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1. Introduction

Mathematical modeling has a long history in cancer research [1, 2]. Stochastic models
helped to establish the concept of multiple mutations in tumor progression [3], and led to
the understanding of tumor suppressor genes [4, 5]. These models described the transitions
between various stages of cancer [6, 7] in an effective way, without considering population
genetics. A more ‘microscopic’ approach is to model the stochastic evolution of a
population of individual cells [8]. The simplest such models are branching processes [9, 10],
with countless biological applications [11, 12] ranging from bacterial evolution [13, 14] to
cell homeostasis [15]. Branching processes have also been used to model several aspects
of tumor progression [2, 11], [16]–[21].

Can, however, simple branching processes provide a quantitative description of such
complex biological phenomena as homeostasis—the maintenance of healthy tissues? A
promising positive answer appeared in [22], where inducible genetic labeling was used to
analyze the stochastic fate of the progenies of a single initial marked cell in the basal
layer of epidermis in mice. The probabilities of finding clones of any given sizes at various
times were fitted remarkably well by a simple constant rate two-type branching process
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of progenitor (A) and post-mitotic cells (C). The scheme of the process is as follows:

A → AA rate r

A → AC rate 1 − 2r

A → CC rate r

C → ∅ rate γ.

(1)

This model seemed unsolvable [22] in the sense that there was no known explicit
formula for the probability Pm,n(t) of finding m number of A cells and n number of C
cells for any finite time. We showed in [23] how to obtain an exact expression for the
generating function of Pm,n(t). Once the generating function is known, the probability
Pm,n(t) can be efficiently obtained numerically by fast Fourier transformation.

The simplicity of the above model lies in the trivial behavior of C cells—which can
only die but not proliferate—and in the criticality of the process, that is the symmetry of
birth and death rates of A cells. Is it possible to solve more general two-type birth–death
processes explicitly where the second cell type can both die and proliferate? In this paper
we present an explicit solution of such a general continuous time birth–death process,
proposed by Kendall [16] to model the onset of mutations during tumor progression. In
this model, A cells can mutate irreversibly into B cells according to

A → AA rate α1

A → ∅ rate β1

A → B rate ν

B → BB rate α2

B → ∅ rate β2.

(2)

We calculate the generating function that encapsulates the probability distribution Pm,n(t)
for finding m copies of A and n copies of B cells at time t, provided we have a single initial
A cell. Without loss of generality, we set the division rate of A cells to one, α1 ≡ 1, since
this can always be achieved by simply rescaling time. We shall use the following shorthand
notations for the rate differences:

λ1 = 1 − β1 − ν, λ2 = α2 − β2 (3)

which can be considered as the fitness values of the corresponding cell types. Note that
there is no restriction on the signs of the parameters λ1 and λ2.

In Kendall’s original interpretation [16] two specific mutations are necessary to
initiate tumor growth, in agreement with the tumor suppressor gene hypothesis [4]. An
initial A cell acquires only the first mutation, hence A cells represent a benign tumor
(λ1 ≤ 0). When an A cell obtains the second mutation, it turns into a malignant B
cell (λ2 > 0). There can also be other interpretations of model (2). It can describe
the onset of a chemotherapy resistant mutation in cancer [18, 19], corresponding to the
case λ1 = λ2 > 0, or provide a minimal model of metastasis formation, where B cells
play the role of metastasized cells [24]–[26]. When an advantageous (driver) mutation
appears in a supercritical process (λ2 > λ1 > 0), model (2) provides a detailed description
of the progression of a tumor toward malignancy. This scenario occurs in models that
follow the onsets of multiple mutations [3, 21], [27]–[29]. Such a multistage model was
recently found to fit clinical data (on the number of driver versus passenger mutations in
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cancer) remarkably well [20]. This demonstrates that branching processes can provide a
quantitative description of certain aspects of cancer.

Note that in model (2) mutations happen at arbitrary times, which can be either a
reasonable simplifying assumption, or a realistic feature when, for instance, mutations
are caused by UV radiation [30]. More often, however, mutations happen during cell
divisions [7]; this case is described by the scheme

A → AB rate ν (4)

instead of the third process of (2). The solution of this alternative process goes completely
analogously to that of (2), and is discussed in appendix A.

