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Asymmetric exclusion process with next-nearest-neighbor interaction: Some comments
on traffic flow and a nonequilibrium reentrance transition

T. Antal*? and G. M. Schtr?
Departement de Physique Twéque, Universitede Genge, 24 quai Ernest Ansermet, 1211 Gend, Switzerland
2Institut fir Festkaperforschung, Forschungszentrumlidh, 52425 Jlich, Germany
(Received 20 January 2000

We study the steady-state behavior of a driven nonequilibrium lattice gas of hard-core particles with next-
nearest-neighbor interaction. We calculate the exact stationary distribution of the periodic system and for a
particular line in the phase diagram of the system with open boundaries where particles can enter and leave the
system. For repulsive interactions the dynamics can be interpreted as a two-speed model for traffic flow. The
exact stationary distribution of the periodic continuous-time system turns out to coincide with that of the
asymmetric exclusion proce68SEP) with discrete-time parallel update. However, unlike in teiegle-speed
ASEP, the exact flow diagram for the two-speed model resembles in some important features the flow diagram
of real traffic. The stationary phase diagram of the open system obtained from Monte Carlo simulations can be
understood in terms of a shock moving through the system and an overfeeding effect at the boundaries, thus
confirming theoretical predictions of a recently developed general theory of boundary-induced phase transi-
tions. In the case of attractive interaction we observe an unexpected reentrance transition due to boundary
effects.

PACS numbes): 05.70.Ln, 64.60.Cn, 02.50.Ga

I. INTRODUCTION metric simple exclusion proce$8SEP [4-6], a hard-core
lattice gas where each lattice site can be occupied by at most
One of the basic properties of many driven, interactingone particle and particles hop stochastically with constant
many-body systems is the occurrence of shocks. A shock iRias to vacant nearest-neighbor sites. For this model not only
a system of classical flowing particles marks a sudden trar@re the structure and motion of shocks largely understood,
sition from a region of low density to a region of high den- but also the stationary phase diagram of the open syg2¢m

sity. A well-known example of a shock is the beginning of a@nd the exact particle-density profil¢g,8] are explicitly
traffic jam on a motorway where incoming cafalmost known as functions of the external reservoir densities. Based

freely flowing particles in the low-density regiméave to " ghei exacr:]t SOI:‘“O? %f thlf '?SEE and of a rela:]ed Iatt]ice gas
slow down very quickly over a short distance and then form™M© e.[g], the r(cj) eo sd%c siort et stanokr:arybp ase IO Fgoied
part of the (high-density congested region. A remarkable g]_egig!:]c '(I')rrl)ienh ”\Ilegt ! u;:versysfek)msnda? -iﬁgn e(;JCIhae
feature of such shocks is their stability over long periods 01[ -4 11Is has 1ed 1o a theory of boundary=induced phase
time, i.e., they remain localized over distances comparable ttr_ansmqns for one-component driven _partlcl_e systems in one
T . q mension 5], reviewed below. Of particular interest are sys-
the size of the particles. In some sense one may regart(i

hock litonlik lecti itati £ th il ms where the stationary currégifp) as a function of par-
SNhocks as solitoniike collective excitations ot the particieq o density p has a single maximum, an example being

system. traffic flow on single-lane or multilane highway42,13.
Lattice gas models have proven to be excellent systemsy,q theory predicts a phase diagram with a first-o(den-
for the theoretical investigation of shocks and of the consegaqyiliprium) phase transition between a low-densityD)
quences of shocks for the collective behavior of the particlyhase and a high-densityHD) phase and a continuous
system. An interesting situation is the coupling of such &second-ordértransition from both phases to a maximal-
driven lattice gas system to external particle resenjdirs3]. current (MC) phase(see Fig. 2 below In the context of
It is intuitively clear that, unlike in equilibrium systems, here traffic flow the properties of the second-order transition sug-
the boundaries will play a decisive part in determining thegest more efficient control mechanisms for avoiding jams
bulk behavior of the system. Since the system is open at thigl 4].
boundaries, particles will flow in and out and the current will  The strength of the theory lies in the small number and
carry boundary effects into the bulk. Among the fundamentabenerality of its assumptions. Hence it is tempting to test its
questions to ask in such a setup is the statioriaey, long-  validity in real traffic flow. The openness of the system mod-
time) behavior of the system as a function of the boundaryels in- and outflow of cars on a road between two junctions.
densities. Numerical observations and mean-field-based amdeed, the main features of the predicted first-order transi-
guments show that varying boundary densities leads ttion have been observed using data collected on a German
boundary-induced phase transitidr3d. To understand why motorway[14,15. The second-order transition has been con-
this happens it is clearly necessary to get insight into thdirmed by Monte Carlo simulations of a suitably modified
collective behavior of the lattice gas and to investigate theNagel-Schreckenberg model for traffic flow, originally intro-
role of the shocks. duced only for periodic boundary conditionk6—18. Since
The best-studied example is the one-dimensional asynto our knowledge the data necessary to test the existence of
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the second-order transition in real traffic are not available aHere A represents a particle and represents the vacant
present, independent investigations of other traffic flow modneighboring site. Even though this stochastic process is too
els are required to establish the presence of such a transitiosimple to be a realistic model for traffic flow, somaalita-

We consider here a continuous-time exclusion model withive features of real traffid22,23 can already be seen:
additional short-range interaction on top of the pure hardshocks exist and the stationary currg¢@w)=p(1—p) as a
core repulsion of the usual ASEP. The model is designed t@nction of particle densityp has a single maximum. An
be exactly solvable like the ASEfo some degréeon the  apparently unrealistic feature of the particle distribution is

one hand and to be somewhat more realistic in describinghg apsence of correlations in the steady state which are seen

real traffic than the ASEP on the other hand. However, giver, .o sophisticated traffic flow model&7,18. An unre-

the wide range of experimental applications of hard-core IatEalistic feature of the current-density relatimown in traffic

tice gases, which comprise phenomena as diverse as the k|- . : . . .
netics of protein synthesifl], diffusion in thin channels l@ngmeerlng as the flow diagrans the reflect|onlsymmetry

