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Abstract. We present an explicit solution to a classic model of cell-population
growth introduced by Luria and Delbrück (1943 Genetics 28 491–511) 70 years
ago to study the emergence of mutations in bacterial populations. In this model
a wild-type population is assumed to grow exponentially in a deterministic
fashion. Proportional to the wild-type population size, mutants arrive randomly
and initiate new sub-populations of mutants that grow stochastically according
to a supercritical birth and death process. We give an exact expression for
the generating function of the total number of mutants at a given wild-type
population size. We present a simple expression for the probability of finding no
mutants, and a recursion formula for the probability of finding a given number of
mutants. In the ‘large population-small mutation’ limit we recover recent results
of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a
fully stochastic version of the process.
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1. Introduction

When a population of bacteria is attacked by a lethal virus, often a sub-population
survives. At the beginning of the 1940’s an important question was whether this resistance
is due to adaptation which is induced under the stress of attack, or is simply due to
mutations that occurred beforehand during the expansion of the population. To clarify
this question, Luria and Delbrück conducted their now famous experiments in 1943 [1],
and showed that indeed the natural variability of cells can withhold a sub-population from
extinction. They formulated a simple mathematical model in which both wild-type and
the mutant cells grow deterministically, but the mutants appear randomly, proportional
to the wild-type population size. They derived many properties of the model, in particular
for the mutant size distribution and proposed a method to estimate the mutation rate
from data.
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In the seminal paper of Lea and Coulson [3], the original model was extended to
allow stochastic growth of the mutant population as a pure birth process. They derived
the distribution of the number of mutants for the first time for neutral mutation. In
1955 Bailey published elegant computations and some results on his own modifications
of the process, see [4]. Since then many efforts have been undertaken to understand the
process better. The review paper of Zheng [5], gives a formidable overview of the history
of the process and clarifies most concerns related to the infinite moments of the proposed
distributions.

New interest has kindled recently in the mutant distribution of the fully stochastic
version, where wild-type cells grows according to a birth and death process. Including
cell death into the model extended the range of its possible applications. This model
was formulated by Kendall [6], and a full solution was provided in [7], where the
Kolmogorov equations for the generating function of both cell types were solved explicitly.
From the generating function the joint probability of a given number of wild type and
mutant cells can be obtained for any finite times. Expressions for finite times become
important for experimental studies [8–10], where the asymptotic limit might be out
of reach.

In many situations, most notably in the study of mutations in tumor growth [11, 12],
the age of the wild-type population is rarely known. At tumor detection we have a fairly
good idea about the size of the tumor but the time of its initiation is unknown. This
led to studies of the mutant distribution at a fixed size of wild-type population. For
neutral mutataion and pure birth processes this problem was solved by Angerer [13]. Iwasa,
Nowak and Michor [14] extended this model to non-neutral mutants and to birth-and-
death processes. They derive mutant distributions and resistance probability assuming
the product of population size and mutation rate to be small. Komarova suggested a very
elegant method to obtain an approximate mutant distribution [15]. More recently, in two
remarkable papers [2, 16] Kessler and Levine obtained the full mutant distribution for a
large but fixed size wild-type population. They used approximate methods to simplify the
Kolmogorov equations, and in an independent derivation they also used the exact solution
of the fully stochastic case given in [7]. By letting the previously constant product of
mutation rate and population size go to infinity, they derive α-stable distributions. For the
same limit, similar results were derived with other methods by Durrett and Moseley [17]
for beneficial mutations. This result was already given, but not proven, by Mandelbrot
in [18]. Moehle treats the classic case of neutral mutation utilizing Compound Poisson
processes in [19]. In [20] Janson treats a similar model with fixed, non-random number
of offspring, by mapping a reducible multi-type branching process to Pólya-Urns and
investigates several limits.

In this paper we make the assumption that the wild-type population grows according
to a deterministic exponential function. This is valid in many biological contexts, in
particular when the members of a population do not compete for resources. An example
are early stages of cancer, where the tumor-cell population is large, but not yet effected
significantly by resource constrains. In treatment with chemotherapy, the rise of resistant
sub-populations is of paramount importance, since resistant cells (mutants) are the main
cause for a treatment failure. Moreover, the introduction of non-exponential tumor growth
is not only difficult to treat mathematically, but is also a highly disputed topic in
oncology. A detailed discussion and comparison with medical studies of exponential and
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non-exponential growth models can be found in [21]. For the sake of simplicity we shall
treat exponential growth only.

We introduce and review the general ansatz of Dewanji [22] for arbitrary growth
functions in section 2 and obtain the generating function of the number of mutants
explicitly in terms of hypergeometric functions for the exponential case in section 3.
The special case of neutral mutations is discussed separately in section 4. We investigate
various limits of the mutant distribution in section 5. We recover all corresponding results
from the above mentioned papers for general parameters and extend them to finite wild-
type populations, to mutants with explicit death, and to deleterious (disadvantageous
compared to wild-type) mutations. In addition to analyzing the mean and the variance
of the number of mutants, we characterize the shape of the mutant number distribution,
numerically study its mode, give the probability of resistance, and the distribution of
the sizes of individual clones. Relations to Compound Poisson processes, the Yule–Simon
distribution, and α-stable distributions are also discussed. We give a recursion to calculate
the probability distribution of the mutants efficiently and analyze the distribution’s tail
behavior in-depth in the final section, thereby extending the results of [23, 24]. In the
Summary we show that for small mutation rates the mutant distribution obtained for the
semi-deterministic model agrees very well with numerical results obtained for the fully
stochastic version of the model.

2. General population size functions

We consider a cell population that consists of two types of cells, a wild type (type A) and a
mutant (type B). Each A-cell independently of all other cells produces a mutant B-cell at
rate ν. If we approximate the size of the A-cell population via the deterministic function
f(t), so that mutants are produced at rate νf(t), the arrival times of new mutants follow
a non-homogeneous Poisson process. Each B-cell descended from an A-cell at time s < t
is the initiator of a new sub-population of mutants (a clone), whose size we denote by Yk.
At time t the total number K of clones is a Poisson random variable with mean

m = E(K) =
∫ t

0
νf(s)ds. (1)

We assume that clones develop independently as some stochastic process with generating
function gt(z) = E(zY ). Since each clone Yk is generated according to a Poisson process,
the family (Yi)i∈{1,...,K} is independent, identically distributed (iid) and the generating
function of each clone is

ψ(z) = E
(
zY

)
=

ν

m

∫ t

0
f(s)gt−s(z) ds. (2)

The total number Bt of mutants at time t is a Compound Poisson random variable

Bt =
K∑

i=1

Yi.

Using conditional expectation, the generating function of Bt can be written as
G(z) = E

(
zBt

)
= E

(
E(zBt|K)

)
.

Now
E(zBt|K = k) = ψk(z)
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since the clones are independent and thus

G(z) = E(ψK) =
∑

k!0

(ψ(z)m)k

k!
e−m = em(ψ(z)−1), (3)

which appears in [19] and is characteristic for Compound Poisson variables. Using (1)
and (2), we can also write

G(z) = exp
(

ν

∫ t

0
f(s) [gt−s(z) − 1] ds

)
(4)

which appears in [22] in a more general setting.
Since the generating function of Bt is of exponential form, we introduce the following

notation for arbitrary random variable X

ΛX(z) = log E(zX) = log GX(z)
and refer to ΛX(z) as the log-generating function of X.

3. Generating function for exponential growth

Let us consider the special case of an exponentially growing wild-type population, such
that f(t) = eδt, for some δ > 0. Hence mutants are produced at rate νeδt. Moreover, let
us assume that each clone behaves like a linear birth–death process with birth rate α and
death rate β with positive relative fitness λ = α − β > 0, i.e. the process is supercritical.
The extinction probability of a mutant clone is q = β/α = 1 − λ/α, and its generating
function is also well known [25]

gs(z) = 1 − 1 − q

1 − ξe−λs
, ξ =

q − z

1 − z
= 1 − 1 − q

1 − z
.