The two-type process (2) and other multi-type branching processes have been
extensively studied [9]–[11], but the main focus was on the large time behavior. Our
results, however, are exact for any finite time, which can be relevant when comparing
them with experiments. For example in the experiments [22] that inspired model (1),
it takes several months to get sufficiently close to the asymptotic regime, but data are
already available from the first week. One can hypothesize that similar experiments could
be designed to test the validity of model (2), by simply measuring the sizes of A and B
clones in a tumor initiation study [16, 30, 31].

Multi-type branching processes were generally considered intractable as even in the
simplest cases one arrives at (generally unsolvable) Riccati equations. Some notable
exceptions are the two-type Luria–Delbruck models, which describe bacteria growth in
a dish, where cell death can be neglected. Indeed, in the case of no death, β1 = β2 = 0,
model (2) with (4) can be turned into a much easier Bernoulli equation, which leads to a
simple solution [11]. Recently, however, we solved [23] a two-type branching process with
cell death (1), and this renewed the hope that Kendall’s model of tumor growth is also
solvable. We shall show that the processes (2) and (4) are also analytically tractable.

The rest of the paper is organized as follows. In section 2 we obtain the explicit
solution of the process (2) in terms of generating functions. Special cases of the solution
when either A or B cells behave critically are discussed in section 3. Knowing the explicit
solution allows us to calculate Pm,n(t) for arbitrary times, but we also derive various
asymptotic limits of the solution in section 4. Finally, we draw conclusions in section 5,
and relegate some details to the appendices.

2. General case

Let us first try to develop an intuition for the system (2) based on exact results regarding
average densities. The average number of A cells obeys the rate equation

d〈m〉
dt

= λ1〈m〉. (5)

Hence, starting with one A cell we get

〈m〉 = eλ1t. (6)

Similarly the average number of B cells evolves according to the rate equation

d〈n〉
dt

= ν〈m〉 + λ2〈n〉. (7)
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Using (6) and 〈n〉(0) = 0 we solve (7) to yield

〈n〉 = ν
eλ2t − eλ1t

λ2 − λ1
. (8)

Higher order densities satisfy more complicated equations, but their solution is just a
combination of exponentials.

The full description of the dynamics of the two-type branching process (2) is provided
by the probabilities Pm,n(t) of having m copies of A and n copies of B at time t. These
probabilities satisfy both the forward and the backward Kolmogorov equations [10]. In
this paper we employ these latter equations solely for the reason that they are technically
somewhat easier to tackle in the present case. The backward equations can be simply
derived by accounting for all possible events that can happen to a single initial A or B
cell. Let us have an A cell at time −τ (with τ ( 1) and ask for the probability P A

m,n(t+τ)
of having (m, n) cells at time t (the superscript refers to the initial cell). We write this
probability as a sum of the probabilities of all possible outcomes at t = 0. For example,
with probability α1τ ≡ τ the initial cell turns into two A cells until t = 0, hence it has
a contribution P AA

m,n(t): the probability that two initial A cells evolved into (m, n) cells
during time t. By similarly accounting for all possible transitions that can happen to an
initial A or B cell and by taking the τ → 0 limit, we arrive at the rate equations

dP A
m,n

dt
= P AA

m,n + β1δm,0δn,0 + νP B
m,n − (1 + β1 + ν)P A

m,n

dP B
m,n

dt
= α2P

BB
m,n + β2δm,0δn,0 − (α2 + β2)P

B
m,n

(9)

(where we omitted the t arguments). The terms containing Kronecker delta functions
represent cell death which results in zero offspring at time t. We introduce the generating
function

P(x, y, t) =
∑

m,n≥0

xmynPm,n(t). (10)

The following shorthand notation is used to specify the initial conditions: P(x, y, t) is
denoted by A(x, y, t) for a single initial A cell, and by B(x, y, t) for a single initial B
cell. We can rewrite the backward equations (9) in terms of generating functions by
multiplying both sides by xm yn and summing over all values of m, n ≥ 0. We also
need to use the independence of the progenies of two initial cells, hence for example
the generating function of P AA

m,n simply becomes A2. In this way the (infinite number
of) backward Kolmogorov equations (9) turn into a pair of coupled non-linear ordinary
differential equations

∂tA = A2 + β1 + νB − (1 + β1 + ν)A (11a)

∂tB = α2B2 + β2 − (α2 + β2)B (11b)

with initial conditions

A(x, y, t = 0) = x (12a)

