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We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed

population means that any two individuals are equally likely to interact. In particular we consider the

average abundances of two strategies, A and B, under mutation and selection. The game dynamical

interaction between the two strategies is given by the 2� 2 payoff matrix ðac
b
dÞ. It has previously been

shown that A is more abundant than B, if aðN � 2Þ þ bN4cN þ dðN � 2Þ. This result has been derived for

particular stochastic processes that operate either in the limit of asymptotically small mutation rates or

in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic

birth–death processes for arbitrary mutation rate and for any intensity of selection.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary dynamics describe how successful strategies
spread in a population through genetic reproduction or cultural
imitation. In mutation–selection processes where the fitness of
each individual is constant, the competition between two types A

and B is straightforward. If both fitness values are identical, then
we have neutral evolution (Kimura, 1968) and the average
abundances of A and B are the same. (Throughout the paper we
assume symmetric mutation rates: the mutation probability from
A to B is the same as from B to A.) If A is fitter than B, then A is
more abundant than B in the mutation selection equilibrium.
Thus, for constant selection the comparison of the abundances of
the two types is trivial.

For frequency dependent selection, where fitness depends on
the types and abundances of others, the situation is more
complex. One way to model these systems are evolutionary
games, where the reproductive success of individuals depends on
their payoff derived from interaction with others (Maynard Smith
and Price, 1973; Maynard Smith, 1982; Weibull, 1995; Samuelson,
1997; Hofbauer and Sigmund, 1998, 2003; Fudenberg and Tirole,
1998; Nowak and Sigmund, 2004; Szabó and Fáth, 2007;
Sandholm, 2007). In the simplest case, interactions are described
by a 2� 2 payoff matrix,

A B

A

B

a b

c d

� �
:

(1)
ll rights reserved.

).
Here, an A individual obtains a from other A individuals, but b

from B individuals. Similarly, B obtains c from A, and d from other
B individuals.

For a4c and b4d, strategy A dominates strategy B: Regardless
of the composition of the population, strategy A has the higher
payoff. Thus, evolutionary dynamics will always lead to a
population with more A individuals than B individuals. Equiva-
lently, for aoc and bod, strategy B dominates. In this case, the
average abundance of B will be higher than the average
abundance of A at the mutation–selection equilibrium.

For a4c and bod, both strategies are best replies to
themselves. This is a ‘coordination game’. In a population of
mostly A individual, rare B mutants have a lower payoff. In a
population of mostly B individuals, rare A mutants have a lower
payoff. Therefore, in a mutation selection process it is not a priori
clear whether strategies A or B will be more abundant at the
equilibrium distribution. Two concepts are important: (i) pareto
efficiency and (ii) risk-dominance. Strategy A is Pareto efficient if
a4d. In this case, an all-A population has a higher average payoff
than an all-B population. Strategy A is risk dominant if
aþ b4c þ d (Harsanyi and Selten, 1988). In this case, strategy A

has a larger basin of attraction than strategy B. In a game between
two players, if I do not know what the other person will do, it is
less risky for me to choose the risk-dominant strategy, but it
would be more rewarding for both of us to choose the Pareto
efficient strategy. A coordination game is especially interesting, if
the risk-dominant strategy is not Pareto efficient.

Kandori et al. (1993) have shown that A is chosen over B if
aðN � 2Þ þ bN4cN þ dðN � 2Þ. This means a large population
selects the risk-dominant equilibrium in the long run. They
analyze a process which is stochastic in the generation of mutants,
but deterministic in following the gradient of selection. Their
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calculation assumes asymptotically small mutation rates, but
holds for a wide range of evolutionary processes, in contrast to
previous approaches that make specific assumptions on the
source of noise (Foster and Young, 1990; Fudenberg and Harris,
1992). However, since the dynamics follows the gradient of
selection, the processes can only leave a Nash equilibrium if a
sufficient number of mutations occurs simultaneously. In large
populations, it is very unlikely that this happens, and the time
until the population moves from one equilibrium to another
becomes exponentially large in N.