The pure birth case of β = 0 and thus q = 0 is well studied and corresponds to the
assumption that cells only divide, but never die.

We are interested in the distribution of the number of mutants at the time when the
number of A-cells reaches exactly N . Since the A-cells grow deterministically, this happens
at time τ = log(N)/δ. We use the shorthand notation B ≡ Bτ for the number of mutants
at time τ . Therefore the mutant log-generating function (4) becomes

ΛB(z) = ν

∫ τ

0
eδs(gτ−s(z) − 1)ds =

µ

γ

∫ τ

0

1
eλsN−1/γξ − 1

δeδsds (5)

where
γ = δ/λ and µ = ν/α.

After a change of variable u = eδs/N we can compute the integral

ΛB(z) =
−Nµ

γ

∫ 1

1/N

1
1 − u1/γξ

du

=
−Nµ

γ

∫ 1

1/N

∑

k!0

(u1/γξ)kdu = −Nµ
∑

k!0

ξk u(k+1)/γ

γ + k

∣∣∣∣
1

1/N

(6)

= µ
∑

k!0

ξk

[
N−k/γ

γ + k
− N

γ + k

]
.
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Figure 1. Orders of the mean number of mutants E(B) and its standard deviation√
Var(B) for large N . Mutants have a fitness advantage for 1/γ > 1 and a

disadvantage for 1/γ < 1 with respect to the wild-type cells.

We can rewrite (6) in terms of the hypergeometric function (C.6)

ΛB(z) = log GB(z) =
Nµ

γ

[
1
N

F

(
1, γ

1 + γ
; ξN−1/γ

)
− F

(
1, γ

1 + γ
; ξ

)]
, (7)

where we utilized the Pochhammer symbol (γ)k (C.5) to verify that
γ

γ + k
=

(γ)k

(1 + γ)k
.

The above equation (7) is the final, exact, closed-form solution for the mutant distribution
for an exponentially growing wild type population. In the rest of the paper we shall analyze
its properties.

The mean and variance of the number of mutants can be calculated by taking the
usual approach of differentiating the generating function (7) or by using Dewanji’s general
expressions for mean and variance for the case of arbitrary growth function f(t), see [22];
this results in

E(B) =
Nµ

1 − q
·

⎧
⎨

⎩

log N γ = 1
1

1 − γ
(N1/γ−1 − 1). γ ̸= 1 (8)

and

Var(B) =
Nµ

(1 − q)2 ·

⎧
⎪⎪⎨

⎪⎪⎩

2(N − 1) − (1 + q) log N γ = 1
(1 + q)(N−1/2 − 1) + log N γ = 2

2
2 − γ

N2/γ−1 +
1 + q

γ − 1
N1/γ−1 +

q(2 − γ) + γ

(2 − γ)(1 − γ)
γ ̸∈ {1, 2}.

(9)

These expressions generalize those given in Zheng [5] (replace N = exp(δt) and δ ≡ β1,
λ ≡ β2 in [5, (52) and (53)]).

We give an overview of the large N behavior of the expectation and the variance of
the number of mutants B in figure 1. The mean number of deleterious mutants (1/γ < 1)
is of the same order as the wild type cells. However, the number of advantageous mutants
(1/γ > 1) is growing faster than the wild type population. Note also that for advantageous
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mutants (1/γ > 1) the mean and the standard deviation have the same order, which
implies that the fluctuations are important and a stochastic description of the process
is essential. Only for very deleterious mutants (1/γ < 1/2) the process becomes self-
averaging, and the fluctuations become as predicted by the central limit theorem. For
intermediate deleterious mutants (1/2 < 1/γ < 1) the relative standard deviation varies
continuously with γ.

We can obtain the probabilities pk = P(B = k) by Taylor expanding G(z) in z, or
by using the Gauss inversion formula. Since this is computationally intense, we give a
recursive formula for the probabilities instead

pn =

⎧
⎪⎨

⎪⎩

eq0 , n = 0
1
n

n−1∑

k=0

(n − k)qn−kpk, n ! 1, (10)

where

q0 =
Nµ

γ

[
1
N

F

(
1, γ

1 + γ
; N−1/γq

)
− F

(
1, γ

1 + γ
; q

)]
(11)

and for k ! 1

qk = µ
k∑

j=1

(
k − 1
j − 1

)
1

j + γ

(
1 − q

q − N1/γ

)j

F

(
1, γ

1 + γ + j
; N−1/γq

)
(12)

+ Nµ
(k − 1)!
(γ + 1)k

F

(
k, γ

1 + γ + k
; q

)
.

We give a proof of this recursion in appendix A.

4. Special case of neutral mutations, γ = 1

Often there is interest in mutations which do not change the behavior of the cell, so called
neutral mutations. In this special case when γ = 1, that is δ = λ, we can further simplify
the log-generating function ΛB(z) given in (7), by using (C.17). Alternatively, by using
the series expansion

log(1 − z) = −
∑

k!1

zk

k
,

we can rewrite (6) for γ = 1 as

ΛB(z) = µ
∑

k!0

ξk

[
N−k

k + 1
− N

k + 1

]
=

Nµ

ξ
log

(
1 − ξ

1 − ξ/N

)
. (13)

Hence the generating function becomes

G(z) =
(

1 − ξ

1 − ξ/N

)Nµ
ξ

. (14)

By introducing the variables

y =
z − q

1 − q
=

ξ

ξ − 1
, φ = 1 − 1

N
, θ = Nµ, (15)
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we obtain the form
G(z) = (1 − φy)θ 1−y

y . (16)
If we further specialize to mutant cells that cannot die, that is β = 0 (which implies q = 0
and y = z), we find

G(z) = (1 − φz)θ 1−z
z . (17)

This formula was first derived in [3], and also given in [5] with some historical perspective.
The coefficients in the recursion formula (10) become simpler for γ = 1

qk =

⎧
⎪⎪⎨

⎪⎪⎩

−θ

q
log

(
1 + φ

q

1 − q

)
k = 0

θφk

[1 − q(1 − φ)]k

[
1
k

− φ

k + 1
F

(
1, 1

2 + k
; − φq

1 − q

)]
k ! 1

(18)

which is also derived in appendix A. Note that

p0 = P (B = 0) = eq0 =
(

1 +
qφ

1 − q

)−θ/q

(19)

and all other pn probabilities can be obtained from recursion (10). When mutants do not
die, i.e. β = 0 (which implies y = z), the coefficients further simplify to

qk =

⎧
⎨

⎩

−θφ k = 0

θ

(
φk

k
− φk+1

k + 1

)
k ! 0, (20)

as given in [5, p 18]. Note that the coefficients qk appear in [14, appendix D] as the
approximated probabilities for large N and Nµ ≪ 1, in which case φ ≈ 1.

In the N → ∞ limit with θ kept constant, we have φ = 1 and the above recursion
simplifies to

p0 = e−θ, npn = θ
n−1∑

i=0

pi

n − i + 1
,

which was derived in [26, 27]. Note that (17) tends to the generating function of the
Luria–Delbrück distribution in this case. We will consider this limit in more detail and
for general q and γ in the next section.

5. Limit behavior

In section 3 we derived a recursion for the exact probability distribution of the number
of mutants present at time τ = log N

δ , under the assumption of exponential wild-type-
growth. The coefficients of this recursion, given in (12), are quite complicated, so we seek
for an easier limit case. In (7), the first addend stems from the lower integral boundary
0 and should vanish for large τ resp. large N and small mutation rate. This turns out
to be true only if θ = Nµ is held constant. The resulting distribution is a Compound
Poisson random variable, enabling us to directly determine the distribution of the size of
a clone, i.e. the sub-population size of mutants descended from one original mutant. This
distribution shows already a power-law tail, which will be discussed in section 6.
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Figure 2. A schematic overview of the possible limits. All limits are convergence-
in-distribution results.