B(x, y, t = 0) = y. (12b)
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For a more thorough derivation of these types of equations see [9]–[11]. Both the positive
(gain) terms and the negative (loss) terms in (11a) and (11b) correspond to the individual
processes in (2) in a straightforward way, reflecting what happens to the initial cell.
For example, since the initial A cell divides into two A cells at rate one, we find an
A2 term with coefficient one on the right-hand side of (11a). Note that the forward
Kolmogorov equation is a first-order hyperbolic partial differential equation and hence one
can analyze it using the method of characteristics. The equations for the characteristics
are mathematically identical to the backward Kolmogorov equations (11a) and (11b), so
the analytical framework (forward or backward Kolmogorov equations) is the matter of
choice; the latter description is a little more convenient as it does not involve intermediate
steps related to the characteristics.

Equation (11b) contains only B. It is tractable and its solution, subject to (12b),
reads

B = 1 − λ2

α2(1 − z)
, z =

[
1 − λ2

α2(1 − y)

]
e−λ2t. (13)

Plugging (13) into (11a) we find that X ≡ 1 − A satisfies a first-order non-linear
differential equation

dX

dt
= −X2 + λ1X +

νλ2

α2(1 − z)
, (14)

the Riccati equation. A useful way to treat Riccati equations is based on the standard
trick [32] that turns a Riccati equation into a linear Sturm–Liouville equation. In the
present case, this trick suggests that we write

X ≡ d

dt
log Z =

1

Z

dZ

dt
. (15)

One finds that Z satisfies the following Sturm–Liouville equation:

d2Z

dt2
= λ1

dZ

dt
+

νλ2

α2(1 − z)
Z. (16)

Let us consider λ2 > 0 for an instant. In the t → ∞ limit, we have z → 0 and hence
equation (16) turns into a linear equation with constant coefficients which admits an
exponential asymptotic solution

Z ∝ e−ωt, ω2 + λ1ω − νλ2

α2
= 0. (17)

Using (13) we can rewrite the above asymptotic solution as Z ∝ zω/λ2 when z → 0. This
suggests that we seek the solution of equation (16) in the form

Z(t) ≡ zω/λ2 Φ(z). (18)

We shall use this ansatz for arbitrary λ2. Plugging (18) into (16) we obtain

z(1 − z)Φ′′ +

(
1 +

2ω + λ1

λ2

)
(1 − z)Φ′ =

ν

α2λ2
Φ (19)

where the prime denotes the derivative with respect to z. Equation (19) admits a solution
in terms of the hypergeometric function. Indeed, the canonical hypergeometric equation
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reads [32]

z(1 − z) Φ′′ + [c − (a + b + 1)z]Φ′ − abΦ = 0 (20)

and it has two linearly independent solutions

F (a, b; c; z), z1−cF (a − c + 1, b − c + 1; 2 − c; z). (21)

Equation (19) coincides with (20) if the parameters a, b, c satisfy

a + b =
2ω + λ1

λ2
, ab =

ν

α2λ2
, c = a + b + 1. (22)

Using (17) and (21) we arrive at

Φ(z) = F (a, b; c; z) + Cz1−cF (−b,−a; 2 − c; z) (23)

with parameters

a =
ω

λ2
, b =

ω + λ1

λ2
, c = 1 +

2ω + λ1

λ2
. (24)

To complete the solution (18), (23)–(24) we need to know ω and C. Recall that ω is
found from (17); the proper root is

ω = −λ1

2
+

√(
λ1

2

)2

+
νλ2

α2
. (25)

Recalling previous definitions we have

A = 1 − 1

Z

dZ

dt
= 1 + ω +

λ2z

Φ

dΦ

dz
.

We now compute the derivative of the hypergeometric function using identity (C.4) given
in appendix C. The original generating function A becomes

A = 1 + ω + λ2Ψ(z) (26)

where we use the shorthand notation

Ψ(z) =
zcF3(z) + C(1 − c)F2(z) + CzF4(z)

zc−1F1(z) + CF2(z)
(27)

with

F1(z) = F (a, b; c; z), F2(z) = F (−a,−b; 2 − c; z),

F3(z) =
ab

c
F (1 + a, 1 + b; 1 + c; z), F4(z) =

ab

2 − c
F (1 − a, 1 − b, 3 − c; z).