If the dynamics is stochastic, a single mutation can be
sufficient to leave a Nash equilibrium. Nowak et al. (2004) have
studied the competition of two strategies A and B in a frequency
dependent Moran process (and similar processes) which model
fully stochastic evolutionary dynamics. This means that the
selection steps are stochastic. They have shown that the fixation
probability of A is greater than that of B if and only if
aðN � 2Þ þ bN4cN þ dðN � 2Þ. This calculation assumes weak
selection in a process with selection only. The result is also valid
for stronger intensities of selection, if we use the pairwise
comparison process (Szabó and T +oke, 1998; Traulsen et al.,
2007) or a slightly modified version of the Moran process for
evolutionary updating (Traulsen et al., 2008).

Here, we extend these results to both arbitrary mutation rates
and arbitrary intensities of selection. We show that A is more
abundant than B in the mutation–selection distribution for a wide
range of stochastic processes for any mutation rate and any
intensity of selection if and only if aðN � 2Þ þ bN4cN þ dðN � 2Þ.
Higher mutation rates seem to be very relevant for social
evolution, because humans (and higher animals) tend to try
new strategies fairly often. We therefore expect that evolutionary
dynamics in the cultural learning and imitation context operate
under fairly high mutation ( ¼ ‘exploration’) rates. We also show
that the condition holds for any payoff matrix, not only for
coordination games.
2. Pairwise comparison process

The payoffs of A and B in a population of j individuals of type A

and N � j individuals of type B are

pAðjÞ ¼
j� 1

N � 1
aþ

N � j

N � 1
b,

pBðjÞ ¼
j

N � 1
c þ

N � j� 1

N � 1
d. (2)

Each individual interacts with N � 1 other individuals. The payoff
difference DpðjÞ is a linear function of j

DpðjÞ ¼ pAðjÞ � pBðjÞ ¼
a� b� c þ d

N � 1
jþ
�aþ bN � dN þ d

N � 1
. (3)

First, we need to specify how strategies spread in the population,
depending on their payoffs. We adopt the following process: a
random (focal) individual i is selected. It compares its payoff pi to
the payoff pj of a randomly chosen role model, individual j, and
takes over the strategy of that individual with probability ½1þ
ebðpi�pjÞ��1 (Blume, 1993; Szabó and T +oke, 1998; Traulsen et al.,
2007; Sandholm, 2007). This process occurs with probability
1� m. With probability m, a mutation occurs and the focal
individual produces an offspring with random strategy, A or B.
The quantity b determines the intensity of selection (0pbo1).
Strong selection (large b) means that the probability to adopt a
better strategy approaches one, and the probability to adopt an
inferior strategy vanishes. For weak selection (small b), these two
probabilities are close to 1

2. The transition probabilities to increase
or decrease the number of A players by one, are given by

Tþj ¼
j

N

N � j

N

1� m
1þ e�bDpðjÞ

þ
N � j

N

m
2

,

T�j ¼
j

N

N � j

N

1� m
1þ eþbDpðjÞ

þ
j

N

m
2

. (4)

With these transition probabilities, we can determine whether A

is more abundant than B or vice versa. Before discussing the
problem for general mutation rates we first consider the special
case of low mutation rates, because of its importance in previous
papers (Kandori et al., 1993; Nowak et al., 2004; Taylor et al.,
2004; Imhof and Fudenberg, 2006). We will also present a simple
approximation for very high mutation rates, which illustrates the
dynamics in this extreme limit.

2.1. Low mutation rates

First, we consider low mutation rates, m5N�2. In this limit, a
mutation reaches extinction or fixation before a second mutation
arises. Thus, the important quantity is the probability that a single
mutant takes over the population in a process without mutations
(Nowak et al., 2004; Taylor et al., 2004; Imhof and Fudenberg,
2006; Antal and Scheuring, 2006). The ratio of the fixation
probability rA of a single A player and that of a single B player can
be written as (Karlin and Taylor, 1975; Nowak, 2006)

rB

rA

¼
YN�1

j¼1

T�j
Tþj

. (5)

Without mutations, m ¼ 0, the ratio of the transition probabilities
(4), simplifies to T�j =Tþj ¼ e�bDpðjÞ (Traulsen et al., 2006, 2007).
Thus, rB=rA reduces to

rB

rA

¼ exp �b
XN�1

j¼1

DpðjÞ

2
4

3
5 ¼ exp �b

aþ b� c � d

2
N � aþ d

� �� �
.

