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Asymmetric exclusion process with next-nearest-neighbor interaction: Some comments
on traffic flow and a nonequilibrium reentrance transition
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1Département de Physique The´orique, Universite´ de Gene`ve, 24 quai Ernest Ansermet, 1211 Gene`ve 4, Switzerland
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We study the steady-state behavior of a driven nonequilibrium lattice gas of hard-core particles with next-
nearest-neighbor interaction. We calculate the exact stationary distribution of the periodic system and for a
particular line in the phase diagram of the system with open boundaries where particles can enter and leave the
system. For repulsive interactions the dynamics can be interpreted as a two-speed model for traffic flow. The
exact stationary distribution of the periodic continuous-time system turns out to coincide with that of the
asymmetric exclusion process~ASEP! with discrete-time parallel update. However, unlike in the~single-speed!
ASEP, the exact flow diagram for the two-speed model resembles in some important features the flow diagram
of real traffic. The stationary phase diagram of the open system obtained from Monte Carlo simulations can be
understood in terms of a shock moving through the system and an overfeeding effect at the boundaries, thus
confirming theoretical predictions of a recently developed general theory of boundary-induced phase transi-
tions. In the case of attractive interaction we observe an unexpected reentrance transition due to boundary
effects.

PACS number~s!: 05.70.Ln, 64.60.Cn, 02.50.Ga
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I. INTRODUCTION

One of the basic properties of many driven, interact
many-body systems is the occurrence of shocks. A shoc
a system of classical flowing particles marks a sudden t
sition from a region of low density to a region of high de
sity. A well-known example of a shock is the beginning o
traffic jam on a motorway where incoming cars~almost
freely flowing particles in the low-density regime! have to
slow down very quickly over a short distance and then fo
part of the ~high-density! congested region. A remarkab
feature of such shocks is their stability over long periods
time, i.e., they remain localized over distances comparabl
the size of the particles. In some sense one may reg
shocks as solitonlike collective excitations of the parti
system.

Lattice gas models have proven to be excellent syst
for the theoretical investigation of shocks and of the con
quences of shocks for the collective behavior of the part
system. An interesting situation is the coupling of such
driven lattice gas system to external particle reservoirs@1–3#.
It is intuitively clear that, unlike in equilibrium systems, he
the boundaries will play a decisive part in determining t
bulk behavior of the system. Since the system is open at
boundaries, particles will flow in and out and the current w
carry boundary effects into the bulk. Among the fundamen
questions to ask in such a setup is the stationary~i.e., long-
time! behavior of the system as a function of the bound
densities. Numerical observations and mean-field-based
guments show that varying boundary densities leads
boundary-induced phase transitions@3#. To understand why
this happens it is clearly necessary to get insight into
collective behavior of the lattice gas and to investigate
role of the shocks.

The best-studied example is the one-dimensional as
PRE 621063-651X/2000/62~1!/83~11!/$15.00
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metric simple exclusion process~ASEP! @4–6#, a hard-core
lattice gas where each lattice site can be occupied by at m
one particle and particles hop stochastically with const
bias to vacant nearest-neighbor sites. For this model not o
are the structure and motion of shocks largely understo
but also the stationary phase diagram of the open system@2#
and the exact particle-density profiles@7,8# are explicitly
known as functions of the external reservoir densities. Ba
on the exact solution of the ASEP and of a related lattice
model@9#, the role of shocks for the stationary phase of mo
generic open driven diffusive systems has been elucida
@10,11#. This has led to a theory of boundary-induced pha
transitions for one-component driven particle systems in
dimension@5#, reviewed below. Of particular interest are sy
tems where the stationary currentj (r) as a function of par-
ticle density r has a single maximum, an example bei
traffic flow on single-lane or multilane highways@12,13#.
The theory predicts a phase diagram with a first-order~non-
equilibrium! phase transition between a low-density~LD!
phase and a high-density~HD! phase and a continuou
~second-order! transition from both phases to a maxima
current ~MC! phase~see Fig. 2 below!. In the context of
traffic flow the properties of the second-order transition s
gest more efficient control mechanisms for avoiding ja
@14#.

The strength of the theory lies in the small number a
generality of its assumptions. Hence it is tempting to test
validity in real traffic flow. The openness of the system mo
els in- and outflow of cars on a road between two junctio
Indeed, the main features of the predicted first-order tra
tion have been observed using data collected on a Ger
motorway@14,15#. The second-order transition has been co
firmed by Monte Carlo simulations of a suitably modifie
Nagel-Schreckenberg model for traffic flow, originally intro
duced only for periodic boundary conditions@16–18#. Since
to our knowledge the data necessary to test the existenc
83 ©2000 The American Physical Society
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84 PRE 62T. ANTAL AND G. M. SCHÜTZ
the second-order transition in real traffic are not available
present, independent investigations of other traffic flow m
els are required to establish the presence of such a trans
We consider here a continuous-time exclusion model w
additional short-range interaction on top of the pure ha
core repulsion of the usual ASEP. The model is designe
be exactly solvable like the ASEP~to some degree! on the
one hand and to be somewhat more realistic in describ
real traffic than the ASEP on the other hand. However, gi
the wide range of experimental applications of hard-core
tice gases, which comprise phenomena as diverse as th
netics of protein synthesis@1#, diffusion in thin channels
@19#, or polymer reptation@20#, broader relevance of ou
model is to be expected. Indeed, in order to obtain a m
complete picture we also analyze a similar model with attr
tive next-nearest-neighbor interaction. This model is not
lated to traffic flow, but describes driven hard-core partic
with attractive short-range interaction. To our knowledg
this is the first investigation of the steady-state selection
driven diffusive system with this type of interaction.