(28)

From (12a) we determine the value of the parameter

C = zc
0

κF1(z0) − F3(z0)

(1 − c − κz0)F2(z0) + z0F4(z0)
(29)

with

κ =
x − 1 − ω

λ2z0
, z0 = 1 − λ2

α2(1 − y)
. (30)
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Now that we know the complete generating function A(x, y, t), we immediately know
e.g. the generating function of the distribution of the number of B cells, A(1, y, t), and
that of the total number of A and B cells, A(x, x, t). We also know the probability of
having no B cells, A(1, 0, t), or having no cells at all, A(0, 0, t). We can extract Pm,n(t)
from this solution by using Cauchy’s integral formula

Pm,n(t) =
1

(2πi)2

∮
dx

xm+1

∮
dy

yn+1
A(x, y, t). (31)

Numerically, this inverse transformation can be efficiently performed via the fast Fourier
transform algorithm [23]. The solution of the alternative process (4), where mutations
happen at cell divisions, is given in appendix A.

3. Critical cases

Here we consider the special cases of critical dynamics of A cells (λ1 = 0), of B cells
(λ2 = 0), or both. If only A cells are critical, all formulas of section 2 can be simply taken
in the λ1 → 0 limit. If, however, B cells are critical (λ2 = 0), expressions like (24) are
ill defined. This λ2 = 0 case for general λ1 is a bit cumbersome, but also implausible,
as it describes a super- or subcritical population producing a completely neutral mutant.
Hence we only consider here the bi-critical case λ1 = λ2 = 0, that is when the birth and
death rates of both cell types are balanced: 1 − ν = β1, α2 = β2.

The behavior of critical B cells can be obtained from (13) by taking the λ2 → 0 limit

B =
y + α2t(1 − y)

1 + α2t(1 − y)
. (32)

We substitute this back into (11a), and for X = 1 −A we arrive at

dX(t)

dt
= −X2 +

ν(1 − y)

1 + α2t(1 − y)

or equivalently

dX(τ)

dτ
= −2α2τ

ν
X2 +

2ν

α2τ
(33)

in terms of the new variable

τ =

√
ν

α2

[
t +

1

α2(1 − y)

]
. (34)

Again, by writing X(τ) = (ν/2α2t)(d/dτ ) log Z(τ), we simplify (33) to Z ′′−Z ′/τ−4Z = 0,
which is solved by the modified Bessel functions

Z = τ [I1(2τ) + CK1(2τ)] (35)

up to an arbitrary constant. By using identities (C.1) for the modified Bessel functions,
solution (35) can be transformed back to the original generating function

A(x, y, t) = 1 − ν

α2τ

I0(2τ) − CK0(2τ)

I1(2τ) + CK1(2τ)
. (36)
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The parameter C is fixed by the initial condition (12a):

C =
I0(2τ0) − α2ν−1τ0(1 − x)I1(2τ0)

K0(2τ0) + α2ν−1τ0(1 − x)K1(2τ0)
(37)

with

τ0 =
1

α2

√
ν

1 − y
. (38)

This bi-critical case solution is somewhat simpler than the general solution (26), as it only
contains low index modified Bessel functions.

4. Asymptotic behaviors

Now that we have the exact solution (26), let us derive some asymptotic scaling behaviors.
The first task is to determine the right (or interesting) scaling limit. In the case of
studying, e.g., only the distribution Pm(t) of one type of cell (either A or B), we first guess
the leading order large time asymptotic of the typical number of surviving cells χ(t), and
we study the t → ∞, m → ∞ scaling limit, with m̂ = m/χ(t) kept constant. We define
the scaling limit for the distribution Pm(t) of the number of cells as χ(t)Pm(t) → p(m̂),
and note that the generating function becomes a Laplace transform, if we also take the
x → 1 limit, while keeping ξ = χ(t) log(1/x) ∼ χ(t)(1 − x) constant:

A(x, t) =
∑

m≥0

xmPm(t) =
∑

m≥0

e−m̂ξPm(t)

→
∫ ∞

0

e−m̂ξp(m̂) dm̂. (39)

The scaled density p(m̂) has both a singular part describing the extinction of cells
and a regular part describing the surviving cells. The distribution of cells conditioned
on survival is by definition P ∗

m(t) = Pm(t)/S(t), and we define its scaling limit as
χ(t)P ∗

m(t) → p∗(m̂). Now by treating the first term of the sum in (39) separately, up
to first order we obtain