(6)

Therefore, rA ¼ rB is equivalent to

ðaþ b� c � dÞN ¼ 2a� 2d. (7)

From the payoff matrix (2) it is clear that strategy A is favored
whenever a or b increases, or c or d decreases. Therefore, A is more
abundant than B if

aðN � 2Þ þ bN4cN þ dðN � 2Þ. (8)

This condition has been derived previously in the low mutation
limit for different evolutionary processes (Kandori et al., 1993;
Nowak, 2006; Traulsen et al., 2008). The strategy with the higher
fixation probability is the more abundant one, because more of its
mutants reach fixation. Thus for low mutation rates, A has a
higher abundance than B whenever condition (8) is fulfilled.

For weak selection, a wide range of processes fulfills the 1
3-rule,

which states that the fixation probability of a single A mutant in a
coordination game is larger than 1=N if aðN � 2Þ þ bð2N �

1Þ4cðN þ 1Þ þ dð2N � 4Þ (Nowak et al., 2004; Imhof and Nowak,
2006; Lessard and Ladret, 2007; Bomze and Pawlowitsch, 2008).
The fixation probability for large N can thus be written as

rA ¼
1

N
þo 1

3
�

d� b

a� b� c þ d

� �
, (9)

where o is a small positive number that may depend on the
payoffs and on N. Writing down the analogous equation for rB and
subtracting yields

rA � rB ¼ o a� c

d� c � bþ a
�

d� b

a� b� c þ d

� �
/ aþ b� c � d. (10)
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Thus, rA4rB is equivalent to aþ b4c þ d, which is identical to
our condition (8) for large N. Lessard and Ladret (2007) have
shown that any process within the domain of Kingman’s (1982)
coalescent fulfills the 1

3-rule (for large N and weak selection and
mutation). If an evolutionary process fulfills the 1

3-rule, rA and rB

can be written in the form of (9). Hence we find again that rA4rB

is equivalent to aþ b4c þ d. Thus, we conclude that our result is
valid for any process within the domain of Kingman’s coalescent
for large N and weak selection and mutation.

2.2. High mutation rates

For high mutation rates m! 1, mutations dominate the
process, and drive the system towards equal abundance of A and
B, that is close to j ¼ N=2. Hence the relevant transition
probabilities are TþN=2 and T�N=2, and it is plausible to assume that
TþN=24T�N=2 implies that A is more abundant than B in the
stationary state. From (4) we obtain

TþN=2 � T�N=2 ¼
1� m

4
tanh

b
2
DpðN=2Þ

� �
, (11)

where the payoff difference is given by

DpðN=2Þ ¼
ðaþ b� c � dÞN � 2ða� dÞ

2ðN � 1Þ
. (12)

Since DpðN=2Þ40 implies TþN=2 � T�N=240, it also implies a more
abundant A, for arbitrary intensity of selection b. Thus, we have
again the same condition aðN � 2Þ þ bN4cN þ dðN � 2Þ for the
dominance of A.

2.3. Arbitrary mutation rates

So far we have shown that both for low and high mutation
rates the same condition determines whether A or B is more
abundant, regardless of the intensity of selection. Now, we turn to
general mutation rates. Whenever Eq. (7) holds, the payoff
difference (3) has the following symmetry property:

DpðjÞ ¼ �DpðN � jÞ. (13)

This antisymmetry in the payoff differences then implies the
following symmetry in our transition probabilities (4),

Tþj ¼ T�N�j. (14)

For symmetric transition probabilities, however, the stationary
probabilities pj of having j number of A players, are also
symmetric, pj ¼ pN�j. This can be shown by first writing the
stationary probability distribution explicitly (Kampen, 1997;
Claussen and Traulsen, 2005)

pj ¼ p0

Yj�1

i¼0

Tþi
T�iþ1

, (15)

where p0 follows from the normalization
PN

j¼0 pj ¼ 1. For sym-
metric transition probabilities (14) and for joN � j we can write

pN�j

pj

¼
YN�j�1

i¼j

Tþi
T�iþ1

¼
YN�j�1

i¼j

Tþi
TþN�i�1

¼ 1. (16)

