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T
here is a broad consensus that
genetic alterations of normal
body cells are the basis of cancer
progression. Throughout the

lifetime of an individual, her or his cells
have to divide often, which is associated
with occasional genetic changes. Some of
the changes lead to uncontrolled cell
proliferation and, at later stages of cancer
progression, to blood vessel formation in
the tumor tissue and distribution of tumor
tissue across the body. The molecular
genetics of cancer is a very advanced field:
Many genetic alterations that predispose
an individual to a certain cancer have been
identified, and specific genetic pathways
of cancer development have been eluci-
dated (1). More recently, studies have
been conducted on the scale of the entire
genome to identify cancer-associated mu-
tations (2–5). However, our understanding
of the population genetic aspects of cancer
development, that is, those aspects that
relate to the dynamics of cancer cell rep-
lication, survival, and evolution, have not
yet caught up with the advances in mo-
lecular genetics. A study by Bozic et al. (6)
in PNAS brings the understanding of the
population genetics of cancer cells closer
to the edge defined by recent studies of the
molecular genetics and genomics of
various cancers.
Mathematical studies of cancer de-

velopment date back to the 1950s (7). The
studies in this tradition (8–12) focus on
the age-specific incidence of cancers. It is
remarkable how much can be learned
about molecular genetics from the analysis
of incidence patterns. For example, in
a seminal paper, Knudson (8) anticipated
the discovery of tumor suppressor genes by
comparing the incidence of retinoblas-
toma in groups with and without a family
history of this cancer. Despite these suc-
cesses, the analysis of incidence patterns
has clear limitations. The mathematical
models used to explain the relationship
between age and cancer incidence con-
ceptualize cancer progression as a series of
component failures of a complex system
[e.g., monograph by Frank (11)] and re-
main quite vague on the dynamics and
genetics of tumor cells. With more and
more data becoming available on the ac-
cumulation of mutations in tumor cell
lineages (2–5), mathematical approaches
need to be developed to infer the param-
eters characterizing the population genet-
ics of cancer development.
Bozic et al. (6) develop a mathematical

model for tumorigenesis based on the

multitype branching process—a stochastic
process often used in population genetics.
The model assumes that cells divide and
accumulate mutations (Fig. 1). Some of
these mutations, referred to as drivers,
increase the fitness of the tumor cell,
whereas others, called passengers, are
neutral. The model can be used to predict
the expected number of passenger muta-
tions in a tumor cell with a certain number
of driver mutations. This relationship be-
tween passenger and driver mutations de-
pends on the selective advantage that
a single driver mutation confers to the
tumor cell lineage on average. Bozic et al.
(6) then extract the number of driver and
passenger mutations carried by tumor cells
from previously published genomic data
obtained from glioblastoma multiforme
(the most common type of brain tumor)
(4) and pancreatic adenocarcinoma (the
most common type of pancreatic cancer)
(5). To this end, they use the computa-
tional method called “cancer-specific high-
throughput annotation of somatic muta-
tions” (13). By fitting their model to the
extracted numbers of driver and passenger

mutations, Bozic et al. (6) estimate the
average selective advantage of a driver
mutation as 0.4% for both glioblastoma
multiforme and pancreatic adenocarci-
noma. Interestingly, the estimated selec-
tive advantage of drivers is almost the
same for both cancer types and may
therefore constitute a universal quantity
not specific to the particular cancer type.
Bozic et al. (6) further find that, with
this estimate of the selective advantage,
predictions of their mathematical model
agree with the mean number of tumors
and the tumor size observed in the clini-
cal studies on familial adenomatous poly-
posis (14, 15).
Why should we care about the fitness

changes of tumor cell lineages during the
progression to cancer? Fitness is at the

Fig. 1. Sketch of the multitype branching process developed by Bozic et al. (6). A tumor start with one
cell carrying a single driver mutation (D). This cell may either die or divide, and it can further mutate. The
probabilities of these events are indicated. They depend on the number of driver mutations the cell
carries and the selection coefficient s. Driver mutations arise in one of the daughter cells at division with
a probability of u = 3.4 × 105. The model assumes discrete generations with a length of 4 d. Passenger
mutations (not shown in this sketch) are accumulated at a rate of v = 0.016 from generation to generation.

Author contributions: R.R.R. wrote the paper.

Conflict of interest statement: Martin Nowak, the last au-
thor of Bozic et al. (6), was the author’s master’s degree
thesis advisor (1996–1998).