In applications, θ can be large, hence we discuss a consecutive limit in which θ goes
to infinity. Since a Compound Poisson random variable is the sum of a random number
of i.i.d. variables, it is not surprising that the distribution of the limit variable, which
we call Z, is α-stable. Although the theory of generalized limit theorems is rich, see
for example [28], we use our explicit results for the generating function to perform the
limit directly. Since we consider only the convergence of generating functions or Laplace-
transforms, all limits in this paper are meant as convergence in distribution.

Note that in [17], a non-rigorous proof was given for the direct limit from B to Z (see
figure 2) for the fully stochastic case in a slightly different setting for 0 < γ < 1. It utilizes
an approximation of the wild-type population size by a deterministic exponential growth
function, that stems from the fact that in the two-type, fully stochastic model the wild-
type population behaves like a one-type birth and death process if the mutation rate ν is
very small. Then the number of A-cells can be approximated by exp(δt)X, X ∼ Exp(1).
A similar limit in [19] covers the γ = 1 case of the classic Luria Delbrück distribution.

Another limit approach is to fix the mutation rate and let N → ∞ under a proper
rescaling. Results for this limit were presented in [18] and their derivation given in a
privately distributed second part of the paper, which is no longer available. We reproduce
these results in terms of hypergeometric functions and then take the limit µ → 0 under a
similar scaling as in the Nµ-constant case, to recover once again the limit variable Z.

5.1. Large population-small mutation limit

In applications, the mutation rate ν is usually small, while the population size N is very
large. We therefore investigate the simultaneous limit N → ∞ and µ = ν/α → 0, such
that θ = Nµ is held constant. We call this limit Large Population-Small Mutation Limit
(LPSM). Note that we introduced θ already in (15), in analogy to the notation introduced
in [5].

Formally we can express the LPSM-limit as
lim

N→∞,µ→0
θ const.

B = V ,

where V is the limiting random variable, which we characterize via its log-generating
function. When θ is held constant, the log-generating function of B, given in (7), depends
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Table 1. Overview of mean and variance of V , depending on γ.

E(V ) Var(V )

γ > 2
θ

(1 − q)(γ − 1)
θ

(1 − q)2

(
q(2 − γ) + γ

(γ − 2)(γ − 1)

)

1 < γ " 2
θ

(1 − q)(γ − 1)
∞

0 < γ " 1 ∞ ∞

only in the first addend on N . We therefore expand the first addend into a power series
in ξ. For arbitrary γ > 0

1
N

F

(
1, γ

1 + γ
; N−1/γξ

)
=

∑

k!0

γ

γ + k
ξk 1

Nk/γ+1 → 0, as N → ∞.

Thus the immediate result for the LPSM-limit is

ΛV z = lim
N→∞,µ→0

θ const.

ΛB(z) = − θ

γ
F

(
1, γ

1 + γ
; ξ

)
. (21)

which we can rewrite in terms of y = z−q
1−q by using (C.10)

ΛV (z) =
θ

γ
(1 − y)F

(
1, 1

1 + γ
; y

)
. (22)

This expression is the second addend in the general formula (7), so we can adapt the
recursion (10) for the probability distribution of V easily. This yields the recursion
coefficients

qk =

⎧
⎪⎪⎨

⎪⎪⎩

− θ

γ
F

(
1, γ

1 + γ
; q

)
, k = 0

θ
(k − 1)!
(γ + 1)k

F

(
k, γ

1 + γ + k
; q

)
, k ! 1.

(23)

Note that the coefficients qk appear in [14, (16)] as the approximated probabilities for
large N and Nµ ≪ 1. For the special case of q = 0 and γ = 1 the distribution of V is the
famous Luria–Delbrück distribution, for which Ma gave a simple recursion in [26].

The expectation and variance of V can be derived as usual via derivatives of the
generating function. The computations are tedious, in particular because the convergence
behavior of the hypergeometric function depends on γ, but not very interesting. We give
the results in table 1. Note that they are consistent with the application of the N → ∞,
µ → 0 limit directly to the mean and variance of B given in (8) and (9). Interestingly,
the mean is finite only for γ > 1 and the variance only for γ > 2.

We note that the LPSM-limit is independent of the initial number N0 of wild-type
cells. This can be easily seen, when we choose f(t) = N0eδt in (4). Then the integral
representation of the log-generating function (5) is just GN0

B (z). This property directly
mimics the branching property of a fully stochastic two-type branching process. Adapting
the calculations from (6), the log-generating function

ΛB(z) = log GN0
B (z) =

Nµ

γ

[
N0

N
F

(
1, γ

1 + γ
; ξ

N

N0

−1/γ
)

− F

(
1, γ

1 + γ
; ξ

)]
. (24)

doi:10.1088/1742-5468/2015/01/P01011 10

http://dx.doi.org/10.1088/1742-5468/2015/01/P01011


J. S
tat. M

ech. (2015) P
01011

Mutant number distribution in an exponentially growing population

Again, in the LPSM-limit only the first addend depends on N resp. N0 and vanishes with
N → ∞.

Note further, that the limit log-generating function ΛV (z) has a direct interpretation
with respect to our initial model. We write

ΛV (z) = − θ

γ
F

(
1, γ

1 + γ
; ξ

)
=

θ

γ

∫ 1

0

1
u1/γξ − 1

du

by (C.8). A change of variables with s = log(uN)
δ gives

θ

γ

∫ 1

0

1
u1/γξ − 1

du =
θ

γN

∫ τ

−∞

1
eλsN−1/γξ − 1

δeδsds.

Indeed, ΛV (z) is the generating function of the model started at −∞ instead of zero.
By another change of variables t = τ − s

ΛV (z) =
θ

γ

∫ ∞

0

1
e−λtξ − 1

δe−δtdt =
θ

(1 − q)γ

∫ ∞

0
(gt(z) − 1)δe−δtdt.

Let X ∼ Exp(δ) be an exponential random variable with mean 1/δ, then

ΛV (z) =
θ

(1 − q)γ
E [gX(z) − 1] .

This is the log-generating function of a Compound Poisson random variable, where

E [gX(z)] = 1 − (1 − q)F
(

1, γ
1 + γ

; ξ
)

. (25)

Via the usual interpretation of a Compound Poisson, the limiting number of clones (i.e.
the number of actual mutation events) has a Poisson distribution with intensity θ

(1−q)γ
and E[φX(z)] describes the clone size distribution, that is the size of the sub-population
founded by a single original mutant. For q = 0 the generating function (25) is the
generating function of a Yule–Simon distribution with parameter γ and is generated by a
geometric distribution Geo(p) with random parameter p = exp(−Y ), Y ∼ Exp(γ). This
distribution is already a heavy-tailed distribution with infinite mean for 0 < γ " 1.

We identified the distribution of V as (discrete) Compound Poisson random variable
and argued that it has infinite mean for 0 " γ " 1 and infinite variance for 0 " γ " 2,
see table 1. Since the potentially non-finiteness of the moments makes the application of
moment-methods very difficult and unreliable, we give some information about the mode
of V . The mode is defined as the value k at which the probability mass function of V
takes its maximum. In uni-modal distributions the mode corresponds to the peak of the
distribution.