The paper is organized as follows. In Sec. II we comm
on some of the requirements of traffic flow modeling and
describe our model. This model is a special case of
driven diffusive systems studied some while ago by Ka
Lebowitz, and Spohn@21#. We explain in which respects thi
model is more realistic for traffic flow than the standa
ASEP, which is a limiting case of our lattice gas. This ph
nomenological explanation is then confirmed by the calcu
tion of the exact flow diagram, i.e., the stationary bulk c
rent as a function of the density. In this section the emph
is on bulk properties and hence we investigate the sys
with periodic boundary conditions in the thermodynam
limit. In Sec. III we review some details of the theory
boundary-induced phase transitions of Ref.@10# and we in-
troduce the boundary dynamics for modeling the coupling
a finite system to boundary reservoirs of constant dens
We give an exact solution for the stationary distributi
along the line in the phase diagram corresponding to eq
boundary densities~with proof postponed to the Appendixe!
and discuss a mean-field analysis of the full phase diagr
In Sec. IV we present a mean-field analysis of the full ph
diagram and discuss Monte Carlo data for the phase tra
tion lines while in Sec. V we perform a similar analysis f
the model with attractive interaction. Finally, we summar
our findings and present some concluding remarks~Sec. VI!.
Technical details of the derivation of exact results are p
sented in the Appendixes.

II. ASEP WITH NEXT-NEAREST-NEIGHBOR
INTERACTION: SOME COMMENTS ON MODELING

TRAFFIC FLOW

The ASEP is a stochastic lattice gas of hard-core parti
with biased particle hopping. Particles hop with exponen
waiting-time distribution with parameter 1 to their neare
neighbor site to the right, provided this site is empty. If t
site is occupied, the hopping attempt is rejected. Symb
cally one may represent these stochastic dynamics as
lows:

AB→BA with rate 1. ~1!
t
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Here A represents a particle andB represents the vacan
neighboring site. Even though this stochastic process is
simple to be a realistic model for traffic flow, somequalita-
tive features of real traffic@22,23# can already be seen
Shocks exist and the stationary currentj (r)5r(12r) as a
function of particle densityr has a single maximum. An
apparently unrealistic feature of the particle distribution
the absence of correlations in the steady state which are
in more sophisticated traffic flow models@17,18#. An unre-
alistic feature of the current-density relation~known in traffic
engineering as the flow diagram! is the reflection symmetry
with respect to the maximal-current densityr* 5 1

2 and its
rounded shape close to the maximum.

The basic mechanisms that determine traffic flow app
to be first the competition between the desire to reach
optimal speed while keeping a~velocity-dependent! safety
distance. When the traffic density becomes sufficiently la
this distance cannot be kept any more and the speed has
reduced. As a consequence the current drops at some de
r* . Secondly, there is a certain amount of randomness
to variations in individual driver’s behavior. This ‘‘noise’
necessitates a statistical description of traffic flow pheno
ena.

Various one-dimensional lattice gas models that incor
rate these mechanisms in different manners have been
posed@12#. The following is part of the picture that emerge

~i! The existence of a shock is generic and appears to
the consequence of the nonlinear current-density relation@5#.

~ii ! The symmetric shape of the current-density relat
results from particle-hole symmetry and is a feature of m
els in which cars move with constant probability or ra
independently of the environment beyond the neare
neighbor site to which they move. This is an unrealistic
sumption since clearly car drivers slow down already wh
they see a slowly moving car some distance ahead. The
not just perform an emergency stop when the car is imme
ately in front of them. Numerical and analytical results f
models@16,18,24# that allow for a reduction of speed tha
depends on the occupation of sites further ahead show
asymmetric current-density relation resembling the shap
the current-density relation of real traffic. In these mod
speed is implemented by jumps over a variable numbe
lattice sites.

~iii ! The unrealistically round shape of the current-dens
relation atr* is specific for the ASEP. Deterministic exclu
sion processes with parallel update@25–30# also show a
symmetric current-density relation with one maximum, b
the derivative of the current is discontinuous at the maxim
current densityr* , in this respect resembling the shape
the current in real traffic@22# and of more realistic traffic
flow models @16#. Increasing the hopping probability in
discrete-time process toward deterministic hopping lead
an increasingly sharp jump in the current derivative atr*
@17#. Hence the rather broad exponential waiting-time dis
bution of the standard ASEP seems to be responsible for
round shape of the current-density relation atr* . In terms of
the motion of a single particle these dynamics correspon
an overestimated single-particle diffusion coefficient.

~iv! For parallel update, but not for sublattice parallel u
date, increasing the hopping probability strengthens anti
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PRE 62 85ASYMMETRIC EXCLUSION PROCESS WITH NEXT- . . .
romagnetic particle correlations@18,28#, i.e., cars are less
likely to be found close to each other than some dista
apart.

In order to further investigate this picture and to dise
tangle the various effects associated with a small diffus
coefficient and with speed reduction, respectively, it wo
be interesting to study both ingredients separately for mo
in which the stationary distribution can be calculated exac
A small single-particle diffusion coefficient can be impl
mented in discrete-time models by choosing the hopp
probability close to 1~low noise!. In the single-speed ASEP
this has been shown to lead to the~almost! discontinuous
behavior of the current derivative discussed above. The
merical results on the effect of a small diffusion coefficie
on correlations are inconclusive. In our toy model we ke
the exponential waiting-time distribution~large diffusion co-
efficient!, but introduce a next-nearest-neighbor interact
which in the repulsive case models slowing down of a ca
the next-nearest-neighbor site is occupied as well. A part
hops to the right with rater if the next-nearest-neighbor sit
is empty and with rateq if it is occupied:

ABB→BAB with rate r , ~2!

ABA→BAA with rate q. ~3!

The conditionq,r models slowing down; in the limiting
caser 5q one recovers the usual ASEP. Forq.r this model
has no interpretation as a traffic model, but may be regar
as describing hard-core particles with attractive short-ra
interaction which are driven by an external field.