See companion article on page 18545.
1E-mail: roland.regoes@env.ethz.ch.

www.pnas.org/cgi/doi/10.1073/pnas.1013177107 PNAS | October 26, 2010 | vol. 107 | no. 43 | 18241–18242

C
O
M
M
E
N
T
A
R
Y

mailto:roland.regoes@env.ethz.ch


heart of population genetics. To go be-
yond theoretical considerations and to
derive specific predictions from population
genetical models, fitness estimates are
needed. The more quantitative picture
of the population biology of tumor cells
that Bozic et al. (6) develop will lead to
a better understanding of cancer pro-
gression. Particularly important is the in-
sight that the average selective advantage
of driver mutations is very low at 0.4%,
which translates into a high extinction rate
of driver mutations: More than 99% of
driver mutations that emerge during tu-
mor cell replication will become extinct.
This provides an explanation for the large
variance in cancer progression rates. Fur-
thermore, by parametrizing their popula-
tion genetic model for tumor growth,
Bozic et al. (6) provide a baseline model
that is useful for the assessment of treat-
ment strategies, especially with respect
to minimizing the emergence of resistance
to anticancer drugs.
The integration of recent genomic data

on cancer into the framework of theoreti-
cal population genetics of carcinogenesis
requires strong assumptions and simplifi-
cations. The mathematical implemen-
tation of too much detail would introduce
too many unknown parameters, and thus
would make a statistical analysis impossi-
ble. One simplification that Bozic et al. (6)
make concerns the life span of tumor
cells, which is set to be exactly 4 d in their
main model. After 4 d, a cell in their
model either dies or divides, and, as
a consequence, the cell generations are
synchronous. A fixed life span of tumor
cells is an obvious oversimplification.
However, in the supplementary informa-
tion for their paper, Bozic et al. (6) show
that assuming exponentially distributed
life spans of tumor cells leaves the relation
between driver and passenger mutations

unchanged. (Exponentially distributed life
spans represent the extreme opposite of
fixed life spans.) Thus, the estimate of
an average selective advantage of 0.4%
of driver mutations is robust with respect
to the assumptions of the life span of
tumor cells.

More than 99% of

driver mutations that

emerge during tumor

cell replication will

become extinct.

Another simplification concerns the
growth patterns of tumors. According to
the mathematical model of Bozic et al. (6),
tumors grow exponentially. However, be-
cause many types of tumors grow spheri-
cally, which leads to the suffocation of
cells in the core, they do not display the
exponential growth that a branching pro-
cess predicts [reviewed by Byrne (16)].
This so-called “Gompertzian” growth of
tumors has been tied into the population
genetic models (17), and it may provide
a better model for the analysis of genomic
data in the future, especially if the later
stages of tumor growth are considered.
Bozic et al. (6) also make strong as-

sumptions about the effect of driver mu-
tations. Each driver mutation is assumed
to affect the fitness of the tumor cell lin-
eage equally. Bozic et al. (6) partially as-
sess how sensitive their findings are to this
assumption by comparing the fits of their
model with one in which the selective
advantages of driver mutations are sam-
pled from a normal distribution. However,
potential differences between the effects

of driver mutations on cell fitness are
a very central issue, and should be ad-
dressed in greater detail in the future. It is
certainly futile to attempt to determine the
selection coefficient of each individual
driver mutation from the data that Bozic
et al. (6) analyzed. Nevertheless, it may be
possible to go beyond the analysis of Bozic
et al. (6). One could try to determine the
variance of selection coefficients across
all driver mutations, in addition to their
mean, using standard frailty modeling ap-
proaches. One could also roughly classify
the driver mutations according to their
function (e.g., oncogene, tumor suppres-
sor, stability gene) or with respect to the
pathways they affect, and estimate func-
tion- or pathway-specific effects. Bozic
et al. (6) also assume that the effect of one
driver mutation is independent of the
other driver mutations carried by the cell
lineage. In the terminology of population
genetics, they neglect “epistatic interac-
tions.” However, it is very likely that such
interactions exist. For example, the initial
mutation hitting an apoptosis pathway
should, on average, have a larger effect
simply because an intact pathway is easier
to damage. Thus, the fitness landscape, in
which tumor cells evolve, may be much
rougher than conceived by Bozic et al. (6).
Despite the bold assumptions typical of

studies breaking previously unexplored
ground, the value of the approach by Bozic
et al. (6) lies in paving the way to integrate
genomic data on cancer with the theoret-
ical framework for population genetics
of carcinogenesis. In 1986, Moolgavkar
(18) wrote about the state of mathematical
modeling of cancer development: “We
are still struggling with the melody. Har-
mony and counterpoint must come later.”
After reading Bozic et al. (6), I hear a nice
melody and a driving beat.
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