From numerical analysis we are confident that the distribution of V is indeed uni-
modal, as can be seen in figure 3 where we vary the parameters γ and θ. In general,
however, it is difficult to derive an explicit formula since we only have the recursion (23)
available. The recursion, however, makes the first few probabilities explicitly accessible.
We therefore investigate the ratio

p1

p0
=

θ

γ + 1
F

(
1, γ

2 + γ
; q

)
. (26)

This ratio is less than one, if the probability p0 is the maximum of the distribution and
larger if the maximum is bigger or equal to one. This ratio depends not only on θ and
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Figure 3. On the left, we plot the probability distribution of the number of
mutants in the large population-small mutation limit with θ = Nµ constant.
While keeping γ = 1.5 and q = 1/2 constant, we vary θ =1/10, 1/5, 1/3, 1/2, 1,
2, 3, 5, 10, beginning with the lowest (red) line. On the right, we vary γ choosing
0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 4, beginning with the horizontal (red) line, for
θ = 1 and q = 1/2. The case γ = 1 is indicated with a dashed line in both figures.
We used recursion (23) to calculate the probabilities.

q 0q 0
q 0.5q 0.5

q 0.75q 0.75

q 1q 1

p1

p0

1

p1

p0

1

0 1 2 3 4 5
0

1

2

3

4

5

Figure 4. Comparison of the probability of no mutants p0 and a single mutant
p1. Solid lines indicate p0 = p1 depending on q. We included the extreme case
q = 1 as well.

γ, but also on q. In figure 4 we show a phase diagram on the θ–γ plane displaying the
boundary of regions where no mutants are the most probable, for a few values of q. The
plot shows that the boundaries behave like a linear function. This is can be confirmed, if
we set p1/p0 = 1 in (26), then θ and γ can be seperated and the boundary is described by

θ = (1 + γ)F
(

1, γ
2 + γ

; q
)−1

∼ 1 + q + (1 − q)γ + O(γ2), for large γ. (27)

The last approximation is due to an asymptotic result for the hypergeometric function,
which we derive in appendix B. The ratio p1/p0, however, gives no information about the
actual value of the mode(B), that is the most probable number of mutants. By numerically
sampling the mode, using an implementation of the recursion (23) in Mathematica, we
find that the mode increases rapidly for large θ and small γ, see also figure 5.
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Figure 5. The mode of V plotted as function of θ and q = 0.5. We chose
(beginning from the left) γ equal to 0.5, 1, 1.5, 2 and 2.5. The jagged appearance
of some of the lines is due to the mode taking only integer values.

The probability p0 is indeed an important quantity in itself, since the ‘resistance
probability’ P(V > 0) = 1 − p0 indicates, in the sense of the original Luria–Delbrück
formulation, the probability that a population can escape extinction under the attack of
a lethal virus due to the existence of resistant mutants. Thanks to the recursion (23), we
can give p0 explicitly

P(V = 0) = exp
[
− θ

γ
F

(
1, γ

1 + γ
; q

)]
. (28)

The expression 1−p0, derived differently, appears in [14, (7)] (Note that they have another
definition of the mutation rate, which maps into ours with δ = (1−u)r and ν = ur, where
u is the mutation probability). With increasing mode the resistance probability increases,
in fact exponentially fast by (28). For γ → ∞ and fixed θ the resistance probability goes
to 0. For γ fixed and θ → ∞, the probability goes to one. Using a Taylor expansion of the
hypergeometric function in (28), we can approximate the resistance probability for large
γ as

− log p0 ∼ θ

γ(1 − q) + q
. (29)

For a fixed p0, the two variables θ and γ can be seperated and the contour associated to
the fixed value of p0 can be parameterized as

θ ∼ − [γ(1 − q) + q] log p0.

A plot of the contours, where the resistance probability of V is equal to 1/2 for different
q is given in figure 6 together with their approximations.

5.2. Large values of θ

We now let θ → ∞, using the results of the previous section. Obviously, for θ → ∞ (21)
does not converge, thus we need to introduce a scaling. We formalize this convergence in
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Figure 6. Plot of the contours dependend of γ and θ where the probability
p0 = 1/2 for q = 0, 0.2, 0.4, 0.6, 0.8 (left to right) and the approximation (dashed
line) given in (5.1). Note that the quality of the approximation depends on q.

distribution by

lim
θ→∞

V

a
− b = Z

where a, b depend only on θ. The scaling factor is in fact already predetermined, see [28,
section 2.7], and is proportional to θ1/ min(γ,2), but we will re-derive it for our case. We
take the opportunity to scale out the survival probability 1 − q wherever possible.

Let us abbreviate the logarithm of the Laplace transform of V by

EV (s) = log E(exp(−V s)) = ΛV (e−s).

This definition directly implies

EV
a −b(s) = EV (s/a) + bs.

We use this notation also for W .
For y|z=e−s/a , equation (21) turns into

EV (s/a) = − θ

γ
F

(
1, γ

1 + γ
;
e−s/a − q

e−s/a − 1

)
. (30)

We then apply equation (C.13) to derive

EV (s/a) =
θ(e−s/a − 1)

(1 − q)(γ − 1)
F

(
1, 1

2 − γ
;
1 − e−s/a

1 − q

)
+

π

sin(πγ)

(
−θ1/γ(e−s/a − 1)

e−s/a − q

)γ

.

For a to infinity e−s/a − q → 1 − q and F ( 1,1
2−γ ; 1−e−s/a

1−q ) → F ( 1,1
2−γ ; 0) = 1 for all γ > 0.

With a Taylor expansion of e−s/a around s = 0 we can write

EV (s/a) ∼
∑

k!1

(−s)k

θ−1ak(1 − q)(γ − 1)k!
+

π

sin(πγ)

(
∑

k!1

(−s)k

θ−1/γak(1 − q)k!

)γ

. (31)

For the computations we consider four cases, which depend on the choice of γ. The results
are listed in table 2. Note, that although the expressions for γ ∈ (0, 1) and γ ∈ (1, 2) are
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Table 2. Overview or the results of the large θ limit. Note that although the
expressions in the first and third row are identical, the means are not.

γ EZ(s) E(Z) Var(Z)

γ ∈ (0, 1)
π

sin(πγ)
sγ +∞ +∞

γ = 1 s log s +∞ +∞

γ ∈ (1, 2)
π

sin(πγ)
sγ 0 +∞

γ ! 2
1
2
s2 0 1

equal, the means are not. Indeed this can be understood via a derivative with respect to
s and a limit s → 0.

γ > 2. For γ > 2 it is now intuitive to set a =
√

θ
(γ−1)(1−q) , since for this choice all terms

except the linear and quadratic term in the first addend of (31) vanish for θ → ∞. The
linear term however diverges, so we compensate it by setting b =

√
θ

(1−q)(γ−1) . Thus

EZ(s) = lim
θ→∞

EV (s/a) + bs =
s2

2
,

which proofs that the limit random variable Z has a standard normal distribution.

0 < γ < 2, γ ̸= 1. In this case it is sufficient to set a = θ1/γ/(1 − q), then (31) is

EV (s/a) ∼ −θ1−1/γ

γ − 1
s + O(θ1−2/γ) +

π

sin(πγ)
[
s + O(θ−1/γ)

]γ
.

Therefore, if we set b = θ1−1/γ

γ−1 ,

EZ(s) = lim
θ→∞

EV (s/a) + bs =
π

sin(πγ)
sγ.

Note that for 0 < γ < 1, we could have chosen b = 0, since θ1−1/γ

γ−1 → 0. The result
resembles and in fact generalizes the result of [17, theorem 6] and [18].

γ = 1. Here we have to consider (30), since the expansion (31) has a singularity at γ = 1.
We use (C.17) instead and gain

EV (s/a) =
θ(e−s/a − 1)
e−s/a − q

[
log

(
θ(e−s/a − 1)

q − 1

)
− log θ

]
.

With the same argumentation of Taylor expansion of θ(e−s/a − 1) as in the proceeding
cases we notice that a = θ/(1 − q) is a sensible choice, since then

EV (s/a) ∼ s log s − s log θ

and consequently for b = log θ

EZ(s) = lim
θ→∞

EV (s/a) + bs = s log s,

which also appears in [19].
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γ = 2. Here we face the same problem as in the previous case, since the expansion (31)
is also singular at γ = 2. Via consecutive application of (30) and (C.18) we gain

EV (s/a) =
θ(e−s/a − 1)
e−s/a − a

− [θ(e−s/a − 1)]2

θ(e−s/a − q)2 log
(

θe−s/a − 1
θ(q − 1)

)
.