A(x, t) → 1 − s(t) + s(t)A∗(ξ) (40)

with the Laplace transform

A∗(ξ) =

∫ ∞

0

e−m̂ξp∗(m̂) dm̂ (41)

where the survival probability is asymptotically S(t) ∼ s(t). Consequently, p(m̂) =
[1 − s(t)]δ(m̂) + s(t)p∗(m̂). Our scaling describes the fate of all surviving cells if A∗(ξ) is
the Laplace transform of a valid probability density, i.e. if A∗(0) = 1. But to obtain the
right scaling of the surviving cell distribution, we first need to understand the asymptotic
behavior of the survival probability.
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4.1. Survival probability

From the exact expressions (36) or (26) for A(x, y, t), we know the survival probability
of A cells, SA(t) = 1 −A(0, 1, t), that of B cells, SB(t) = 1 − A(1, 0, t), and that of any
cell, S(t) ≡ 1−A(0, 0, t), at time t. Let us now use these exact expressions to understand
their large time asymptotic behavior.

We first consider the bi-critical case λ1 = λ2 = 0. It is immediate that the survival
probability of A cells SA(t) ∼ 1/t as t → ∞. What is the survival probability of any cells
S(t) = 1 − A(0, 0, t)? As t → ∞, also τ ∼

√
νt/α2 → ∞, while C from (37) remains

constant. Now using the large argument limits (C.2) of the Bessel functions in (36), we
find that terms containing C are asymptotically negligible and

S(t) ∼
√

ν

α2t
. (42)

In this bi-critical case, of course, all survival probabilities SA, SB and S tend to zero,
that is the eventual extinction is certain. But since S is asymptotically much larger than
SA, it means that surviving cells are typically B cells. In other words SB(t) ∼ S(t),
which is true in general for any parameter values due to the finite mutation rate ν. This
strange behavior, that neutral mutants are more likely to survive than non-mutants, can
be generalized for multiple type processes, with successive mutations A1 → A2 → A3 · · ·.
It turns out that the survival probability of Ai is asymptotically Si ∝ t−1/2i−1

[33].
In the supercritical case the survival probability is positive, hence the leading order

asymptotic is constant, S(t) → s∞ ≡ 1 −A(0, 0,∞). Let us first assume that B cells are
supercritical λ2 > 0. In this case z(t = ∞) = 0, and since from (24) and (25)

c − 1 =

√(
λ1

λ2

)2

+
4ν

α2λ2
> 0

we find that equation (26) reduces to

A(0, 0,∞) = 1 + ω + λ2(1 − c) = 1 − s∞. (43)

Using (24) and (25) we can rewrite the probability to end up in the state without cells as

s∞ =
λ1

2
+

√(
λ1

2

)2

+
νλ2

α2
= ω + λ1. (44)

For λ2 → 0 we recover the classical single type result s∞ = 1− β1 − ν for β1 + ν < 1, and
s∞ = 0 otherwise. For λ2 < 0 there is no effect of B cells on the survival probability, hence
the result is the same as for λ2 → 0. Note again that in the leading order SB(t) ∼ S(t)
for t → ∞ due to the finite mutation rate ν. Note also that the asymptotic survival
probability s∞ can be obtained without the explicit knowledge of A(x, y, t), by solving
the equations for A(0, 0, t → ∞) derived from (11). The above calculation therefore
provides a check of self-consistency.
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4.2. Critical case

Many interesting limits are worth investigating in the simplest bi-critical case, λ1 = λ2 =
0, that is when the birth and death rates of both cell types are balanced, α2 = β2 and
β1 = 1 − ν. We are going to describe the large time scaling behavior of Pm,n(t) in three
naturally arising regions of the (m, n) plane: (i) corresponds to extinction, m = n = 0;
(ii) corresponds to the survival of only B cells, m = 0, n > 0; and finally (iii) corresponds
to the survival of both types, m, n > 0. For all cases of this bi-critical process, the average
number of cells behaves as

〈m〉 = 1, 〈n〉 = νt, (45)

but these averages include extinct lineages as well. To find the correct scaling for each
region we need to know the corresponding typical behaviors.