[19], or polymer reptation20], broader relevance of our with respect to the maximal-current denspy =3 and its

model is to be expected. Indeed, in order to obtain a moréou_l?ﬁe% shape cI(r)]se _to thethmtaglr?um._ traffic fi
complete picture we also analyze a similar model with attrac- € basic mechanisms that determine traific Tiow appear

tive next-nearest-neighbor interaction. This model is not rel0 be first the competition between the desire to reach an

lated to traffic flow, but describes driven hard-core particle?Ptimal speed while keeping @elocity-dependentsafety
with attractive short-range interaction. To our knowledge,distance. When the traffic density becomes sufficiently large
this is the first investigation of the steady-state selection of &Nis distance cannot be kept any more and the speed has to be
driven diffusive system with this type of interaction. reduced. As a consequence the current drops at some density
The paper is organized as follows. In Sec. Il we commenp™. Secondly, there is a certain amount of randomness due
on some of the requirements of traffic flow modeling and weto variations in individual driver's behavior. This “noise”
describe our model. This model is a special case of th@ecessitates a statistical description of traffic flow phenom-
driven diffusive systems studied some while ago by Katzena.
Lebowitz, and Spohf21]. We explain in which respects this Various one-dimensional lattice gas models that incorpo-
model is more realistic for traffic flow than the standardrate these mechanisms in different manners have been pro-
ASEP, which is a limiting case of our lattice gas. This phe-posed12]. The following is part of the picture that emerges.
nomenological explanation is then confirmed by the calcula- () The existence of a shock is generic and appears to be
tion of the exact flow diagram, i.e., the stationary bulk cur-the consequence of the nonlinear current-density relffipn
rent as a function of the density. In this section the emphasis (ji) The symmetric shape of the current-density relation
is on bulk properties and hence we investigate the systemugy|ts from particle-hole symmetry and is a feature of mod-
with periodic boundary conditions in the thermodynamices i which cars move with constant probability or rate,
limit. In Sec. Il we review some details of the theory of independently of the environment beyond the nearest-
boundary-induced phase transitions of R&D] and we in-  aighnor site to which they move. This is an unrealistic as-
troduce the boundary dynamics for modeling the coupling 0%umption since clearly car drivers slow down already when
a finite system to boundary reservoirs of constant densitythey see a slowly moving car some distance ahead. They do
We give an e_xact solution f_or the stationary Qistribution not just perform an emergency stop when the car is immedi-
along the line in the phase diagram corresponding t0 equaliely in front of them. Numerical and analytical results for
boundary densitieswith proof postponed to the Appendi¥es 1,qqels[16,18,24 that allow for a reduction of speed that
and discuss a mean-field analysis of the full phase diagramjenends on the occupation of sites further ahead show an
In Sec. IV we present a mean-field analysis of the full phase,qy mmetric current-density relation resembling the shape of
diagram and discuss Monte Carlo data for the phase transjpg ¢y rrent-density relation of real traffic. In these models

tion lines Wh_ile in Sec_. V_We perform a similar analysis fpr speed is implemented by jumps over a variable number of
the model with attractive interaction. Finally, we summarize|giice sites.

our findings and present some concluding remé&8ex. VI.
Technical details of the derivation of exact results are pre
sented in the Appendixes.

(iii ) The unrealistically round shape of the current-density
relation atp* is specific for the ASEP. Deterministic exclu-
sion processes with parallel upddgt25-3Q also show a
symmetric current-density relation with one maximum, but

II. ASEP WITH NEXT-NEAREST-NEIGHBOR the derivative of the current is discontinuous at the maximal-
INTERACTION: SOME COMMENTS ON MODELING current densityp*, in this respect resembling the shape of
TRAEFIC ELOW the current in real traffi¢22] and of more realistic traffic

] . . ~ flow models[16]. Increasing the hopping probability in a
The ASEP is a stochastic lattice gas of hard-core particlegjscrete-time process toward deterministic hopping leads to
with biased particle hopping. Particles hop with exponentialy jncreasingly sharp jump in the current derivativep#t
waiting-time distribution with parameter 1 to their nearest-[17]. Hence the rather broad exponential waiting-time distri-
neighbor site to the right, provided this site is empty. If theption of the standard ASEP seems to be responsible for the
site is occupied, the hopping attempt is rejected. Symbolizoynd shape of the current-density relatiop4t In terms of
cally one may represent these stochastic dynamics as fojlne motion of a single particle these dynamics correspond to
lows: an overestimated single-particle diffusion coefficient.
(iv) For parallel update, but not for sublattice parallel up-
AJ—JA with rate 1. (1) date, increasing the hopping probability strengthens antifer-
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romagnetic particle correlatior€8,28, i.e., cars are less Repulsive case
likely to be found close to each other than some distance 02 —
apart.

In order to further investigate this picture and to disen- 015 |

tangle the various effects associated with a small diffusion
coefficient and with speed reduction, respectively, it would
be interesting to study both ingredients separately for models

i®

0.1}

in which the stationary distribution can be calculated exactly. 0.05 |
A small single-particle diffusion coefficient can be imple-
mented in discrete-time models by choosing the hopping Oo o or os e

probability close to llow noise. In the single-speed ASEP
this has been shown to lead to tk@mos) discontinuous
behavior of the current derivative discussed above. The nu- FIG. 1. Stationary currerjtas a function of the density for r
merical results on the effect of a small diffusion coefficient=1, q=0.1 (repulsive interaction
on correlations are inconclusive. In our toy model we keep
the exponential waiting-time distributigifarge diffusion co- (iy=(m(1=ni,D[an+r(1—ni;)]) (6)
efficieny, but introduce a next-nearest-neighbor interaction
which in the repulsive case models slowing down of a car ifhetween sitesi(i+1). The stationary particle currerjt
the next-nearest-neighbor site is occupied as well. A particle- (j,) is constant and is readily calculated using standard
hops to the right with rate if the next-nearest-neighbor site transfer matrix techniques for the one-dimensional Ising
is empty and with rate if it is occupied: model[32] (see Appendix A In the thermodynamic limit
. N—-oo one finds the exact current density relation
ADD—DAD  with rate r, 2

p

V1-4p(1-p)(1—q/r)—1
2(1=p)(1—qlr)