With the very same argumentation as in the γ = 1 case, we find for a =
√

θ log θ
1−q

EV (s/a) ∼ −s

√
θ

log θ
+

log(θ log θ)
2 log θ

s2,

so that with b =
√

θ
log θ

EZ(s) = lim
θ→∞

EV (s/a) + bs =
1
2
s2.

Again, Z has a standard normal distribution.

5.3. Large population limit at fixed mutation rate

In this section we extend the results of Mandelbrot from [18] to allow the possibility of
mutant death. We consider a similar approach as in the large θ-limit but with mutation
rate ν held constant, i.e.

lim
N→∞

B

a
− b = W ,

where a and b depend on N . Like in (5.2), we abbreviate with EB(s) the log-Laplace
transform of B and note that

EB
a −b(s) = EB(s/a) + bs.

Applying first (C.13) and then (C.10) to (7) gives, noticing that e−s/a − q → 1 − q,

EB(s/a) ∼ µ

(γ − 1)

[
−N1/γ(e−s/a − 1)

1 − q
F

(
1, 1 − γ

2 − γ
;
N1/γ(e−s/a − 1)

1 − q

)

+
N(e−s/a − 1)

1 − q
F

(
1, 1 − γ

2 − γ
;
e−s/a − 1

1 − q

)]
.

The parameter a controls the variance, therefore we know that we should choose a of
the order of

√
Var(B). The parameter b should be proportional to the order of the ratio

E(B)/
√

Var(B), see also figure 1. The limits can now be computed like in the LPSM-
limit by expanding e−s/a into a power series. We give the chosen scaling factors together
with the limit results and their mean and variance in table 3. Note that we could have
removed the mean for γ ∈ (0, 1], but we need a non-zero expectation for the µ → 0 limit
to recover Z.

In order to check that the two pathways for going from B to Z on figure 2 are
equivalent, we take the µ → 0 limit of the above large N limit. Again, we consider
the limit

lim
µ→0

W

a
= Z

where we assume for simplicity that a is now only dependent on µ.
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Table 3. Overview of the limit results for N → ∞ and µ = const.

(1 − q)a b EW (s) E(W ) Var(W )

γ > 2
√

N
µ

γ − 1
√

N
1
2
µ

γ − q(γ − 2)
(γ − 2)(γ − 1)

s2 0
µ(γ − q(γ − 2))
(γ − 2)(γ − 1)

γ = 2
√

N log N µ

√
N

log N
µ

s2

2
0 µ

γ ∈ (1, 2) N1/γ µ

γ − 1
(N1− 1

γ −1)
µ

2 − γ
s2F

(
1, 2 − γ

3 − γ
; −s

)
0

2µ

2 − γ

γ = 1 N µ(1 + log N) µs(1 + log(1 + s)) µ 2µ

γ ∈ (0, 1) N1/γ 0
µ

γ − 1
sF

(
1, 1 − γ

2 − γ
; −s

)
µ

γ − 1
2µ

2 − γ

For γ ! 2 there is nothing to show, since for any X ∼ N (µ, σ2) obviously X−µ
σ ∼

N (0, 1). Therefore W−E(W )
Var(W ) does not depend on µ and the limit for µ → 0 is trivially again

a Gaussian. We notice that by using (C.19) in reverse

µ

2 − γ
s2F

(
1, 2 − γ

3 − γ
; −s

)
=

µ

1 − γ
s − µ

1 − γ
sF

(
1, 1 − γ

2 − γ
; −s

)

and by equation (C.13) we get

µ

1 − γ
sF

(
1, 2 − γ

3 − γ
; −s

)
=

π

sin(πγ)
µsγ − sµ

(s + 1)γ
F

(
1, 1

1 + γ
;

1
1 + s

)
.

Finally, setting a = µ1/γ, we get

EZ(s) = lim
µ→0

EW (s/a) =

{
s log s γ = 1

π

sin(πγ)
sγ γ ∈ (0, 2) \ {1}

That shows that the scaling limit of W for µ → 0 recovers indeed the distributions we
got for the large θ limit, which we give in table 2.

5.4. On α-stable distributions

We point out that the limiting Laplace transforms given in table 2 are well known
representatives of the class of α-stable distributions, where α ∈ (0, 2]. These distributions
appear as the limit distributions in the generalized version of the Central Limit Theorem,
where iid. random variables are added and rescaled, but the assumption of finite mean
and variance is dropped. The Gaussian distribution is in this context the extreme case
for α = 2 and the only limit distribution in this class with finite variance. As a reference
see [28, section 2.7].

One of the many characterizations of α-stable distributions is given via characteristic
functions (the notation varies strongly throughout the literature). A random variable X
with characteristic function

ϕX(s) = E(exp(iXs))
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is α-stable respectively X ∼ Sα(σ, β, µ) if and only if

log ϕX(s) =

⎧
⎨

⎩
−σα|s|α(1 − iβ sgn(s) tan

απ

2
) + iµs α ̸= 1

−σ|s|(1 + iβ
2
π

sgn(s) log s) + iµs α = 1.

By a formal substitution s +→ −is, we can rewrite the distribution of Z, as given in table 2
using the above notation

log ϕZ(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−σγ|s|γ
(
1 − i sgn(s) tan

(
πγ
2

))
γ ∈ (0, 2) \ {1}

−π

2
|s|

(
1 + i sgn(s)

2
π

log s

)
γ = 1

−1
2
s2 γ ! 2,

(32)

where

σ =
[πγ

2
csc

(πγ

2

)]1/γ

.

This means that Z is indeed an α-stable random variable for all γ > 0, where the shape-
parameter α = min(γ, 2).

Unfortunately, the densities are unknown for the majority of α-stable distributions.
One exception is the Gaussian distribution (α = 2). The Lévy-Distribution S1/2(σ, 1, 0)
with density

f(t) =
( σ

2π

)1/2 1
t3/2 exp

(
− σ

2t

)

and infinite moments and the Holtsmark distribution with finite mean are other cases
(for the latter a lengthy expression in terms of hypergeometric functions exists). In the
special case for γ = 1, we find that Z is characterized by the distribution S1(σ, 1, 0) =
S1(π/2, 1, 0)), which is the Landau-Distribution. This distribution was also identified for
the fully stochastic case by Kessler and Levine in [2].

6. Tail behavior

The mutant distributions as we described them in the previous section 5 are quite
complicated. For this reason we study their tail behavior to gain some intuition. We
use asymptotic analysis methods as discussed in [29].

We start with the most interesting case, the LPSM limit, where the number of mutants,
denoted by V (see figure 2), is characterized by generating function (22). The tail behavior
of pn = P (V = n) is encoded in G(z) around its relevant (closest to origin) singularity.
This generating function is analytic at the origin, and its only singularity is at z = 1, which
implies y = z−q

1−q = 1, so we expand around that. We first use the transformation formula
(C.14) and then the reflection formulas (C.1) and (C.2) to rewrite the log-generating
function as

Λ(z) = θ
1 − y

1 − γ
F

(
1, 1

2 − γ
; 1 − y

)
− θπ

sin(γπ)
y−γ(1 − y)γ.
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An expansion around y = 1 gives

Λ(z) =
θ

1 − γ

[
(1 − y) +

(1 − y)2

2 − γ
+ O((1 − y)3)

]

− θπ

sin(γπ)
[
(1 − y)γ + γ(1 − y)1+γ + O((1 − y)2+γ)

]
,

and by using the series expansion of the exponential we get

G(z) = eΛ(z) = 1 + Λ(z) +
Λ2(z)

2
+ O(Λ3(z))

= K(1 − y) − κ(1 − y)γ − κ

(
θ

1 − γ
+ γ

)
(1 − y)1+γ +

1
2
κ2(1 − y)2γ

+ O((1 − y){3γ,2+γ,1+2γ}),
where K is a polynomial with integer powers (hence does not contribute to the tail
behavior), and for brevity we wrote

κ =
θπ

sin(γπ)
.