This model is a special case in the class of driven dif
sive systems investigated in Ref.@21#. On a ring withN sites
with periodic boundary conditions the stationary distributi
turns out to be given by the equilibrium distribution of th
one-dimensional Ising model. Each state of the system
defined by the set of occupation numbersnI 5$n1 ,...,nN%
with ni50,1. The stationary probability of finding a statenI is
given by

P* ~nI !5
1

ZN
S q

r D ( i 51
N

~nini 111hni !

. ~4!

Here ZN is the partition function and the ‘‘chemical poten
tial’’ h parameterizes the conserved bulk densityr. This
grand-canonical distribution is a nonequilibrium stationa
state, i.e., it is invariant under the stochastic time evoluti
but it does not satisfy detailed balance with respect to
dynamics. It is interesting to notice that correlations are n
vanishing and, in the repulsive caseq,r which corresponds
to speed reduction, become antiferromagnetic. In fact,
stationary state is identical to that of the discrete-time AS
with parallel update@18,31# for hopping probabilityp51
2q/r .

According to the dynamics described above the local d
sity satisfies the continuity equation

d

dt
^ni&5^ j i 21&2^ j i& ~5!

with the current
e
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^ j i&5^ni~12ni 11!@qni 121r ~12ni 12!#& ~6!

between sites (i ,i 11). The stationary particle currentj
5^ j i& is constant and is readily calculated using stand
transfer matrix techniques for the one-dimensional Is
model @32# ~see Appendix A!. In the thermodynamic limit
N→` one finds the exact current density relation

j 5rrF11
A124r~12r!~12q/r !21

2~12r!~12q/r !
G ~7!

shown in Fig. 1 in the repulsive case.

III. OPEN BOUNDARIES

The analysis of the previous section yields the bulk pro
erties of the lattice gas at a given density. Now we addr
the question of the steady-state selection of the system
open boundaries, i.e., we investigate the bulk density of
open system coupled at both ends to reservoirs of diffe
fixed boundary densities. Translated into traffic langua
open boundaries correspond to traffic junctions at the end
a road where particles~cars! enter or leave the road with
certain fixed attempt rates, a situation already envisaged
different aims in@33# for the ASEP with parallel update. A
a result of the coupling to reservoirs a nontrivial stationa
density profile in the vicinity of the boundaries will emerg
and the~spatially constant! bulk density will be a function of
the two reservoir densities.

There are two distinct mechanisms at work. First, beca
of the particle interaction, coupling of a semi-infinite syste
to a reservoir will generically lead to some discontinuo
behavior of the stationary distribution close to the bounda
The boundary represents an inhomogeneity of the sys
since the interaction of the particles with the fixed bound
leads to different dynamics than that which results from
interaction of particles among themselves. This is a nonu
versal phenomenon which depends on the precise natur
the coupling mechanism and on the nature of the part
interaction. For short-range hopping and systems with sh
range stationary bulk correlations, one expects the follow
picture. Coupling of a semi-infinite system at site 1 to
reservoir of constant densityrL will give rise to a nonuni-
versal boundary density profile starting atrL and approach-
ing ~on the scale of lattice units! some bulk densityr2 which
is a nonuniversal function ofrL ~Fig. 2!. A similar picture

FIG. 1. Stationary currentj as a function of the densityr for r
51, q50.1 ~repulsive interaction!.
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86 PRE 62T. ANTAL AND G. M. SCHÜTZ
holds for coupling of a semi-infinite system at the rig
boundary where particles flow out of the system into
reservoir. Here the bulk densityr1 may change close to th
boundary to the reservoir densityrR . Superimposed on this
nonuniversal boundary structure is a universal behavior
depends only the effective boundary densitiesr2 ,r1 close
to, but not at, the boundaries. The theory of bounda
induced phase transitions@10# describes the stationary pha
diagram in terms of these effective boundary densities.

A. Theory of boundary-induced phase transitions

We review only the principal ideas of this theory@5#
which is based on an interplay of the collective velocity

vc5
] j

]r
~8!

of the lattice gas and the shock velocity

vs5
j 12 j 2

r12r2
~9!

of a shock with limiting densitiesr1 andr2 and with lim-
iting currentsj 1 and j 2 to the right and to the left, respec
tively.

The collective velocity is the velocity of the center
mass of a local perturbation in a homogeneous station
background@Fig. 3~a!#. It is positive for background densit
r,r* , but becomes negative forr.r* . In this case the
perturbation creates a back-moving traffic jam, which lea
to a negative center-of-mass velocity, even though all in
vidual particles move with positive velocity. In terms of tra

FIG. 2. Coupling of a semi-infinite driven particle system to
reservoir of constant particle densityrL . The~interpolated! density
profile r i( i 51,2,...) approaches some constant valuer2 after a
finite distance from the boundary.

FIG. 3. ~a! Diffusive spreading of a density perturbation in th
stationary state at two timest2.t1 . The collective velocity de-
scribes the motion of the center of mass of the perturbation.~b!
Motion of a shock. To the left of the domain wall particles a
distributed homogeneously with an average densityr2 . To the
right of the domain wall the background density isr1.r2 .
e

at

-

ry

s
i-

fic flow one might think of such a perturbation as being a
that has just entered a major throughway from some s
road.

The shock velocity describes the motion of the sho
which performs, due to fluctuations, a biased random w
with velocity vs @Fig. 3~b!#. If the incoming currentj 2 ex-
ceeds the outgoing currentj 1 , the shock velocity is nega
tive. This is analogous to the back-moving shock of a tra
jam for sufficiently high incoming traffic flow.

To get an intuitive understanding of how these velocit
determine the stationary phase diagram of a driven sys
coupled to boundary reservoirs, let us assumer65rR,L . We
consider firstr1.r* where r* is the density where the
current takes its maximal valuej * . To make the argumen
more transparent we also assume that particles hop on
the right and that initially the lattice is empty. Because
ergodicity the stationary distribution is independent of t
initial state and hence this assumption involves no loss
generality. Consider now the time evolution of the averag
density profile in a large system, starting from the emp
lattice. We start the discussion by assuming the left bound
density to be very low.