AJA—IJAA with rate g. (3) j=rp| 1+ @)
The conditiong<r models slowing down; in the limiting
caser =g one recovers the usual ASEP. Fprr this model
has no interpretation as a traffic model, but may be regarded
as describing hard-core particles with attractive short-range lIl. OPEN BOUNDARIES
interaction which are driven by an external field.

This model is a special case in the class of driven diffu-
sive systems investigated in RE21]. On a ring withN sites

shown in Fig. 1 in the repulsive case.

The analysis of the previous section yields the bulk prop-
erties of the lattice gas at a given density. Now we address
. g . . ... the question of the steady-state selection of the system with
with periodic boundary conditions the stationary dlstrlbutlonOpen boundaries, i.e., we investigate the bulk density of an

turns out to_be given by the equilibrium distribution of the.open system coupled at both ends to reservoirs of different
one-dimensional Ising model. Each state of the system 'fixed boundary densities. Translated into traffic language
defined by the set of occupation numbers{n,,...,ny} Y . o . guage,
with ;= 0,1. The stationary probability of finding a statés open boundaries cc_)rrespond to traffic junctions at the er_1ds of
. Lo = a road where particlegcarg enter or leave the road with
given by certain fixed attempt rates, a situation already envisaged with
different aims in[33] for the ASEP with parallel update. As
4) a result of the coupling to reservoirs a nontrivial stationary
density profile in the vicinity of the boundaries will emerge
and the(spatially constantbulk density will be a function of
Here Zy is the partition function and the “chemical poten- the two reservoir densities.
tial” h parameterizes the conserved bulk densityThis There are two distinct mechanisms at work. First, because
grand-canonical distribution is a nonequilibrium stationaryof the particle interaction, coupling of a semi-infinite system
state, i.e., it is invariant under the stochastic time evolutionto a reservoir will generically lead to some discontinuous
but it does not satisfy detailed balance with respect to théyehavior of the stationary distribution close to the boundary.
dynamics. It is interesting to notice that correlations are nonThe boundary represents an inhomogeneity of the system
vanishing and, in the repulsive cage:r which corresponds since the interaction of the particles with the fixed boundary
to speed reduction, become antiferromagnetic. In fact, théeads to different dynamics than that which results from the
stationary state is identical to that of the discrete-time ASERnteraction of particles among themselves. This is a nonuni-
with parallel update18,31] for hopping probabilityp=1  versal phenomenon which depends on the precise nature of

q Ei'\lzl(nini+1+hni)
r

P*(D):Z—N(—

—qlr. the coupling mechanism and on the nature of the particle
According to the dynamics described above the local deninteraction. For short-range hopping and systems with short-
sity satisfies the continuity equation range stationary bulk correlations, one expects the following

picture. Coupling of a semi-infinite system at site 1 to a
d . . reservoir of constant density, will give rise to a nonuni-
&<ni>_<]i_1>_<]i> ®) versal boundary density profile starting@t and approach-
ing (on the scale of lattice unitsome bulk density _ which
with the current is a nonuniversal function gb, (Fig. 2). A similar picture
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1 i

FIG. 2. Coupling of a semi-infinite driven particle system to a

reservoir of constant particle densjy . The (interpolatedl density
profile p;(i=1,2,...) approaches some constant vatue after a
finite distance from the boundary.

holds for coupling of a semi-infinite system at the right
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fic flow one might think of such a perturbation as being a car
that has just entered a major throughway from some side
road.

The shock velocity describes the motion of the shock
which performs, due to fluctuations, a biased random walk
with velocity v [Fig. 3(b)]. If the incoming currenf _ ex-
ceeds the outgoing currept , the shock velocity is nega-
tive. This is analogous to the back-moving shock of a traffic
jam for sufficiently high incoming traffic flow.

To get an intuitive understanding of how these velocities
determine the stationary phase diagram of a driven system

boundary where particles flow out of the system into thecPuPled to_boundarx reservorrs, let us assyme=pg | . We
reservoir. Here the bulk densipy, may change close to the Consider firstp, >p* where p* is the density where the
boundary to the reservoir densipy. Superimposed on this current takes its maximal valug. To make ;he argument
nonuniversal boundary structure is a universal behavior thdf'ore transparent we also assume that particles hop only to

depends only the effective boundary densifes,p, close

to, but not at, the boundaries. The theory of boundary
induced phase transitiofi$0] describes the stationary phase

diagram in terms of these effective boundary densities.

A. Theory of boundary-induced phase transitions

We review only the principal ideas of this theof$]
which is based on an interplay of the collective velocity

d

Uc:% (8)
of the lattice gas and the shock velocity
b= J+ :l - )
pP+—pP-

of a shock with limiting densitiep, andp_ and with lim-

iting currentsj, andj_ to the right and to the left, respec-

tively.

the right and that initially the lattice is empty. Because of

ergodicity the stationary distribution is independent of the

initial state and hence this assumption involves no loss of
generality. Consider now the time evolution of the averaged
density profile in a large system, starting from the empty

lattice. We start the discussion by assuming the left boundary
density to be very low.