Note that this is already an expansion in 1 − z since

1 − y =
1 − z

1 − q
.

By using (D.1) and (C.1) we obtain the large n expansion

pn ∼ θΓ(1 + γ)
(1 − q)γ

n−1−γ +
θ2κ2

2Γ(−2γ)(1 − q)2γ
n−1−2γ (33)

− θΓ(2 + γ)
(1 − q)1+γ

(
θ

1 − γ
+

γ(1 + q)
2

)
n−2−γ + O(n{3γ,2+γ,1+2γ}).

The leading order term has been derived in [2]. The sub leading order is represented by
the n−1−2γ term for γ < 1, and by the n−2−γ term for γ > 1.

Let us consider the above expansion at the special value γ = 1. As γ → 1, both sub-
leading terms in (33) diverge as ∝ 1/|1−γ| but these two singular terms cancel each other
out, and one has to consider the next (constant) terms in the (1−γ) series. A logarithmic
term appears through the expansion

n1−γ = e(1−γ) log n = 1 + (1 − γ) log n + O[(1 − γ) log n]2

for γ → 1. We arrive at

pn ∼ θ

(1 − q)n2 +
2θ2

(1 − q)2

log n

n3 +
θ2[2CE − 3 − 2L(q)] − θ(1 + q)

(1 − q)2n3 + O

(
1
n4

)
(34)

where L(z) = log 1
1−z . For q → 0, we have L(q) → 0, and we obtain

pn =
θ

n2 + 2θ2 log n

n3 +
θ2(2CE − 3) − θ

n3 + 3θ3 log2 n

n4 + O

(
log n

n4

)
(35)

where CE = 0.5772 . . . is the Euler–Mascheroni constant. The first three terms have been
calculated in [24]. Formally, all terms can be included, and here we just give the result

pn =
∞∑

k=1

θk

k!(n + k)!
lim
r→k

∂k
r

Γ(n + k − r)
Γ(−r)

(36)

=
θ

n(n + 1)
+

θ2[2CE − 3 + 2Ψ(n)]
n(n + 1)(n + 2)

+ O

(
θ3 log2 n

n4

)
.
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This expression is exact for any specific order of θ. By expanding it around n = ∞, using
the expansion of the Digamma function ψ(n) given in (C.4), we recover (35).

The tail behavior of the full distribution of B with finite N is similar, but additionally
it has an exponential cut-off. We demonstrate this behavior only for the γ = 1 and q = 0
case for simplicity. In this case the generating function is given by (17), which is again

G(z) = (1 − φz)θ 1−z
z

with φ = 1−1/N . Now the singularity is at z = 1/φ, which leads to an exponential cut-off
since

[zn]G(z) = φn[zn]G(z/φ). (37)
where [zn] means the coefficient of zn in the Taylor expansion of the subsequent expression.
We now write

G(z/φ) = (1 − z)θ φ−z
z = (1 − z)−µ(1 − z)(θ−µ) 1−z

z . (38)
The second factor is analytic at z = 0, and its only singularity is at z = 1 (and a branch
cut from z = 1 to infinity). Here the exponent approaches zero, so we expand first the
exponential function

G(z/φ) =
∑

k!0

(µ − θ)k

k!
(1 − z)k−µ

(
L

z

)k

= (1 − z)−µ + (µ − θ)
(1 − z)1−µ

z
L + . . .

with L ≡ L(z) = log 1
1−z . Note that we did not expand 1/z around z = 1, and the reason

for that becomes clear in the next step. We obtain the coefficients by using (D.1) and the
Frobenius–Jungen method (D.5) from [29]

[zn]G(z/φ) =
∑

k!0

(µ − θ)k

k!
[zn+k](1 − z)k−µLk

=
nµ−1

Γ(µ)

(
1 +

∑

k!1

ek

nk

)
+

∑

k!1

(µ − θ)k

k!
dk

dak

(
n + k + a − 1

n + k

)∣∣∣∣
a=n−k

The first few terms are

[zn]G(z/φ) =
nµ−1

Γ(ν)

[
1 +

µ(µ − 1)
2

n−1 + O(n−2)
]

+ (µ − θ)
(

n + µ − 1
n + 1

)
[Ψ(µ − 1 + n) − Ψ(µ − 1)] + O(nµ−3 log n)

and the leading powers of n are

[zn]G(z/φ) =
nµ−1

Γ(µ)
+

nµ−2

Γ(µ − 1)

{
(µ − θ)[log n − Ψ(µ − 1)] +

µ

2

}
+ O(nµ−3 log n).

Now we also include the exponential cut-off from (37) to obtain

pn ∼ (1 − 1/N)n

Γ(µ)

{
1

n1−µ
+ (1 − µ)(θ − µ)

log n

n2−µ
(39)

− (1 − µ)
[
(θ − µ)Ψ(µ − 1) +

µ

2

] 1
n2−µ

+ O

(
log n

n3−µ

)}
.
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Figure 7. Simulation of the fully stochastic model against the Nµ = 1-limit
(α = 1, δ = 1.0, λ = 1.3) for 106 trajectories each.

The leading term of this expansion has been derived in [23]. Also, if we take the
µ → 0, N → ∞ limit of this asymptotic expansion, noting that Γ(µ) ∼ 1/µ and
Ψ(µ − 1) ∼ −1/µ as µ → 0, we recover the small mutation expression (35).

7. Discussion and summary

We revisited a well-known semi-stochastic model with exponential wild-type growth
and mutants that evolve according to a supercritical birth and death process. We give
an explicit expression for the log-generating function ΛB(z) of this process in terms
of hypergeometric functions, see equation (7). This allows us to compute limits and
probabilities. We recover the limit results by Kessler and Levine in [2] and [16], Durrett
and Moseley [17], Mandelbrot [18] and Möhle [19], and extend them to a wider range of
parameters and include mutant-cell death, which is not treated in every case.

To emphasize that the semi-deterministic model has many advantages over the fully
stochastic one, we compared simulation results of the fully stochastic model with the
results of the LPSM-limit taken in section 5, see figures 7 and 8. We find good agreement
between simulation results and the semi-stochastic theory already for relatively small
values of N .

We showed that the mutant distribution depends on the mutant extinction probability
q = β/α in a nontrivial way, and it cannot simply be scaled out of the formulas. In the
large θ = Nµ limit, however, q can be scaled out of the mutant distribution for γ ∈ (0, 2],
hence only in this limit cell death has a trivial effect on the mutant distribution.

From numerical work we found that the mutant distribution is unimodal, i.e. it has
only a single maximum. We gave a simple condition for having no mutants being the most
probable scenario. Otherwise, the most probable number of mutants is positive, which we
determined numerically and plotted for several parameter values.