~i! As time proceeds, particles from the left reservoir w
enter the system and~possibly after some distance describin
the nonuniversal boundary layer! create a region of constan
densityr2 . This region decays to the right to zero, becau
after a finite time the rightmost particles will have travel
only a finite distance. Eventually, however, after a time th
is of the order of the system size, the rightmost particles w
hit the right boundary with the reservoir of densityr1 . This
reservoir makes it more difficult for particles to travel furth
and hence creates a little traffic jam. The result is a sh
profile, with shock densitiesr2 on the left andr1 to the
right as in Fig. 3~b!. ~For the sake of argument one cou
have chosen such an initial state. The reason for choosin
empty initial state becomes clear below.! The decisive ques-
tion is now how this shock profile evolves in time. Accor
ing to Eq. ~9! the shock velocity under the circumstanc
described here is positive, simply because the incoming
rent of particlesj 2 is less than the outgoing currentj 1 for
sufficiently small left boundary density. Hence, even thou
a shock forms by fluctuations, it has anaveragedrift toward
the right boundary. Hence the system remains in the lo
density regime with bulk densityr5r2,r* .

~ii ! The situation changes when the left boundary den
takes a value such that the incoming currentj 2 equals the
outgoing currentj 1 . In this case the shock velocity vanishe
and the shock performs an unbiased random walk over
lattice. Hence the density profile may be regarded as be
composed of two stationary domains with densitiesr2 and
r1 , separated by a ‘‘domain wall,’’ which is the sharp tra
sitional region of the shock. Since the shock motion is un
ased, the stationary probability of finding the shock is co
stant in space. This leads to an equal superposition of sh
profiles and hence to a linearly increasing stationary den
profile. In analogy to first-order equilibrium phase transitio
where a domain wall separates regions of coexisting equ
rium regimes, we call the line defined byj 15 j 2 and r2

,r* ,r1.r* , a first-order phase transition line.
~iii ! This line marks the transition to a high-density pha

with bulk density r5r1.r* since for even higher left
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boundary density the incoming current into the shock
ceeds the outgoing current, and according to Eq.~9! the
shock moves to the left. This leaves the bulk in the hig
density regime determined by the coupling to the rig
boundary reservoir. At the first-order transition line the s
tionary bulk density is discontinuous; it jumps fromr2 to
r1 .

Next we consider the case of low right boundary dens
r1,r* . For definiteness we chooser150. The essentia
part of the following discussion, the explanation of the o
currence of a continuous phase transition, is unaffected
this choice. Again we start the discussion with the em
lattice.

~i! As argued above, after some initial time the syst
will have filled up to a bulk densityr5r2 . Sincer150,
particles hitting the right boundary can leave the syst
without creating a shock. As a result, the system is in
low-density phase.~For r1.0 a shock could form, bu
would have positive velocity under the circumstances c
sidered here. Hence also in this case the system is in
low-density phase.! Now we examine the seemingly trivia
reasonwhy an increase in the left boundary density leads
an increase in the bulk density. Above we simply claim
this to be true on the basis of plausibility. Here we supp
this claim with an argument that becomes important belo
Suppose we create a little perturbation at the left bound
by injecting an extra particle~on top of those particles tha
are injected anyway from the reservoir!. This creates a per
turbation which, by definition of the collective velocity, trav
els with vc.0 into the bulk and leads to a local increase
the density, moving away from the boundary and spread
out as time goes on. The collective velocity is positive, sin
by assumption we have a background densityr2,r* and
hence the current as a function of the density has pos
slope. The point is that maintaining such a perturbat
~which corresponds to increasing the left reservoir den
permanently! leads to a permanent additional flow of pa
ticles into the bulk and hence to the anticipated increase
the stationary bulk density.

~ii ! It is now clear that this argument holds only as long
r2,r* . Assume nowr25r* . Following the reasoning
above this results in a maximal-current bulk densityr* .
However, if the left reservoir density increases beyond
maximal current density, the collective velocity becom
negative. No extra particles flow into the system, wh
therefore remains in its bulk at the maximal current dens
r* . The system is now in the maximal current phase for
r2.r* andr1,r* . This transition is continuous; the bul
density approachesr* smoothly from below. Intuitively this
phenomenon may be understood as ‘‘overfeeding’’@7#. The
injected particles act as blockages for further incoming p
ticles, leading to a back-moving traffic jam at the origin. Th
increased density at the origin blocks further injection
tempts and prevents an actual increase of the current.

Finally, using similar arguments, one can show that
transition from the high-density phase to the maxim
current phase is also continuous.

To summarize, the theory predicts a first-order transit
along the line defined byj 15 j 2 and r2,r* ,r1.r*
where the stationary bulk density jumps fromr2 ~low-
density phase! to r1 ~high-density phase!. On the phase tran
-
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sition line the stationary density is linearly increasing fro
r2 to r1 . From both phases there is a continuous ph
transition to the maximal-current phase defined byr2.r*
andr1,r* . In this phase the bulk density takes the ma
mal current valuer5r* . These rules are encoded in an e
tremal principle for the current,

j 5H max
rP@rR ,rL#

j ~r! for rL.rR

min
rP@rL ,rR#

j ~r! for rL,rR ,
~10!

derived in @11#. It is worthwhile pointing out that this dy-
namical theory explains in mesoscopic terms the predicti
one would obtain by viewing the system from a coars
grained hydrodynamic viewpoint@3#. At the same time, veri-
fication of this scenario suggests the validity of the hydrod
namic approach for the description of the large-sc
dynamics of the particle system@34# by using the exact
current-density relation.

B. Coupling to boundary reservoirs

To verify this scenario, which correctly describes the e
actly solvable ASEP with open boundaries, one has to inv
tigate our model in terms of the effective boundary densit
r2 ,r1 . Given two reservoir densities there is no gene
recipe for eliminating the nonuniversal boundary effects t
result in the effective boundary densitiesr2 ,r1 . Hence
these quantities are not easy to control. Ideally, for purpo
of theoretical investigation, one would like to construct
injection and absorption mechanism that leads to a cons
density profile for a semi-infinite system so thatrL5r2 and
rR5r1 , i.e., the effective boundary densities are identica
the actual control parameters of the model.

