the first question by showing an ex-
ample of such a system. We consider the steady-state fluc-
tuations of a d � 2 Edwards-Wilkinson (EW) surface with
the substrate taken to be an infinite plane. We draw a circle
of radius R on the substrate and compute the probability
density functional of a height configuration hB�w� over this
circle (parametrized by 0 # w , 2p). We shall find that
the action in this functional is equal to that of the Gaussian
1�f noise given by (6).

In the d � 2 EW model, the steady-state fluctuations
of the height of a surface h��x� are characterized by the
following free-field action:

S2�h��x�� �
s

2

Z
j=h��x�j2 d2 �x , (15)

where the integral extends over a plane and h� �x� is bounded
at infinity. Working with polar coordinates �r,w� and
specifying the height on a circle of radius R by h�r �
R, w� � hB�w�, the probability distribution functional of
hB�w� becomes

P̂�hB�w�� � Z21
Z

h� �x�jR�hB�w�
Dh� �x�e2S2�h��x��, (16)

where the functional integration is carried out with the
boundary condition fixed at r � R, while Z is the same
integral without restriction on the circle.

Since the action is quadratic in the field, the hB�w� de-
pendence of the above functional integral is contained in
exp�2Sc�hB�w���, where Sc�hB�w�� is the extremal action
for the given boundary condition. The field hc�r, w� that
extremizes S2�h� can be obtained by finding the solution
of the Laplace equation that is finite both inside and out-
side the circle, and satisfies the boundary condition on it.
Substitution of the resulting hc�r, w� into (15) yields the
classical action for the height fluctuations on the circle

Sc�hB�w�� � 2s
X̀
n�1

njhnj
2, (17)

where the hn-s are the Fourier amplitudes in hB�w� �
1

p
2p

P
n hn exp�inw�. Comparing (6) and (17), one finds

that Sc�hB�w�� is the action of a perfect Gaussian 1�f
noise. Since hB�w� is a periodic function, we have thus
indeed obtained a physical realization of a periodic signal
with 1�f noise.

Let us now turn to the question of how sensitive F�x�
is to changes in the boundary conditions. Analytically
this turns out to be a hard problem and only numerical
calculations were performed. First, a periodic series of
length Ñ having 1�f power spectrum was produced using
an appropriately filtered Gaussian white noise. Next, the
signal was divided into nonoverlapping segments of length
240601-3
N and having determined the w2-s, the histogram of w2

and then the scaling function was built (using the same
normalization as for the periodic boundary condition case).
In order to obtain satisfactory precision we used Ñ � 224

and averaged over 200 realizations of the periodic signals.
For Ñ � N the result for the periodic case is recovered

while, in the N ø Ñ limit, one finds that F�x� is inde-
pendent of the size of the segments in a wide range of N
values. The F�x� obtained in this N ø Ñ limit will
be considered as the scaling function for nonperiodic (or
“experimental”) boundary conditions. As one can see
from Fig. 1, the distribution of nonperiodic signals devi-
ates from that of the periodic case (FTG). The deviations,
however, are small and mainly concentrated around the
maximum of the function.

We now consider the case of voltage fluctuations in
semiconductor films. The experiment was made by A. V.
Yakimov and F. N. Hooge [27]. They considered n-type
epitaxial GaAs films grown by molecular beam epitaxy. A
noise-free current passed longitudinally through the film
and different contacts were used as voltage probes both
for longitudinal and transverse directions. Several time
series with typically 163 840 points were obtained and the
power spectrum was found to exhibit 1�f behavior roughly
over two decades [27] of frequencies. We have reanalyzed
these data by dividing the signal into segments of length
N � 32, 64, 128, 256, and computing the distributions of
the roughness for different N . The results are displayed
on Fig. 2. One can see that the experimental data fit well
with the theoretical curves (note that no fits are used in
collapsing these functions) and that their precision is not
good enough to distinguish between the periodic and non-
periodic cases.

In summary, our results suggests that extreme events and
their statistics may underlie the physical and mathematical
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FIG. 2. Roughness distribution in the experiments on voltage
fluctuations in resistors calculated for N � 32 (1), 64 (3), 128
(�), and 256 (�), compared to the analytical and numerical
results shown in Fig. 1. The inset shows the same curves on
a semilog scale.
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description of Gaussian 1�f fluctuations. The next (rather
difficult) task is clearly the identification of the relevant
extreme events in a concrete physical system.

We should note that the possible importance of extreme
statistics in scale invariant systems has also been discussed
in recent works by Bramwell et al. [14–17]. They ob-
serve that the magnetization distribution of the d � 2XY
model at low temperatures is fit well by a generalized
FTG distribution. They argue that this distribution func-
tion may also have relevance to other critical systems [17].
This suggestion is debated [18] and, indeed, a distribu-
tion function obtained by Gaussian approach may not be
directly applicable to generic (inherently non-Gaussian)
critical systems and, furthermore, the universality of the
generalized FTG distribution should be limited by the de-
pendence on boundary conditions (as shown in Fig. 1 for
the 1�f noise). Nevertheless, these works may be impor-
tant in pointing towards the possibility of nonconventional
analysis of strongly correlated systems.

As a final remark, let us note that the apparent ubiquity
of the 1�f noise is partly the result of loose terminology.
Systems with 1�fa power spectrum are also said to exhibit
1�f noise if a is close to 1. The approach we used for the
treatment of the pure 1�f noise can be extended to these
systems and the dependence of the scaling function F�x�
on a can be determined. A detailed discussion will be
given in a forthcoming paper [28].
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