We also determined the mean and the variance of the number of mutants, which
are of course finite for finite wild-type population size, N . When taking the large N
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Figure 8. Simulation of the fully stochastic model against the Nµ = 10-limit
(α = 1, δ = 1.0, λ = 1.3) for 106 trajectories each.

limit and using the appropriate scaling, we also obtain finite moments. Conversely, in the
large-population-small-mutation limit the moments become infinite for γ ∈ [0, 2]. This
behavior, which caused some controversy in the literature (see [5] for historical notes on
the topic), is explained by the power law tail of the mutant distribution in this limit.
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Appendix A. Proof of recursion formulas

To prove the recursion (10) we first Taylor expand ΛB(z) around z = 0 as

ΛB(z) =
∞∑

n=0

qnz
n (A.1)

Equating the coefficients of zn on both sides of

G(z) =
∞∑

n=0

pnz
n = e

∑∞
n qnzn

(A.2)

leads to the general recursion (10) (stated as lemma 2 in [5]).
When Taylor expanding ΛB(z), we immediately obtain q0 by replacing ξ by q = ξ|z=0

in (7). To obtain higher order coefficients, we first calculate the coefficients ak of the
expansion of

1
γ
F

(
1, γ

1 + γ
; N−1/γξ

)
=

∑

k!0

akz
k. (A.3)
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With induction one can show that for k ! 1
dk

dzk
F

(
1, γ

1 + γ
; N−1/γξ

)

= k!
k∑

j=1

(
k − 1
j − 1

)
γ(q − 1)jN−j/γ

(γ + j)(1 − z)j+k
F

(
1 + j, γ + j

1 + γ + j
; N−1/γξ

)
. (A.4)

Here the k = 1 case can be easily checked, and the induction can be performed by
differentiating the above expression using (C.14). Now we take (A.4) at z = 0 and simplify
it by using (C.11) to find the coefficients

ak =
k∑

j=1

(
k − 1
j − 1

)
1

j + γ

(
1 − q

q − N1/γ

)j

F

(
1, γ

1 + γ + j
; N−1/γq

)
. (A.5)

For the second term in (7) we need the N = 1 case, where the above sum simplifies

ak =
k∑

j=1

(
k − 1
j − 1

)
(−1)j

j + γ
F

(
1, γ

1 + γ + j
; q

)
(A.6)

=
∑

n!0

qn(γ)n

k∑

j=1

(
k − 1
j − 1

)
(−1)j

(j + γ)n+1
.

We can calculate the second sum by first generalizing it to a polynomial, re-indexing it,
and realizing that we can extend the summation to infinity

(γ)n

k∑

j=1

(
k − 1
j − 1

)
(−1)jzj−1

(j + γ)n+1

= −(γ)n

∑

j!0

(
k − 1

j

)
(−1)jzj

(j + γ + 1)n+1
(A.7)

= − γ

(γ + n)(γ + n + 1)
F

(
1 − k, 1 + γ

2 + n + γ
; z

)
.

The parameters of the hypergeometric function were read out from the ratio of consecutive
coefficients of the series, as in (C.7). Now taking the z ↗ 1 limit in (A.8) and using the
Chu–Vandermonde identity (C.9) yields

(γ)n

k∑

j=1

(
k − 1
j − 1

)
(−1)j

(j + γ)n+1
= −γ

(n + 1)k−1

(n + γ)k+1
. (A.8)

We can substitute this expression into (A.6) to obtain

ak = −γ
∑

n!0

qn (n + 1)k−1

(n + γ)k+1
= − (k − 1)!

(γ + 1)k
F

(
k, γ

1 + γ + k
; q

)
, (A.9)

which immediately leads to (12).
For the special case γ = 1 we present an easier derivation. We derive a recursion for

the probabilities pn directly from the expression (16) by Taylor expanding around z = 0
and using the binomial theorem to rewrite yj as

yj = (1 − q)−j
j∑

k=0

(
j

k

)
(−q)j−kzk. (A.10)
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Then

ΛB(z) = θ
1 − y

y
log(1 − φy)

= −θφ + θ
∑

j!1

(
φj

j
− φj+1

j + 1

)
yj (A.11)

= −θφ + θ
∑

j!1

j∑

k=0

(
j

k

)
(−q)j−k

(1 − q)j

(
φj

j
− φj+1

j + 1

)
zk.

By changing the order of summation, we read out the coefficients qk of zk as in (A.1)

qk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−θφ + θ
∑

j!1

(
−q

1 − q

)j (
φj

j
− φj+1

j + 1

)
k = 0,

θφk

(1 − q)k

∑

j!k

(
j

k

) (
−q

1 − q

)j−k (
φj−k

j
− φj−k+1

j + 1

)
k ! 1.

(A.12)

For q0 we have the series of a logarithm. For k ! 1 we rewrite qk as two separate sums,
and re-index the summations from zero

qk = θ

(
φ

1 − q

)k
[

1
k

∑

j!0

(
k − 1 + j

k − 1

)
xj + φ

∑

j!0

(1 + k)j(1 + k)j

(2 + k)j

xj

j!

]
(A.13)

with x = −qφ/(1− q). The first sum is (1−x)−k and the second sum is a hypergeometric
function, which can be simplified using (C.11), so finally we arrive at (18).

Appendix B. Large γ-asymptotics of the resistance probability

We show the large γ approximations of the resistance probability p0 as given in (27).
For this we utilize the following asymptotics for the hypergeometric function as presented
in [30, 15.12(iii)]. Adapted to our notation they state that for fixed a, b, c, z ∈ C

F

(
a, b

c + γ
; z

)
∼ Γ(c + γ)

Γ(c − b + γ)

∑

k!0

rk(z)(b)kγ
−k−b (B.1)

for large γ, where rs(z) are the coefficients of the expansion of a specific function
∑

k!0

rk(z)tk =
(

et − 1
t

)b−1

et(1−c)(1 − z + ze−t)−a. (B.2)

We set for simplicity z = q
q−1 and apply (C.10) to the hypergeometric function in (27),

then

(1 + γ)F
(

1, γ
2 + γ

; q−1
)

= (1 + γ)(1 − q)F
(

1, 2
2 + γ

; z−1
)

.

We can now apply (B.1)

F

(
1, 2

2 + γ
; z

)
∼ γ + 1

γ

∑

k!0

rk(z)
(k + 1)!

γk
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where rk(z) are the coefficient of the expansion of
1 − e−t

t
(1 − z + ze−t)−1 = 1 + (z − 1/2)t + (z2 − z + 1/6)t2 + O(t3).

Using this expansion in (B.3) we arrive at (27). Note that the other similar results used
throughout section 5.1 on the resistance probability can be proven in the same way and
thus shall not be included here.

Appendix C. Definitions and useful identities

Euler’s reflection formulas for the Gamma function are

Γ(1 + z)Γ(1 − z) =
πz

sin(πz)
, (C.1)

Γ(z + 1)Γ(z − 1) =
z

z − 1
Γ(z)2. (C.2)

The Digamma function is defined as

Ψ(z) = Ψ0(z) =
d
dz

log Γ(z) =
Γ′(z)
Γ(z)

and has the expansion around z = 0

Ψ(z) = −1
z

− EC +
π2z

6
+ O(z2) (C.3)

and around z = ∞

Ψ(z) = log z − 1
2z

− 1
12z2 + O

(
1
z4

)
(C.4)

Its generalization is the Polygamma function

Ψn(z) =
dn+1

dzn+1 log Γ(z).

The Pochhammer symbol is defined in terms of Gamma functions resp. as ascending
factorial

(a)b =
Γ(a + b)

Γ(a)
= a(a + 1)(a + 2) · · · (a + b − 1). (C.5)

The series of the hypergeometric function is

F

(
a, b
c

; z
)

=
∑

n!0

(a)n(b)n

(c)n

zn

n!
(C.6)

for any (complex) a, b, c. The coefficients of the power series
∑

n!0 Anzn of the
hypergeometric function F

(
a,b
c ; z

)
satisfy A0 = 1 and

An+1

An
=

(n + a)(n + b)
(n + c)(n + 1)

. (C.7)

An alternative form of the hypergeometric function can be expressed as integral, if c−b > 0

F

(
a, b
c

; z
)

=
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − zt)a
dt. (C.8)
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For ℜ(c − a − b) > 0 Gauß’s hypergeometric Theorem states

F

(
a, b
c

; 1
)

=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

=
(c − a − b)a

(c − a)a
=

(c − a − b)b

(c − b)b
=

(c − b)−a

(c)−a
, (C.9)

which is also called the Chu–Vandermonde Identity if a is a negative integer.
A useful identity

F

(
a, b
c

; z
)

= (1 − z)−bF

(
c − a, b

c
;

z

z − 1

)
, (C.10)

when applied twice becomes

F

(
a, b
c

; z
)

= (1 − z)c−a−bF

(
c − a, c − b

c
; z

)
. (C.11)

Some inversion formulae (see [30])

F

(
a, b
c

; z
)

=
Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

(1 − z)−aF

(
a, c − b

a − b + 1
;

1
1 − z

)
(C.12)

+
Γ(c)Γ(a − b)
Γ(a)Γ(c − b)

(1 − z)−bF

(
b, c − a

b − a + 1
;

1
1 − z

)
,

F

(
a, b
c

; z
)

=
Γ(c)Γ(c − a − b)
Γ(c − b)Γ(c − a)

F

(
a, b

a + b − c + 1
; 1 − z

)
(C.13)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
z1−c(1 − z)c−a−bF

(
1 − a, 1 − b

c − a − b + 1
; 1 − z

)
.