Here we choose an injection mechanism where the p
ticles on the lattice interact with the reservoir particles in t
same way as among each other. We define two injec
rates from the reservoir at the left boundary:~i! injection at
site 1 if site 2 is occupied,

uBA→uAA with rate a1 ,

and ~ii ! injection at site 1 if site 2 is empty,

uBB→uAB with rate a2 ;

and two new hopping rates at the right boundary:~i! hopping
from siteN21 to siteN,

ABu→BAu with rate b1 ,

and ~ii ! hopping out from siteN ~absorption!,

Au→Bu with rate b2 .

These four hopping rates are those that would be affecte
the interaction with particles in the reservoirs. The ra
a i (b i) have now to be determined as functions of the l
~right! reservoir density. This can be illustrated, e.g., for t
injection process with ratea1 . We imagine the reservoir to
include a site 0 of the chain. The injection rate into the fi
site is defined by the~stationary! average occupationrL of
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the imaginary site 0, but with the condition that the first s
is empty and the second site is occupied. Considering
zeroth, the first, and the second sites as three neighbo
sites of an infinite chain, this conditional probability can
expressed readily as correlations in the stationary state o
infinite chain. Thus we finda15q^101&/^01& where expec-
tation values likê 101&5^ni(12ni 11)ni 12& are calculated
in the thermodynamic limit of the distribution~4! with den-
sity r5rL . The case ofa2 is entirely similar and one finds
a25r ^100&/^00&.

For the calculation of the right boundary rates we n
that the probability of jumping from the siteN21 to the site
N is affected by the average occupation of the imagin
reservoir siteN11. With the jump condition that siteN21
is occupied and siteN is empty, one findsb15(r ^100&
1q^101&)/^10&. The case ofb2 is similar but one has to
take into account the conditional probability of the occup
tion of two imaginary reservoir sitesN11 andN12. This
gives b25(r ^100&1q^101&)/^1&. One has to determine
these correlations in an infinite chain with densityrR . These
rates can be expressed as a function of the density thro
the form of the current and we find

a15q
^101&

^01&
5q

^10&rL

12rL
, ~11!

a25r
^100&

^00&
5r

^10&rL

12rL
, ~12!

b15
r ^100&1q^101&

^10&
5

j ~rR!

^10&rR

, ~13!

b25
r ^100&1q^101&

^1&
5

j ~rR!

rR
, ~14!

with

^10&r5^01&r5~12r!S 12
j ~r!

rr D . ~15!

For rL51 we use the limiting valuesa15q, a25r , and for
rR50 we useb15b25r . Together with the bulk hopping
ratesr, q the dynamics of the model is now completely d
fined.

Before discussing the full phase diagram we consider
case of equal boundary densitiesr5rR5rL . Somewhat sur-
prisingly, it turns out that we can actually obtain the fu
stationary distribution of the process,

P* ~$n%!5
12r

l1
N21 S q

r D ( i 51
N21nini 11

z( i 52
N21ni~l121!n11nN,

~16!

with the eigenvaluel1 of the transfer matrix of the one
dimensional Ising model and the ‘‘fugacity’’z5e2bh ~Ap-
pendix A!. Stationarity of this distribution can be proved b
writing the time evolution operator of the process in a qu
tum Hamiltonian formalism~see Appendix B!. As in the pe-
riodic case, the exact stationary nonequilibrium distribut
of the open system with equal boundary densities is the e
e
ng

an

e
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gh
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n
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librium distribution of an Ising chain of lengthN, but with
boundary fieldsg(n11nN) rather than with the Ising cou
pling nNn1 .

Moreover, with the transfer matrix formulation of th
Ising model it is straightforward to show that the dens
profile is constant. The theoretical scenario described ab
then suggests the identificationr25rL for rL,r* andr1

5rR for rR.r* . For rL.r* or rR,r* , respectively, con-
stant profiles are not stable with respect to fluctuations
the relationship between the reservoir densities and the
fective boundary densities may be more subtle~see below!.

IV. PHASE DIAGRAM FOR REPULSIVE INTERACTION

Having defined the model and given the theoretical ba
ground we are now set to investigate the phase diagram
the system. We consider first the traffic flow scenario~repul-
sive interaction!.

A. Mean field

Unfortunately the exact stationary distribution of the op
system for different boundary densities does not hav
simple form. However, the density in the open system a
satisfies a continuity equation of the form~5!, with the
boundary currents

j 05a1^~12n1!n2&1a2^~12n1!~12n2!&, ~17!

j N215b1^nN21~12nN!&, ~18!

j N5b2^nN&. ~19!

Using also the expression~6! for the bulk current one can
obtain the stationary density profile in a mean-field appro
mation by neglecting the correlations in the expectation v
ues. Stationarity implies equal current everywhere in the
tice, ^ j i&5 j . This gives rise to the bulk recursion relation

r i5
j

~12r i 11!@qr i 121r ~12r i 12!#
~20!

for the density profile. The boundary values of the recurs
are determined by the boundary currents Eqs.~17!–~19!.

Because of the interaction with the boundary there
two possibilities for performing a mean-field analysis. T
most straightforward choice would be to choose the bou
ary rates~11!–~14! and analyze the mean-field phase d
gram in terms of the reservoir densitiesrR,L . For a given
choice of current one can draw a density profile and read
the various phases. However, it turns out that within such
approximation scheme a constant density profile canno
achieved even ifrR5rL and that the boundary densities a
not equal to the reservoir densities. As a result, the me
field phase diagram obtained in this way differs considera
from the theoretical expectation. Within this approximati
the MC phase disappears forr /q smaller than'0.6.