(i) As time proceeds, particles from the left reservoir will
enter the system an@ossibly after some distance describing
the nonuniversal boundary layerreate a region of constant
densityp_ . This region decays to the right to zero, because
after a finite time the rightmost particles will have traveled
only a finite distance. Eventually, however, after a time that
is of the order of the system size, the rightmost particles will
hit the right boundary with the reservoir of density . This
reservoir makes it more difficult for particles to travel further
and hence creates a little traffic jam. The result is a shock
profile, with shock densitieg_ on the left andp, to the
right as in Fig. 8b). (For the sake of argument one could
have chosen such an initial state. The reason for choosing an
empty initial state becomes clear belpwhe decisive ques-
tion is now how this shock profile evolves in time. Accord-

The collective velocity is the velocity of the center of ing to Eqg. (9) the shock velocity under the circumstances
mass of a local perturbation in a homogeneous stationarglescribed here is positive, simply because the incoming cur-
backgroundFig. 3(@)]. It is positive for background density rent of particlesj _ is less than the outgoing currept for
p<p*, but becomes negative fgr>p*. In this case the sufficiently small left boundary density. Hence, even though
perturbation creates a back-moving traffic jam, which leads shock forms by fluctuations, it has aweragedrift toward
to a negative center-of-mass velocity, even though all indithe right boundary. Hence the system remains in the low-
vidual particles move with positive velocity. In terms of traf- density regime with bulk density=p_<p*.

t *
oz A’ S b ;
¢ e P

Zo To + voltz — t1)

P+

pla — (b)

po

T

FIG. 3. (a) Diffusive spreading of a density perturbation in the

stationary state at two times>t,;. The collective velocity de-
scribes the motion of the center of mass of the perturbation.

(i) The situation changes when the left boundary density
takes a value such that the incoming currgntequals the
outgoing currenj . . In this case the shock velocity vanishes
and the shock performs an unbiased random walk over the
lattice. Hence the density profile may be regarded as being
composed of two stationary domains with densifiesand
p. , separated by a “domain wall,” which is the sharp tran-
sitional region of the shock. Since the shock motion is unbi-
ased, the stationary probability of finding the shock is con-
stant in space. This leads to an equal superposition of shock
profiles and hence to a linearly increasing stationary density
profile. In analogy to first-order equilibrium phase transitions
where a domain wall separates regions of coexisting equilib-
rium regimes, we call the line defined hy =j_ andp_

Motion of a shock. To the left of the domain wall particles are <p*,p.>p*, a first-order phase transition line.

distributed homogeneously with an average denpity. To the
right of the domain wall the background densitypis>p_ .

(iii ) This line marks the transition to a high-density phase
with bulk density p=p_,.>p* since for even higher left
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boundary density the incoming current into the shock exsition line the stationary density is linearly increasing from
ceeds the outgoing current, and according to B).the p_ to p, . From both phases there is a continuous phase
shock moves to the left. This leaves the bulk in the high-transition to the maximal-current phase definedphy>p*
density regime determined by the coupling to the rightandp,.<p*. In this phase the bulk density takes the maxi-
boundary reservoir. At the first-order transition line the sta-mal current valugp=p*. These rules are encoded in an ex-
tionary bulk density is discontinuous; it jumps fropp. to  tremal principle for the current,

P+ ;

Next we consider the case of low right boundary density max j(p)  for p.>pr
p.<p*. For definiteness we chooge =0. The essential = pE[PFf’pL]_ (10)
part of the following discussion, the explanation of the oc- min- j(p) for PL<PRr
currence of a continuous phase transition, is unaffected by pelpL pr] '
this choice. Again we start the discussion with the empty, . . . . o .
lattice 9 P yderlved in[11]. It is worthwhile pointing out that this dy-

mnamical theory explains in mesoscopic terms the predictions
one would obtain by viewing the system from a coarse-
particles hitting the right boundary can leave the syste .ra|r.1ed hydr_odynamlc_: viewpoif]. At the_ same time, veri-
without creating a shock. As a result, the system is in th ication of this scenario suggests the validity of the hydrody-
’ namic approach for the description of the large-scale

low-density phase(For p,>0 a shock could form, but . . .
would have positive velocity under the circumstances Congynamlcs of the particle systeif84] by using the exact

sidered here. Hence also in this case the system is in thceurrent—densny relation.

low-density phas¢.Now we examine the seemingly trivial

reasonwhy an increase in the left boundary density leads to B. Coupling to boundary reservoirs

an increase in the bulk density. Above we simply claimed To verify this scenario, which correctly describes the ex-
this to be true on the basis of plausibility. Here we supportactly solvable ASEP with open boundaries, one has to inves-
this claim with an argument that becomes important belowtigate our model in terms of the effective boundary densities
Suppose we create a little perturbation at the left boundary, ,p+ . Given two reservoir densities there is no general
by injecting an extra particléon top of those particles that recipe for eliminating the nonuniversal boundary effects that
are injected anyway from the reseryoilhis creates a per- result in the effective boundary densitigs ,p. . Hence
turbation WhiCh, by definition of the collective V6|0City, trav- these quantities are not easy to control. |dea||y, for purposes
els withv.>0 into the bulk and leads to a local increase ofof theoretical investigation, one would like to construct an
the density, moving away from the boundary and spreadingnjection and absorption mechanism that leads to a constant
out as time goes on. The collective velocity is positive, SinCQ:jensity profile for a semi-infinite system so that=p_ and

by assumption we have a background denpity<p* and .=, | i.e., the effective boundary densities are identical to
hence the current as a function of the density has positivehe actual control parameters of the model.