The derivative of the Hypergeometric function
d
dz

F

(
a, b
c

; z
)

=
ab

c
F

(
a + 1, b + 1

c + 1
; z

)
. (C.14)

Occasionally we need the limit behavior for z ↗ 1. For general parameters the following
formulas hold: If c = a + b, then

lim
z↗1

F
(

a,b
a+b ; z

)

− log(1 − z)
=

Γ(a + b)
Γ(a)Γ(b)

. (C.15)

If ℜ(c − a − b) < 0, then

lim
z↗1

F
(

a,b
a+b ; z

)

(1 − z)c−a−b
=

Γ(c)Γ(a + b − c)
Γ(a)Γ(b)

. (C.16)

Note that the Chu–Vandermonde identity is also the limit case for ℜ(c − a − b) > 0.
For a specific choice of the parameters the hypergeometric function can be expressed

in simpler terms

F

(
1, 1
2

; z
)

= − log(1 − z)
z

(C.17)

F

(
1, 1
3

; z
)

=
2(z + (1 − z) log(1 − z))

z2 (C.18)

For general z we can develop the hypergeometric function into

F

(
1, b
c

; z
)

= 1 +
b

c
zF

(
1, b + 1
c + 1

; z
)

(C.19)

Note that this formula is not valid for a ̸= 1.
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Appendix D. Theorems from singularity analysis

Theorem VI.1 [29]: (Standard function scale). Let a be an arbitrary complex number in
C \ Z"0. The coefficient of zn for large n has a full asymptotic expansion in descending
powers of n

[zn](1 − z)−a ∼ na−1

Γ(a)

(
1 +

∑

k!1

ek

nk

)
(D.1)

∼ na−1

Γ(a)

(
1 +

a(a − 1)
2n

+
a(a − 1)(a − 2)(3a − 1)

24n2 + . . .

)

where ek is a polynomial in a of degree 2k and specified in [29].
Theorem VI.2 [29]: (Standard function scale, logarithms). Let a be an arbitrary

complex number in C \ Z"0 and b ∈ C. The coefficient of zn for large n has a full
asymptotic expansion in descending powers of n

[zn](1 − z)−a

(
L

z

)b

∼ na−1

Γ(a)
(log n)b

[
1 +

C1

log n
+

C2

log2 n
+ . . .

]
, (D.2)

where Ck = ( b
k )Γ(a) dk

dsk
1

Γ(s) |s=a and L ≡ L(z) = log 1
1−z . (Note that there is an erroneous

(−1)k factor in the online version of the book.)
For b = 1 we only have two terms

[zn](1 − z)−a L

z
∼ na−1

Γ(a)
[log n − Ψ(a)] , (D.3)

where Ψ(a) = Γ′(a)/Γ(a) is the Digamma function.
For a ∈ Z"0 and b ∈ Z!0

[zn](1 − z)−aLb ∼ na−1
[
F0(log n) +

F1(log n)
n

+ . . .

]
, (D.4)

where the degree of Fn is k − 1. The polynomials are given by the following Frobenius–
Jungen method. For b ∈ Z!0 and arbitrary a ∈ C

[zn](1 − z)−aLb =
db

dab

(
n + a − 1

n

)
. (D.5)

Note also that (D.5) is exact apart from finitely many terms. For example for b = 1 and
2, it takes the form

[zn] (1 − z)−aL =
(

n + a − 1
n

)
hn(a), (D.6)

[zn] (1 − z)−aL2 =
(

n + a − 1
n

)
[h′

n(a) − h2
n(a)],

where
hn(a) = Ψ(a + n) + Ψ(n), (D.7)
h′

n(a) = Ψ1(a + n) + Ψ1(n).
For negative integer a consider the expression as a limit. For example for b = 1 it
simplifies to

[zn](1 − z)kL = (−1)k k!
n(n − 1) · · · (n − k)

(D.8)
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and for b = 2

[zn](1 − z)kL2 = 2(−1)kk!
CE + Ψ(n − k) − Hk

n(n − 1) · · · (n − k)
, (D.9)

where Hn =
∑n

k=1 1/n is the n-th harmonic number.

References

[1] Luria S E and Delbrück M 1943 Mutations of bacteria from virus sensitivity to virus resistance Genetics
28 491–511

[2] Kessler D A and Levine H 2013 Large population solution of the stochastic Luria–Delbrück evolution model
Proc. Natl Acad. Sci. USA 110 11682–7

[3] Lea D and Coulson C 1949 The distribution of the numbers of mutants in bacterial populations J. Genet.
49 264–85

[4] Bailey N T J 1964 The Elements of Stochastic Processes with Applications to the Natural Sciences (New York:
Wiley)

[5] Zheng Q 1999 Progress of a half century in the study of the Luria–Delbrück distribution Math. Biosci.
162 1–32

[6] Kendall D G 1960 Birth-and-death processes, and the theory of carcinogenesis Biometrika 47 13–21
[7] Antal T and Krapivsky P L 2011 Exact solution of a two-type branching process: models of tumor progression

J. Stat. Mech. P08018
[8] Clayton E, Doupe D P, Klein A M, Winton D J, Simons B D and Jones P H 2007 A single type of progenitor

cell maintains normal epidermis Nature 446 185–9
[9] Antal T and Krapivsky P L 2010 Exact solution of a two-type branching process: clone size distribution in

cell division kinetics J. Stat. Mech. P07028
[10] Bozic I et al 2013 Evolutionary dynamics of cancer in response to targeted combination therapy eLife

2 e00747
[11] Vogelstein B, Papadopoulos N, Velculescu V E, Zhou S, Diaz L A and Kinzler K W 2013 Cancer genome

landscapes Science 339 1546–58
[12] Nowak M A 2006 Evolutionary Dynamics. Exploring the Equations of Life (Cambridge, MA: The Belknap

Press of Harvard University Press)
[13] Angerer W P 2001 An explicit representation of the Luria–Delbrück distribution J. Math. Biol. 42 145–74
[14] Iwasa Y, Nowak M A and Michor F 2006 Evolution of resistance during clonal expansion Genetics

172 2557–66
[15] Komarova N L, Wu L and Baldi P 2007 The fixed-size Luria–Delbrück model with nonzero death rate Math.

Biosci. 210 253–90
[16] Kessler D A and Levine H 2014 Scaling solution in the large population limit of the general asymmetric

stochastic Luria–Delbrück evolution process J. Stat. Phys. doi:10.1007/s10955-014-1143-3
[17] Durrett R and Moseley S 2010 Evolution of resistance and progression to disease during clonal expansion of

cancer Theor. Popul. Biol. 77 42–8
[18] Mandelbrot B 1974 A population birth-and-mutation process, I: explicit distributions for the number of

mutants in an old culture of bacteria J. Appl. Probab. 11 437–44
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