From a theoretical point of view it is more natural
neglect the correlations even in the expressions of the bou
ary rates in terms of the Ising expectation values. This gi
rise to simple expressions of the boundary rates in term
the reservoir densities. Using the boundary conditionsr0
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5rL andrN115rN125rR extends the validity of the recur
sion ~20! to the range 0< i<N. In this wayrN can be ex-
pressed as a function ofrR andj, and this was the reason fo
choosing the direction of the recursion from the right to t
left. It is easy to see that for a semi-infinite system there
the constant solutionsr i5rL andr i5rR with the mean-field
current

j MF~r!5r~12r!@qr1r ~12r!#. ~21!

As in the exact solution this is also a solution of the fin
system with equal boundary densities. Therefore we s
discuss this mean-field approach in more detail.

For general boundary densities we did not find a solut
of the recursion~20! in closed form, but it is easily solved
numerically on a computer. It is sufficient to choose a d
sity rR and a currentj and apply the recursion relation fo
drawing the density profile. If any of ther i ’s is smaller than
0 or greater than 1 then there is no solution correspondin
these values ofrR and j at this system size, since any phys
cal solution has to satisfy 0<r i<1 for all 1< i<N. For
fixed rR , rL and lengthN this requirement fixes the curren
j. In this way one can map out the whole phase diagr
finding the corresponding current for all values ofrL and
rR . For sufficiently largeN the size dependence is negligib
small.

We have chosenr 51.0 andq50.1. The low- and the
high-density phases are easy to distinguish as the bulk
sity is equal to one of the end densities. This allows us
identify r25rL and r15rR . At the other end oscillatory
behavior is observed. This does not happen in the u
ASEP with open boundaries@7,8#, but has been observed i
an ASEP with particles covering more than one lattice s
@1#. The maximal mean-field current accessible at given
rametersr and q and the corresponding bulk density defi
the maximal-current phase. The location of these phase
the parameter space differs from those obtained from
theoretical scenario reviewed above~Fig. 4!. Further analysis
shows that the discrepancy increases with increasing re
sion.

B. Monte Carlo results

In order to check the phase diagram based on the th
of boundary-induced phase transition described above
have performed Monte Carlo simulations of the model.

FIG. 4. Mean-field phase diagram~broken curves! and theoret-
ical phase transition lines~full curves! for repulsive interaction.
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The boundary rates are determined as explained abov
simulate given left and right densities. During one Mon
Carlo step one of theN11 sites is chosen randomly~N is the
size of the system and the11 is for the jumping into the
system! and if there is a particle then it can hop with
probability given by the hopping rates. The initial configur
tion was an empty lattice. The required time to reach
stationary state for a given system size can be determine
investigating the time dependence of the current and the b
density~the density in the middle of the system!. The order
parameter, which is the stationary value of the bulk dens
obtained as an average over 107 Monte Carlo steps, is the
best indicator of the phase transition lines. At the first-ord
phase transition between the high- and the low-den
phases it has a pronounced jump from the left to the ri
density. A system size of 1000 is sufficiently large to locali
the phase transition line. The transition into the maxim
current phase is continuous; only the derivative of the or
parameter has a~jump! discontinuity. In order to localize this
phase transition line one needs larger systems of size 50

In a given phase the simulated bulk density depends
the boundary densities in the same way as predicted by
theory, namely, it equals the left~right! density in the LD
~HD! phase, and it is a well-defined constant value in the M
phase. At the phase boundary the crossover between
kinds of behavior of the bulk density can be localized with
an error shown in Figs. 5 and 8. The Monte Carlo results
seen to be in agreement with the phase diagram derived f
the theory of boundary-induced phase transitions~Fig. 5!.
The mean-field phase transition lines are significantly outs
the numerical error bars except on part of the transition l
between the LD and MC phases.

V. ATTRACTIVE INTERACTION

Attractive ~ferromagnetic! interaction leads to bulk par
ticle domains as in the one-dimensional Ising model. D
namically this is qualitatively understandable since beca
q.r particles tend to form clusters. One expects a shift
the maximal-current densityr* to higher densities. This can
indeed be shown by calculating the derivative of the ex
current ~7!. The full current-density relation forq51,
r 50.1 is shown in Fig. 6.

Analysis of the model with open boundaries proceeds
the same way as in the repulsive case. Withr 50.1 andq
51.0 the mean-field approximation yields the three pha

FIG. 5. Monte Carlo data and theoretical phase transition li
~full curves! for repulsive interaction. The numerical error bars a
indicated by full circles.
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discussed above, with the phase transition lines differ
substantially from those expected theoretically if one ide
fiesr25rL andr15rR as suggested by the density profil
in the low- and high-density phases.

As an additional feature the mean-field theory predict
further phase transition located at the large-rL and small-rR
corner of the phase diagram~Fig. 7!. In this ‘‘fourth phase’’
the bulk density is larger than the density corresponding
the maximal current. The area of this phase increases
increasing attraction, and the area of MC phase decrease
does not disappear.

The phase diagram obtained from Monte Carlo simulat
has the phase transitions expected from the theoretical
diction, but also shows that the fourth phase exists in a sm
neighborhood of the (r150,r2.r* ) line and hence is no
an artifact of the mean-field approximation. The location
the phase transition lines is rather different compared to
mean-field diagram~Fig. 8!. The transition to this phase from
the LD phase is first order and from the maximal curre
phase it is second order. In this sense the fourth phase is
the high-density phase; however, the bulk density diff
from both the boundary densitiesrR,L . Within the theory of
boundary-induced phase transitions this high-density ph
can be understood by recalling the nonuniversal relations

FIG. 6. Exact stationary currentj as a function of the densityr
for q51, r 50.1 ~repulsive interaction!.