We understand the behavior in region (i) since in (42) we already obtained that all
cells go extinct asymptotically with probability 1 −

√
ν/α2t. Hence the main weight of

Pm,n is asymptotically concentrated at the origin.
Before exploring the (m, n) plane further, as a warmup let us first consider the

behavior of A cells alone, which sheds some light on the behavior of region (iii). Type A
cells are not affected by B cells, and behave as a simple critical process, with generating
function

A(x, 1, t) =
t(1 − x) + x

t(1 − x) + 1
. (46)

The average (and typical) number of surviving cells is asymptotically χ(t) = t, hence
following the above method we need to take the t, m → ∞ and x → 0 limits with
m̂ = m/t and ξ = t(1 − x) constant. In this limit we recover the scaling (40) with
A∗(ξ) = 1/(1 + ξ), with SA ∼ 1/t. By an inverse Laplace transform we obtain an
exponential density p∗(m̂) = e−m̂ for the scaled number of surviving cells.

Now let us look at B cells as well. As we have shown in section 4.1, for large times
if there are surviving cells they are typically B cells only, hence the next largest weight
corresponds to region (ii), that is to m = 0, n > 0. Therefore, we are interested in the
distribution Pn(t) of B cells, irrespective of A cells. The generating function of Pn(t) is
simply A(1, y, t). Next we need to guess the typical number of surviving B cells in the
asymptotic limit, which we set to χ(t) = α2t. The reason is that before the extinction of
A cells a few B cells are produced, and they behave as a single type critical branching
process of rate α2, which we have just discussed above. This guess will be justified by the
scaling function we obtain, i.e. by A∗(0) = 1. Alternatively, we could have just assumed
a general algebraic ansatz for χ(t), and established its linear time dependence from the
scaling.

Hence we take the scaling limit t → ∞, y → 1, with η = α2t(1 − y) kept constant,
and from (34) and (38) we find that both

τ0 =

√
νt

α2η
and τ = τ0

√
1 + η (47)

diverge as t → ∞. Note that although τ0 depends only on y in (38), we formally turned
that into a t dependence from η = α2t(1 − y). Therefore we use the large argument
asymptotic of the modified Bessel functions (C.2), and note that x = 1, to obtain from (37)
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Figure 1. Scaling of the probability Pn(t) of having n copies of B cells at time t in
the bi-critical case, that is when death and birth rates are balanced for both cell
types, α1 = α2 = β2 = 1, while β1 = 1 − ν. Here we present plots for mutation
rate ν = 0.1 at several different times, calculated numerically from the exact
generating function (36). In the simultaneous limit t, n → ∞ and n̂ = n/χ(t)
being constant with χ(t) = α2t, the scaled distributions converge to a scaling
limit χ(t)Pn(t)/SB(t) → p∗(n̂) given by (49), where SB ∼

√
ν/α2t.

the asymptotic behavior of the parameter C ∼ e4τ0/π. We see from (47) that τ > τ0 in
the scaling limit, hence in (36) the terms proportional to C become negligible, and the
generating function simplifies to A(1, y, t) = 1 − ν/α2τ . From this we recover the scaling
form (40) with

A∗(η) = 1 −
√

η

1 + η
(48)

and with SB ∼
√
ν/α2t. Note that A∗(0) = 1 as required. Now, by taking the inverse

Laplace transform of the above expression (e.g. by integrating around the branch cut
between η = −1 and 0), we find that the surviving B cells are distributed as

p∗(n̂) = e−n̂/2 [I0(n̂/2) − I1(n̂/2)] (49)

with the scaling variable n̂ = n/α2t. Interestingly, the scaling function is independent
of the mutation rate ν. Note also that the above distribution has an algebraic tail
p∗(n̂) ∝ n̂−3/2 for n̂ → ∞, which implies an infinite average number of cells. This is
understandable, since the average number of surviving B cells grows as ∝t3/2 from (42)
and (45), which is faster than the typical value ∝t we used for the scaling. The convergence
to the scaling function p∗(n̂) for large times is illustrated in figure 1.

What is the distribution of cells when both types of cells are present, that is in the
‘bulk’ region (iii)? Note that the survival probability that cells of both types are still
present at time t scales asymptotically as 1/t. Since A cells behave critically, the number
of surviving A cells grows linearly with time, and consequently the typical number of B
cells grows as νt2. This suggests that we keep m/t and n/νt2 constant as t → ∞. Hence,
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in the generating function (36) we should take the t → ∞, x, y → 1 limit, with ξ = t(1−x)
and η = νt2(1 − y) constant. In this limit, from (34) and (38), we find again that both

τ0 ∼
tν

α2
√
η

and τ = τ0 +

√
η

2
+ O

(
1

t

)
(50)

diverge as t → ∞. Consequently, all terms of parameter C of (37) have the same leading
order behavior, and we arrive at

C ∼ e4τ0

π

√
η − ξ

√
η + ξ

. (51)

Therefore all terms containing Bessel functions in (36) have the same order, and we finally
find that

A∗(ξ, η) = 1 −√
η
ξ +

√
η th

√
η

√
η + ξ th

√
η
. (52)

The scaling function of surviving A and B cells p∗(m/t, n/νt2) is the inverse Laplace
transform of (52) in both variables ξ and η, which we could not obtain explicitly.