Hence the distribution is symmetric pj ¼ pN�j.
For such a symmetric distribution, the number of A and B

players are of course the same, since

hji ¼
XN

j¼0

jpj ¼
XN

j¼0

jpN�j ¼
XN

j¼0

ðN � jÞpj ¼ hN � ji. (17)

Hence we have demonstrated that when (7) is fulfilled, then the
average abundance of A players and B players are the same.
On the other hand, when condition (8) is fulfilled, then the
average abundance of A players is higher than the average
abundance of B players. This is quite obvious by looking at the
payoff matrix (1): increasing a or b favors A, while increasing c or d

favors B. More formally, we could say that from (2)–(4) it is clear
that Tþj and �T�j are monotone increasing functions of a and b,
and decreasing functions of c and d. This implies condition (8).
Interestingly, other features of the game do not matter, e.g.
whether a single A player has a larger disadvantage in a B

population than a single B player in an A population.
Condition (8) can also be written in the form

a 1�
2

N

� �
þ b4c þ d 1�

2

N

� �
, (18)

which highlights the fact that there is a 1=N correction compared
to simple risk dominance (aþ b4c þ d), which is the N!1

limit. This implies that a strategy can be more abundant than the
other strategy for large N, but less abundant for small N. For
example for the payoff matrix ð10

11
3
1Þ, strategy A is more abundant

in large populations ðNX19Þ, but B is more abundant in small
populations ðNp17Þ. They are equally abundant for N ¼ 18. In
general, there is a threshold population size N� ¼ 2ða� dÞ=

ða� dþ b� cÞ. If N�42, then A is more abundant than B either
for N4N� or for NoN�.

2.4. Including self-interactions

So far, we have adopted the usual convention that individuals
cannot interact with themselves. If instead we allow individuals to
derive a payoff from self-interaction, we obtain

f AðjÞ ¼
j

N
aþ

N � j

N
b,

f BðjÞ ¼
j

N
c þ

N � j

N
d. (19)

Hence, the payoff difference is DpðjÞ ¼ ða� b� c þ dÞj=N þ b� d.
Now for all mutation rates and all intensities of selection the
condition for the average abundance of A to exceed the average
abundance of B is simple risk dominance:

aþ b4c þ d. (20)

We conclude that the finite N correction to risk dominance in (18)
results from the exclusion of self-interactions.
3. Frequency dependent Moran process

Although condition (8) is valid for a large class of evolutionary
processes (see Section 4), it does not always hold if we depart
from weak selection. As an example we discuss the frequency
dependent Moran process (Nowak et al., 2004; Taylor et al., 2004;
Antal and Scheuring, 2006). As we shall see, for this model our
condition (8) is only valid in the limit of weak selection.

Let the fitness be a convex combination of a background fitness
(which we set to 1) and the payoff, f AðjÞ ¼ 1�wþwpAðjÞ and
f BðjÞ ¼ 1�wþwpBðjÞ. Here, w is the intensity of selection
(0pwp1 for payoff matrices with positive entries). An individual
is selected for reproduction at random, but proportional to fitness.
The selected individual produces an offspring, which replaces a
randomly chosen individual. Mutation can occur during reproduc-
tion. This leads to the transition probabilities

Tþj ¼
jf AðjÞ

FðjÞ

N � j

N
ð1� mÞ þ ðN � jÞf BðjÞ

FðjÞ

N � j

N
m,

T�j ¼
ðN � jÞf BðjÞ

FðjÞ

j

N
ð1� mÞ þ jf AðjÞ

FðjÞ

j

N
m. (21)
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Here FðjÞ ¼ jf AðjÞ þ ðN � jÞf BðjÞ is the total fitness of the whole
population. These transition probabilities depend on the fitness
values only through the ratio f AðjÞ=f BðjÞ. Yet, there is no simple
condition for the equilibrium abundance of A players. In the weak
selection limit, w51, however, only the payoff differences enter
into the transition probabilities (21),

f AðjÞ

f BðjÞ
¼ 1þwDpðjÞ þ Oðw2Þ. (22)

Thus, for weak selection, condition (8) again ensures the higher
abundance of A.