FIG. 7. Mean-field phase diagram~broken curves! and theoret-
ical phase transition lines~full curves! for repulsive interaction. The
narrow area above the HD phase is the mean-field MC phase.
fourth phase obtained from mean field covers the large area in
upper right part of the phase diagram.
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between real boundary density and effective boundary d
sity ~in terms of which the theory is formulated!. While for
repulsive interaction and the choice of coupling mechan
used here these two quantities may be identified, the con
tion is apparently more complicated for attractive interact
if the ~real! boundary densities become sufficiently high~left
boundary! and low ~right boundary!. An adequate explana
tion of this boundary phenomenon, which leads to a re
trance transition into the high-density phase, is not availa
In order to rule out the possibility of a finite-size effect w
performed simulations with different system sizes. UsingN
5500, 1000, and 5000, we found no indication that the
entrance transition would disappear for large enough s
tems.

VI. CONCLUSIONS

Our analysis of the totally asymmetric exclusion mod
with next-nearest-neighbor interaction consists of two pa
First we considered the periodic system in order to study
bulk properties of the steady state. With a view to traffic flo
modeling we remark that the observations~i!–~iv! listed in
Sec. II are consistent with the results obtained here.
current-density relation becomes asymmetric~Fig. 1! in a
way that is closer to real traffic data than the symme
relation j 5r(12r) for the ASEP withr 5q51. There is no
discontinuity in the derivative at the maximal-current dens
r* , in agreement with the arguments given above. As a m
far-reaching conclusion we note that the exact result~4!
sheds light on the so far somewhat unclear relationship
tween the updating mechanism and the occurrence of co
lations. In order to obtain correlations in traffic flow mode
it is not essential to use a discrete-time updating mechan
Since other discrete-time models have uncorrelated stat
ary states@28#, it appears that correlations have their physic
origin in speed reduction rather than in the nature of
updating scheme. This observation supports a similar con
sion drawn independently from the study of steady states
class of cellular automata models for traffic flow@35#.

In the second part we investigated the steady-state se
tion in the open system. It turns out that the theoretical s
nario based on the interplay of shocks and overfeeding

he
he

FIG. 8. Monte Carlo data and theoretical phase transition li
~full curves! for repulsive interaction. The numerical error bars a
indicated by full circles. The reentrance phase transition to
fourth ~HD! phase~upper right corner of the phase diagram! is
marked by the broken curve interpolating between the Monte C
points.
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rectly describes the phase diagram in terms of effec
boundary densities. For repulsive interactions this stren
ens the case for a maximal-current phase in real traffic.
attractive interaction there is, however, a surprising re
trance phase transition to the high-density phase, wh
originates in the so far poorly understood relationship
tween actual and effective boundary densities. Appare
these two are not always monotonic functions of each o
as one would naively expect. For a deeper understanding
next step is to analyze the density profiles close to the re
trance phase transition lines in order to determine whethe
not universal properties of the usual transition lines@3,10,36#
can be observed.
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APPENDIX A: TRANSFER MATRIX
FOR THE ONE-DIMENSIONAL ISING MODEL

The energy of the one-dimensional Ising model with t
classical spin variablessi561 can be written in term of the
variablesni5(12si)/2 in the form E5J( inini 11 . In this
interpretation the Ising model is a classical lattice gas ofM
5( ini hard-core particles with nearest-neighbor interacti
Using standard techniques@32# one can express the gran
canonical partition functionZ5(configz

Me2bE at inverse
temperatureb51/kT in terms of the eigenvalues of th
transfer matrix

T5S 1 Az

Az ze2bD , ~A1!

where, for our model,e2bJ5q/r and we definez5e2bh. In
the spin interpretation of the modelh plays the role of a
magnetic field.

The eigenvalues of the transfer matrix are

l1,25
1

2 S 11
q

r
zD6F1

4 S 11
q

r
zD 2

1zS 12
q

r D G1/2

,

~A2!

where we choosel1 to have the positive sign. For a syste
with N sites and periodic boundaries one hasZ5TrTN5l1

N

1l2
N . The equilibrium distribution of the Ising model is th

stationary distribution of the particle hopping model. Th
doesnot mean that the particle hopping model reaches th
mal equilibrium at long times, since the stationary distrib
tion does not satisfy detailed balance with respect to the
namics of the model. The nonequilibrium nature of t
steady state results in a nonvanishing stationary particle
rent. We stress that completely different dynamical mod
may have the same stationary distribution; see, e.g., the
of models given in@21#. Another nonequilibrium example
with the same Ising distribution is the discrete-time AS
with parallel update@31#. Even though the distribution is th
same and hence all particle correlations are the same
e
h-
or
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-
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-

.
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r-
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ist

he

stationary current of this model@17,18# ~which is defined via
the dynamics by the continuity equation! is different from
the current~6! in our model.

In order to calculate expectation values in the trans
matrix formalism we define the diagonal matrix

n5S 0 0

0 1D . ~A3!

The density is then given byr5Tr(nTN)/ZN and the two-
point correlation function is given by ^nknl&
5Tr(nTk2 lnTN2k1 l). Higher-order correlators are calcu
lated analogously. By diagonalizingT one obtains the ex-
pression

r5
12l1

l22l1
~A4!

for the particle density in terms of the eigenvalues ofT. This
relation may be used to express the current~6! as a function
of the particle density. In the thermodynamic limitN→`
one obtains Eq.~7!.

We note that expectation values for the distribution~16!
are calculated with the same transfer matrix as in the perio
case. However, instead of taking a trace, one calculate
scalar product with suitably chosen vectors which are de
mined by the boundary fields.

APPENDIX B: PROOF OF STATIONARITY FOR EQUAL
BOUNDARY DENSITIES

The proof of stationarity of the distribution~4! for the
periodic system is given in Ref.@21#. An alternative, con-
structive proof can be obtained by using translational inva
ance and taking the distance between neighboring parti
as stochastic variables. In this way the particle hopping p
cess turns into a zero-range process@37# for which the sta-
tionary distribution is known. Reexpressing the stationa
zero-range distribution in terms of particle occupation nu
bers yields Eq.~4!.