Slope. The pOint is that maintaining such a perturbation Here we choose an injection mechanism where the par-
(which corresponds to increasing the left reservoir densityicles on the lattice interact with the reservoir particles in the
permanently leads to a permanent additional flow of par- same way as among each other. We define two injection
ticles into the bulk and hence to the antiCipated increase qfates from the reservoir at the left bounda@:injection at

(i) As argued above, after some initial time the syste
will have filled up to a bulk densitp=p_ . Sincep, =0,

the stationary bulk density. site 1 if site 2 is occupied,
(i) It is now clear that this argument holds only as long as
p_<p*. Assume nowp_=p*. Following the reasoning |JA—|AA with rate aq,

above this results in a maximal-current bulk density.
However, if the left reservoir density increases beyond theéind (i) injection at site 1 if site 2 is empty,
maximal current density, the collective velocity becomes .
negative. No extra particles flow into the system, which |DD—|AD  with rate ay;
th*erefore remains in its .bulk at thg maximal current den5|tyand two new hopping rates at the right boundaiyhopping
p*. The system is now in the maximal current phase for a"from siteN—1 to siteN
p_>p* andp,<p*. This transition is continuous; the bulk '
density approaches* smoothly from bglow. Intu!tlveyly this AD| DA with rate g,
phenomenon may be understood as “overfeedifig]. The
injected particles act as blockages for further incoming parand i) hopping out from siteN (absorption,
ticles, leading to a back-moving traffic jam at the origin. This
increased density at the origin blocks further injection at- Al—J| with rate B,.
tempts and prevents an actual increase of the current.
Finally, using similar arguments, one can show that theThese four hopping rates are those that would be affected by
transition from the high-density phase to the maximal-the interaction with particles in the reservoirs. The rates

current phase is also continuous. a; (B;) have now to be determined as functions of the left
To summarize, the theory predicts a first-order transition(right) reservoir density. This can be illustrated, e.g., for the

along the line defined by, =j_ and p_<p*,p,>p* injection process with rate;;. We imagine the reservoir to

where the stationary bulk density jumps from. (low- include a site O of the chain. The injection rate into the first

density phaseto p_. (high-density phageOn the phase tran- site is defined by théstationary average occupatiop, of
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the imaginary site 0, but with the condition that the first sitelibrium distribution of an Ising chain of lengtN, but with

is empty and the second site is occupied. Considering thboundary fieldsg(n;+ny) rather than with the Ising cou-
zeroth, the first, and the second sites as three neighboringing nyn; .

sites of an infinite chain, this conditional probability can be  Moreover, with the transfer matrix formulation of the
expressed readily as correlations in the stationary state of dsing model it is straightforward to show that the density
infinite chain. Thus we findv;=q(101)/{01) where expec- profile is constant. The theoretical scenario described above
tation values like(101)=(n;(1—n;,1)Nn;;,) are calculated then suggests the identificatipn = p,_ for p . <p* andp,

in the thermodynamic limit of the distributiof®) with den- = pg for pg>p*. Forp, >p* or pg<p*, respectively, con-
sity p=p_ . The case ofy, is entirely similar and one finds stant profiles are not stable with respect to fluctuations and
a,=r(100)/{00). the relationship between the reservoir densities and the ef-

For the calculation of the right boundary rates we notefective boundary densities may be more sulgiee below.
that the probability of jumping from the sité—1 to the site
N is affected by the average occupation of the imaginary |v. pHASE DIAGRAM FOR REPULSIVE INTERACTION
reservoir siteN+ 1. With the jump condition that sitsl—1 ) i ) )
is occupied and siteN is empty, one findsg;=(r(100) Having defined the modgl and given the theoreupal back-
+q(101))/(10). The case ofB, is similar but one has to ground we are now set to investigate the phase d_|agram of
take into account the conditional probability of the occupa-the system. We consider first the traffic flow scenarepul-
tion of two imaginary reservoir siteN+1 andN+2. This  Sive interaction
gives B,=(r(100+q(101))/(1). One has to determine
these correlations in an infinite chain with dengity. These A. Mean field
rates can be expressed as a function of the density through

: Unfortunately the exact stationary distribution of the open
the form of the current and we find

system for different boundary densities does not have a
simple form. However, the density in the open system also

(101 (100, (1)  satisfies a continuity equation of the forfs), with the

“=9%0y ~91—, boundary currents
. _r<100>_r(10)pL 1) Jo=ar{(1=nyny) +ax((1-ny)(1-ny)), (17
2= - ]
(00) 1=p In-1=B1(nn-1(1—ny)), (18
r{(100+q(100)  j(pr) L
= = , (13 In=B2Any)- (19
1 (10 (10,
Using also the expressio®) for the bulk current one can
r(100+q(101) j(pr) obtain the stationary density profile in a mean-field approxi-
2= (1) = or (14 mation by neglecting the correlations in the expectation val-
ues. Stationarity implies equal current everywhere in the lat-
with tice,(j;)=]. This gives rise to the bulk recursion relation
(10,= (08, = (1—p)[ 1- 12 15 - j 20
PN TR rp ) P A= pis D[P 2+ T (1= pi1)]

Forp_ =1 we use the limiting values,;=q, a,=r, and for  for the density profile. The boundary values of the recursion
pr=0 we useB;=B,=r. Together with the bulk hopping are determined by the boundary currents E43)—(19).
ratesr, g the dynamics of the model is now completely de- Because of the interaction with the boundary there are
fined. two possibilities for performing a mean-field analysis. The
Before discussing the full phase diagram we consider thenost straightforward choice would be to choose the bound-
case of equal boundary densities pg=p, . Somewhat sur- ary rates(11)—(14) and analyze the mean-field phase dia-
prisingly, it turns out that we can actually obtain the full gram in terms of the reservoir densitipg, . For a given
stationary distribution of the process, choice of current one can draw a density profile and read off
N the various phases. However, it turns out that within such an
P* () = 1-p (q>2i_1 Mifi+1 approximation scheme a constant density profile cannot be
Al

ZEiN;Zlni()\l— 1)n1+nN’
r

achieved even ipg=p, and that the boundary densities are
(16)  hot equal to the reservoir densities. As a result, the mean-

field phase diagram obtained in this way differs considerably
with the eigenvaluex; of the transfer matrix of the one- from the theoretical expectation. Within this approximation
dimensional Ising model and the “fugacity?=e #" (Ap-  the MC phase disappears fiofq smaller than~0.6.
pendix A). Stationarity of this distribution can be proved by  From a theoretical point of view it is more natural to
writing the time evolution operator of the process in a quanfeglect the correlations even in the expressions of the bound-
tum Hamiltonian formalisnisee Appendix B As in the pe- ary rates in terms of the Ising expectation values. This gives
riodic case, the exact stationary nonequilibrium distributionrise to simple expressions of the boundary rates in terms of
of the open system with equal boundary densities is the equthe reservoir densities. Using the boundary conditipgs
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FIG. 4. Mean-field phase diagrathroken curvesand theoret- FIG. 5. Monte Carlo data and theoretical phase transition lines
ical phase transition line§ull curves for repulsive interaction. (full curves for repulsive interaction. The numerical error bars are

indicated by full circles.