We can also consider a variant of the frequency dependent
Moran process where fitness is an exponential function of payoff,
f AðjÞ ¼ exp½þwpAðjÞ� and f BðjÞ ¼ exp½þwpBðjÞ� (Traulsen et al.,
2008). In this case, the transition probabilities again only depend
on the payoff differences, because f AðjÞ=f BðjÞ ¼ expðwDpðjÞÞ. Hence,
the condition for abundance is again (8) for any intensity of
selection and any mutation rate.
4. General birth–death processes

Here, we show that our finding holds for a wide range of
birth–death processes. We need two requirements to be fulfilled.
The first is that the payoffs received from other players should be
additive. In this case the payoffs pAðjÞ, pBðjÞ, and also the payoff
difference DpðjÞ are linear functions of j. Consequently,

DpðjÞ þDpðN � jÞ ¼ lða;b; c; d;NÞ (23)

is independent of j. Hence, when lða; b; c; d;NÞ ¼ 0 holds, we have
an antisymmetric payoff function

DpðjÞ ¼ �DpðN � jÞ. (24)

The second requirement is that the difference between the two
types of players should manifest itself in the transition prob-
abilities Tþj and T�j , only through the payoff difference DpðjÞ.
Hence, we can write T�j ¼ T�j ½DpðjÞ;m�, and the probability of
decreasing the number of mutants is

T�j ¼ T�j ½DpðjÞ;m� ¼ TþN�j½�DpðjÞ;m�. (25)

That is, the only difference between the two types is the change of
sign of the payoff difference DpðjÞ. Otherwise, the transition
probabilities are the same, but with the number of the opposite
type of individuals N � j. Now, simply setting the index to N � j in
(25), we have

T�N�j ¼ Tþj ½�DpðN � jÞ;m� ¼ Tþj ½DpðjÞ;m� ¼ Tþj . (26)

For the second equality we have used (24). These symmetric
transition probabilities then imply an equal abundance of the two
types of players in any birth–death process, as it has been shown
in Section 2.3. The condition for a higher abundance of A

compared to B is then lða; b; c; d;NÞ40. This general condition
takes the form of (8) or (20) in our examples when self-interaction
are excluded or included, respectively. Note that similar argu-
ments appear in Claussen (2007).
5. Discussion

In this paper, we have shown that aðN � 2Þ þ bN4cN þ dðN � 2Þ
is the crucial condition for A to be favored over B in wide range of
evolutionary processes for any mutation rate, any intensity of
selection and any finite population size. By A being favored over B

we mean that A is more abundant than B in the mutation–selec-
tion equilibrium of the stochastic process.
The relative abundance in the stationary state is a natural way
of comparing two strategies. In the low mutation limit, when the
population is typically homogeneous, a strategy being more
abundant is equivalent of having a larger fixation probability.
Hence, our study of abundance can be viewed as a generalization
of that concept to arbitrary mutation rates. This is of special
interest for cultural dynamics, where mutation rates are not
necessarily small.

In particular, we have generalized the famous result of Kandori
et al. (1993) to any mutation rate. We have generalized the result
of Nowak et al. (2004) to any intensity of selection. Our results are
valid for any mutation rate and any intensity of selection.

It turns out that for our result to hold, a birth–death process
has to fulfill two requirements: (i) additive payoffs, and (ii) that
the evolutionary dynamics depend only on the payoff differences
(the players are identical otherwise). These requirements hold, for
example, for the pairwise comparison process described by
Traulsen et al. (2006) and for a frequency dependent Moran
process with exponential fitness function (Traulsen et al., 2008).
For the standard frequency dependent Moran process with linear
fitness function these requirements only hold in the limit of weak
selection.

Finally, we note that in coordination games with strong
selection both the fixation probability of A and the fixation
probability of B are very small. For small mutation rates, the
system will stay in one equilibrium for a very long time. Therefore,
it can take a very long time for the system to obtain a
representative sample of the stationary mutation–selection dis-
tribution.
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