Here we prove stationarity of the Ising distribution~16!
for the open system coupled to reservoirs of equal dens
We use a convenient standard approach for the stoch
description of classical interacting particle systems, kno
as ‘‘quantum Hamiltonian formalism’’@5#. The basic idea is
to formulate the generator of the Markov process in terms
a many-body quantum operator. For processes without
clusion one obtains in this way a Fock space representa
of the generator in terms of bosonic creation and annilat
operators@38–40#. For exclusion processes with at most o
particle per site the same strategy yields an operator
pressed in terms of Pauli-spin matrices@5,41–43#.

We define the exclusion process with state spaceX
5$0,1%N and transition rateswnI →nI 8 from statenI to nI 8 in
terms of a master equation

d

dt
P~nI ;t !5 (

nI 8PX
@wnI 8→nI P~nI 8;t !2wnI →nI 8P~nI ;t !#

~B1!

for the probabilityP(nI ;t) of finding, at timet, a configura-
tion nI of particles on a lattice ofN sites. Here nI
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5$n1,n2,...,nN% whereni50,1 are the integer-valued partic
occupation numbers at sitei. The master equation is a linea
first-order differential equation in the time variable a
therefore it is natural to write it in a vector notation with th
probabilities P(nI ;t) as vector components. We represe
each of the possible particle configurationsnI by a column
vector unI & which forms a basis of the vector spaceX
5(C2) ^ N. The transposed vectorŝnI u form a basis of the
dual space and we define the usual scalar product^nI unI 8&
5dnI ,nI 8 . The probability distribution is now represented by
state vectoruP(t)&5(nI PXP(nI ;t)unI & and one can write the
master equation in the form

d

dt
P~nI ;t !52^nI uHuP~ t !&, ~B2!

where the off-diagonal matrix elements ofH are the~nega-
tive! transition rates between states and the diagonal en
are the inverse of the exponentially distributed lifetimes
the states. In formal analogy to the quantum mechan
Schrödinger equation, we shall refer toH as a quantum
Hamiltonian. A state at timet85t01t is given in terms of an
initial state at timet0 by

uP~ t01t !&5e2HtuP~ t0!&. ~B3!

We stress that the physicists’ notion of a ‘‘quantu
Hamiltonian’’ for the matrixH is somewhat misleading in s
far asH is, in fact, the generator of the Markov semigroup
the process, rather than the Hamiltonian of an actual qu
tum system. This by now well-established notion has its o
gin in the fact that for various stochastic processes the g
erator H is identical to the quantum Hamiltonian of som
well-known spin system. In this context we would also li
to point out that quantum mechanical expectation val
^A&[^CuAuC& for an observableA are calculated in a dif-
ferent way from probabilistic expectation values for a fun
tion F(nI ) of the stochastic variablesh. In the quantum
Hamiltonian formalism one writeŝF&[(nI PXF(nI )P(nI ;t)
5^suFuP(t)& with the matrixF5(nI PXF(nI )unI &^nI u and the
summation vector̂su5(nI PX^nI u which performs the averag
over all possible final states of the stochastic time evoluti

For our considerations the expectation valuerk(t)
5^sunkuP(t)& for the density at sitek is of special interest. It
is given by the projection operatornk , which has value 1 if
there is a particle at sitek and 0 otherwise. m-point density
correlations are then given by the express
^sunk1

,...,nkm
uP(t)&. In this paper we study only stationar

expectation values. For the formal description of a station
probability distribution we use the transposed summat
vector us&5(nI PXunI &. A general stationary measureP* (nI )
may then be written in vector notation in the formuP* &
5e2bE(nI )us&/ZN with the configuration-dependent ‘‘energy
matrix E(nI ) and the ‘‘partition function’’ ZN
t

es
f
al

f
n-
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n-

s

-

.

ry
n

5^sue2bE(nI)us&, which normalizes the measureuP̃* &
5e2bE(nI )us&. Notice that in vector notation the expressio
E(nI ) represents a diagonal matrix with the energies as d
onal elements. Below we shall also use the invertible dia
nal matrix P* 5e2bE(nI ), which has the~unnormalized! sta-
tionary probabilitiesP* (nI ) as diagonal elements.

To obtain the quantum Hamiltonian for the time evolutio
of the interacting ASEP with open boundaries we note t
one can represent any two-state particle system as a
system by identifying a particle~vacancy! on sitek with a
spin down~up! state on this site. This allows for a represe
tation of H in terms of Pauli matrices wherenk5(12sk

z)/2
projects on states with a particle on sitek andvk512nk is
the projector on vacancies. The off-diagonal matricessk

6

5(sk
x6 isk

y)/2 create (sk
2) and annihilate (sk

1) particles. We
stress that in the present context the ‘‘spins’’ are just con
nient labels for particle occupancies. Using this pseudos
formalism one finds

H5 (
k51

N22

~nkvk112sk
1sk11

2 !~rnk121qvk12!

1~12n12s1
2!~a1n21a2v2!1b1~nN21vN2sN21

1 sN
2!

1b2~nN2sN
1!. ~B4!

Within this formalism proof of stationarity is now a
straightforward calculation, using simple expressions for
jumping rates at the ends:

a15
qz

l1~l121!
,

a25
rz

l1~l121!
,

b15
qz

l121
,

b25
qz

l1
, ~B5!

and assuming that the boundary densities are equal at the
ends. According to Eq.~B3! stationarity is equivalent to the
eigenvector relationHuP* &50, which in turn is equivalent
to

~P* !21HuP̃* &5~P* !21HP* us&50. ~B6!

The diagonal similarity transformation ofH with P* leads to
a sum of transition matrices which act nontrivially on at mo
four neighboring sites. To calculate the action of the non
agonal parts onus& we usesk

1us&5vkus& and sk
2us&5nkus&.

This leaves only diagonal terms, the sum of which vanis
identically. This proves stationarity of the measure~16!.
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@7# G. Schütz and E. Domany, J. Stat. Phys.72, 277 ~1993!.
@8# B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Ph

A 26, 1493~1993!.
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