=pL andpy.1=pn+o=pr Xtends the validity of the recur- g poyndary rates are determined as explained above to

sion (20) to the range &i<N. In this waypy can be ex-  gimylate given left and right densities. During one Monte

pressed as a function pf; andj, and this was the reason for cario step one of thai+1 sites is chosen randomi is the

choosing the direction of the recursion from the right to thesjze of the system and thel is for the jumping into the

left. It is easy to see that for a semi-infinite system there argystem) and if there is a particle then it can hop with a

the constant solutions;= p_ andp; = pg with the mean-field  probability given by the hopping rates. The initial configura-

current tion was an empty lattice. The required time to reach the
stationary state for a given system size can be determined by

iM(p)=p(L—p)[gp+r(1l—p)]. (21) inves_tigating the _tim_e dependence of the current and the bulk

density(the density in the middle of the systgnThe order

As in the exact solution this is also a solution of the finite Parameter, which is the stationary value of the bulk density

- 7 .
system with equal boundary densities. Therefore we shaffPt@ined as an average over’ Ildonte Carlo steps, is the
discuss this mean-field approach in more detail. best indicator of the phase transition lines. At the first-order

For general boundary densities we did not find a solutiorP@S€ transition between the high- and the low-density
of the recursion20) in closed form, but it is easily solved Phases it has a pronounced jump from the left to the right
numerically on a computer. It is sufficient to choose a dendensity. A system size of 1000 is sufficiently large to localize
sity pr and a currenf and apply the recursion relation for the phase transition 'Ilne. The transition into the maximal-
drawing the density profile. If any of the's is smaller than current phase is continuous; only the derivative of the order
0 or greater than 1 then there is no solution corresponding tB2r@meter has gump) discontinuity. In order to localize this
these values og andj at this system size, since any physi- phase tre_mS|t|on line one r)eeds larger systen"_ns of size 5000.
cal solution has to satisfy ©p;<1 for all 1<i<N. For In a given phase the simulated bulk density depends on

: - ; ; the boundary densities in the same way as predicted by the
fixed pr, p. and lengthN this requirement fixes the current theory, namely, it equals the leftight) density in the LD

j- In this way one can map out the whole phase diagram . : :
finding the corresponding current for all values @f and “:]D) phase,handrllt IS a;vell-(;efme(;l] constant valut()a in the MC
- : : .. phase. At the phase boundary the crossover between two
PR =" sufficiently largeN the size dependence is negligibly 1" ' ehavior of the bulk density can be localized within
: an error shown in Figs. 5 and 8. The Monte Carlo results are

We have chosem=1.0 andq=0.1. The low- and the ) ) . ;
high-density phases are easy to distinguish as the bulk de een to be in agreement with the phase diagram derived from

sity is equal to one of the end densities. This allows us tot]_e theory of boundary-induced phase transitidfig. 5).
identify p_=p, and p, =pg. At the other end oscillatory he mean-field phase transition lines are significantly outside

behavior is observed. This does not happen in the usu%‘e numerical error bars except on part of the transition line
ASEP with open boundarid¥,8], but has been observed in etween the LD and MC phases.

an ASEP with particles covering more than one lattice site
[1]. The maximal mean-field current accessible at given pa-
rametersr and q and the corresponding bulk density define
the maximal-current phase. The location of these phases in Attractive (ferromagnetig interaction leads to bulk par-
the parameter space differs from those obtained from th&cle domains as in the one-dimensional Ising model. Dy-
theoretica' Scenario reviewed abc(%g 4) Further ana|ysis namica”y this is qualitatively understandable since because

shows that the discrepancy increases with increasing repufi=>r particles tend to form clusters. One expects a shift of
sion. the maximal-current densify* to higher densities. This can

indeed be shown by calculating the derivative of the exact
current (7). The full current-density relation fog=1,
r=0.1is shown in Fig. 6.

In order to check the phase diagram based on the theory Analysis of the model with open boundaries proceeds in
of boundary-induced phase transition described above wihe same way as in the repulsive case. With0.1 andq
have performed Monte Carlo simulations of the model. =1.0 the mean-field approximation yields the three phases

V. ATTRACTIVE INTERACTION

B. Monte Carlo results
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0 02 04 06 038 1 (full curves for repulsive interaction. The numerical error bars are
p indicated by full circles. The reentrance phase transition to the

fourth (HD) phase(upper right corner of the phase diagnaim
FIG. 6. Exact stationary currepias a function of the density marked by the broken curve interpolating between the Monte Carlo
for q=1, r=0.1 (repulsive interaction points.

discussed above, with the phase transition lines differing’®tween real boundary density and effective boundary den-
substantially from those expected theoretically if one identi-Sity (in terms of which the theory is formulated/hile for
fiesp_=p, andp, = pg as suggested by the density profiles repulsive interaction and tht_a choice of _couplll_ng mechanism
in the low- and high-density phases. qseq here these two quantltle'_s may be |dent|f|¢d, _the connec-
As an additional feature the mean-field theory predicts a_pon is apparently more co_n_1pl|cated for attr_a(_:tlve |nt_eract|on
further phase transition located at the laygeand smallpg || the (rea) boundary densities become sufficiently higft
corner of the phase diagraffig. 7). In this “fourth phase”  Poundary and low (right boundary. An adequate explana-
the bulk density is larger than the density corresponding tdion of this boundary phenomenon, which leads to a reen-
the maximal current. The area of this phase increases witffance transition into the high-density phase, is not available.
increasing attraction, and the area of MC phase decreases Bltorder to rule out the possibility of a finite-size effect we
does not disappear. performed simulations with different syst(_am sizes. Udihg
The phase diagram obtained from Monte Carlo simulatiori= 900, 1000, and 5000, we found no indication that the re-
has the phase transitions expected from the theoretical préntrance transition would disappear for large enough sys-
diction, but also shows that the fourth phase exists in a smalfmSs:
neighborhood of thed, =0,0_>p*) line and hence is not
an artifact of the mean-field approximation. The location of
the phase transition lines is rather different compared to the
mean-field diagraniFig. 8). The transition to this phase from Our analysis of the totally asymmetric exclusion model
the LD phase is first order and from the maximal currentwith next-nearest-neighbor interaction consists of two parts.
phase it is second order. In this sense the fourth phase is likeirst we considered the periodic system in order to study the
the high-density phase; however, the bulk density differsoulk properties of the steady state. With a view to traffic flow
from both the boundary densitigg | . Within the theory of modeling we remark that the observatiois-(iv) listed in
boundary-induced phase transitions this high-density phasgec. Il are consistent with the results obtained here. The
can be understood by recalling the nonuniversal relationshipurrent-density relation becomes asymmetfig. 1) in a
way that is closer to real traffic data than the symmetric
Aftractive case relationj = p(1—p) for the ASEP withr =q=1. There is no
1 — . . discontinuity in the derivative at the maximal-current density
p*, in agreement with the arguments given above. As a more
08 r L far-reaching conclusion we note that the exact regdit
06 | ] sheds light on the so far somewhat unclear relationship be-
tween the updating mechanism and the occurrence of corre-
0.4 F LD Phase ] lations. In order to obtain correlations in traffic flow models
it is not essential to use a discrete-time updating mechanism.
02 | L~ 1 . . . .
s HD Phase Since other discrete-time models have uncorrelated station-
. ary state$28], it appears that correlations have their physical
origin in speed reduction rather than in the nature of the
updating scheme. This observation supports a similar conclu-
FIG. 7. Mean-field phase diagrabroken curvesand theoret- ~ Sion drawn independently from the study of steady states in a
ical phase transition linegull curves for repulsive interaction. The class of cellular automata models for traffic fl¢@5].
narrow area above the HD phase is the mean-field MC phase. The In the second part we investigated the steady-state selec-
fourth phase obtained from mean field covers the large area in théon in the open system. It turns out that the theoretical sce-
upper right part of the phase diagram. nario based on the interplay of shocks and overfeeding cor-

VI. CONCLUSIONS

1-pg

0 02 04 06 08 1
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rectly describes the phase diagram in terms of effectivestationary current of this modgl7,18 (which is defined via
boundary densities. For repulsive interactions this strengththe dynamics by the continuity equatjois different from
ens the case for a maximal-current phase in real traffic. Fathe current(6) in our model.

attractive interaction there is, however, a surprising reen- In order to calculate expectation values in the transfer
trance phase transition to the high-density phase, whicmatrix formalism we define the diagonal matrix
originates in the so far poorly understood relationship be-

tween actual and effective boundary densities. Apparently . 00

these two are not always monotonic functions of each other n= o 1/’

as one would naively expect. For a deeper understanding the

next step is to analyze the density profiles close to the reerFhe density is then given by=Tr(nTV)/Zy and the two-
trance phase transition lines in order to determine whether geoint ~ correlation  function is given by (nyn))

(A3)

not universal properties of the usual transition lif@40,3§  =Tr(nT< 'nTN"k*!). Higher-order correlators are calcu-
can be observed. lated analogously. By diagonalizing one obtains the ex-
pression
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APPENDIX A: TRANSFER MATRIX one obtains Eq(7). _ o
FOR THE ONE-DIMENSIONAL ISING MODEL We note that expectation values for the distribut{@)

are calculated with the same transfer matrix as in the periodic

The energy of the one-dimensional Ising model with thecase. However, instead of taking a trace, one calculates a
classical spin variables;=*1 can be written in term of the scalar product with suitably chosen vectors which are deter-
variablesn;=(1—s;)/2 in the formE=JZ;n;n; ;. In this  mined by the boundary fields.
interpretation the Ising model is a classical lattice ga$/of
=2;n; hard-core particles with nearest-neighbor interaction. APPENDIX B: PROOF OF STATIONARITY FOR EQUAL
Using standard techniqué¢82] one can express the grand- BOUNDARY DENSITIES
canonical partition functionZ= = .,;z"e #F at inverse o o
temperature@=1KkT in terms of the eigenvalues of the The proof of stationarity of the distributiotd) for the

transfer matrix periodic system is given in Ref21]. An alternative, con-
structive proof can be obtained by using translational invari-
1 Jz ance and taking the distance between neighboring particles
=( ﬂ) , (A1) as stochastic variables. In this way the particle hopping pro-
Vz ze cess turns into a zero-range procg3F for which the sta-

tionary distribution is known. Reexpressing the stationary

—BJ_ H _ ~—ph
where, for our modele #=qglr and we define=e"*". In zero-range distribution in terms of particle occupation num-
the spin interpretation of the modél plays the role of a g5 yields Eq(4).

magnetic field. _ Here we prove stationarity of the Ising distributioh6)
The eigenvalues of the transfer matrix are for the open system coupled to reservoirs of equal density.
1 5 12 We use a convenient standard approach for the stochastic
)\12:_(1+ S U e I ) D 9” , description of classical interacting particle systems, known
<2 r 4 r as “gquantum Hamiltonian formalism{5]. The basic idea is

to formulate the generator of the Markov process in terms of

. ) a many-body quantum operator. For processes without ex-
where we choos, to have the positive sign. For a system ¢jysion one obtains in this way a Fock space representation
with N sites and periodic boundaries one @asTrTN=\]"  of the generator in terms of bosonic creation and annilation
+\Y. The equilibrium distribution of the Ising model is the operator§38—40. For exclusion processes with at most one
stationary distribution of the particle hopping model. Thisparticle per site the same strategy yields an operator ex-
doesnot mean that the particle hopping model reaches therpressed in terms of Pauli-spin matridés41—43.
mal equilibrium at long times, since the stationary distribu- We define the exclusion process with state sp¥ce
tion does not satisfy detailed balance with respect to the dy={0,1}N and transition ratesv,, ., from staten to n’ in
namics of the model. The nonequilibrium nature of theterms of a master equation
steady state results in a nonvanishing stationary particle cur- g
rent. We stress that completely different dynamical models . )
may have the same stationary distribution; see, e.g., the list gg (0= 2 [Wyr_nP(0"t) =Wy P(n51)]
of models given in[21]. Another nonequilibrium example nex (B1)
with the same Ising distribution is the discrete-time ASEP
with parallel updat¢31]. Even though the distribution is the for the probabilityP(n;t) of finding, at timet, a configura-
same and hence all particle correlations are the same, thmn n of particles on a lattice ofN sites. Heren
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={n;,n,,...Ny} wheren;=0,1 are the integer-valued particle =(ge #EM|s), which normalizes the measurgP*)
occupation numbers at siteThe master equation is a linear =e PE(|s). Notice that in vector notation the expression
first-order differential equation in the time variable and g(n) represents a diagonal matrix with the energies as diag-
therefore it is natural to write it in a vector notation with the gna| elements. Below we shall also use the invertible diago-
probabilities P(n;t) as vector components. We representng| matrix P* = e~ AE(D | which has theunnormalized sta-
each of the possible particle configuratiamsby a column  tionary probabilitiesP* (n) as diagonal elements.

vector [n) which forms a basis of the vector space To obtain the quantum Hamiltonian for the time evolution
=(C?)®MN. The transposed vectofs| form a basis of the of the interacting ASEP with open boundaries we note that
dual space and we define the usual scalar prodot’)  one can represent any two-state particle system as a spin
= J,n - The probability distribution is now represented by asystem by identifying a particlévacancy on sitek with a
state vectoP(t))==,.xP(n;t)[n) and one can write the spin down(up) state on this site. This allows for a represen-

master equation in the form tation of H in terms of Pauli matrices wherg=(1—o%)/2
projects on states with a particle on sik@andv,=1—n, is

d the projector on vacancies. The off-diagonal matrisgs

giP(mb= —(n|H|P(1)), (B2) =(ox=ia))/2 create ) and annihilate §;) particles. We

stress that in the present context the “spins” are just conve-

) ] nient labels for particle occupancies. Using this pseudospin
where the off-diagonal matrix elements ldfare the(nega-  formalism one finds

tive) transition rates between states and the diagonal entries
are the inverse of the exponentially distributed lifetimes of
the states. In formal analogy to the quantum mechanical
Schradinger equation, we shall refer td as a quantum H= 2, (N1~ S¢ Scr1) (Mo Qo 2)
Hamiltonian. A state at tim& =ty+t is given in terms of an -t

initial state at timety by +(1—ny—s7 ) (@1t as,) + B1(Ny_ 10N—Sy_1SN)

+ Bo(Ny—Sp). (B4)

N-2

[P(to+1))=e"[P(ty)). (B3)

Within this formalism proof of stationarity is now a

We stress that the physicists’ notion of a "quantum straightforward calculation, using simple expressions for the
Hamiltonian” for the matrixH is somewhat misleading in so jumping rates at the ends:

far asH is, in fact, the generator of the Markov semigroup of

the process, rather than the Hamiltonian of an actual quan- qz
tum system. This by now well-established notion has its ori- alzm’
gin in the fact that for various stochastic processes the gen-

eratorH is identical to the quantum Hamiltonian of some rz
well-known spin system. In this context we would also like az=m,

to point out that quantum mechanical expectation values
(A)=(W|A| ) for an observablé are calculated in a dif-

ferent way from probabilistic expectation values for a func- ,81:)\q—_zl,

tion F(n) of the stochastic variableg. In the quantum 1

Hamiltonian formalism one writegF)=3,_xF(n)P(n;t) .

=(s|F[P(t)) with the matrixF=X,_xF(n)|n)(n| and the ,32=q_, (B5)
summation vectofs| ==, . x(n| which performs the average A

over all possible final states of the stochastic time evolution
For our considerations the expectation valpeg(t)

=(s|n,|P(t)) for the density at sit& is of special interest. It

is given by the projection operatoy,, which has value 1 if

there is a particle at siteand O otherwise. m-point density

correlations are then given by the expression (P*)~IH[P*)=(P*) HP*|s)=0. (B6)

(s[n,,-...n |P(1)). In this paper we study only stationary

expectation values. For the formal description of a stationaryrhe diagonal similarity transformation ef with P* leads to

probability distribution we use the transposed summatiora sum of transition matrices which act nontrivially on at most

vector|s)=3,.x|/n). A general stationary measuR* (n)  four neighboring sites. To calculate the action of the nondi-

may then be written in vector notation in the forfR*)  agonal parts o) we uses, |s)=v,|s) ands, |S)=n,|s).

= e~ PE()|s)/Z,, with the configuration-dependent “energy” This leaves only diagonal terms, the sum of which vanishes

matrix E(n) and the “partition function” Z identically. This proves stationarity of the measq(té).

and assuming that the boundary densities are equal at the two
ends. According to Eq.B3) stationarity is equivalent to the
eigenvector relatioH|P*)=0, which in turn is equivalent
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