4.3. Supercritical case

There are many possible limits to take in a non-critical system, where λ1, λ2 .= 0. For
example, one could consider all six possible orderings of 0, λ1, λ2. Here we restrict our
attention to the most interesting case, when an already advantageous cell lineage produces
an even fitter mutant, i.e. λ2 > λ1 > 0. Again, we are interested in the distribution Pn(t)
of B cells, irrespective of A cells, which is given by A(1, y, t).

First, let us provide an intuitive reasoning for the scaling, which will be justified later.
Since λ2 > λ1, the first surviving mutant produces the dominant portion of B cells. A
single B cell eventually survives with probability λ2/α2, and the average number of B
cells (including extinct lineages too) grows as eλ2t. Consequently, the average number of
surviving offspring of a single initial B cell grows as χ(t) = (α2/λ2)eλ2t for t → ∞, which
we set as the typical number of surviving cells for the two-type process.

Hence, we study again A(1, y, t) in the scaling limit t → ∞, y → 1, with η =
χ(t) log 1/y ∼ χ(t)(1 − y) being constant. Let us first determine the asymptotic value
of the parameter C given in (29). In the scaling limit the parameter z0 of (30) diverges:
|z0| = |1 − eλ2t/η| → ∞ for λ2 > 0. Thus we need to determine the asymptotics of
functions Fj(z0) which appear in (29). Since κz0 = −a (this follows from (30) and (24);
also recall that we consider x = 1), the parameter C is actually given by

C = −zc−1
0

aF1(z0) + z0F3(z0)

−bF2(z0) + z0F4(z0)
. (53)

Note that λ1 > 0 implies a < b from (24). However, here we obtain the limit of C
for the case a > b, since this derivation is simpler, and the result is the same due to
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the analyticity of C(a, b). Using the identities (C.5) and (C.6) for the hypergeometric
functions one finds

F1(z0) ∼ (−z0)
−b Γ(c) Γ(a − b)

Γ(1 + a) Γ(a)
, F2(z0) ∼ (−z0)

a Γ(2 − c) Γ(a − b)

Γ(−b) Γ(1 − b)
,

F3(z0) ∼ − b

z0
F1(z0), F4(z0) ∼ − a

z0
F2(z0)

(54)

as |z0| → ∞. Substituting (54) into (53) we obtain a neat expression for the parameter

C = (−1)a+b b

a

Γ(c)

Γ(2 − c)

[
Γ(−b)

Γ(a)

]2

. (55)

Note that this result is valid for arbitrary values of a and b.
It is clear from (26) that the generating function A(1, y, t) of Pn(t) depends on t

and y only through C and z. We have just obtained C in the scaling limit (55), and
from (13) we find that z ∼ −1/η. Hence analogously to the limiting form of (40), from
the definition (26) we obtain the Laplace transform of the surviving B cell distribution in
the scaling limit

A∗(η) = 1 +
ω + λ2Ψ(−1/η)

s∞
(56)

where S(t) → s∞ = ω + λ1 of (44) is the leading order constant survival probability of B
cells, Ψ(z) is given by (27) with C of (55). Therefore technically all we should do is to
invert the Laplace transform (56) to obtain the scaling function p∗(n̂) for the surviving B
cells, with

n̂ =
n

χ(t)
= n

λ2

α2
e−λ2t. (57)

Although this is easy to do numerically, analytically it is quite challenging, since the
function Ψ(z) involves the ratio of hypergeometric functions. This provides an example
of a simple process where even the large time limit behavior is very complicated.

One general comment concerns the behavior of the scaling function in the limit when
the scaled variable n̂ is large. We anticipate a generic exponential tail, p∗(n̂) ∼ U e−un̂

as n̂ → ∞, which implies that the Laplace transform has a simple pole at n̂ = −u with
residue U , that is

A∗(η) =
U

u + η
+ · · · . (58)

To determine u, U we must therefore find a real and positive zero of the function
zc−1F1(z) + CF2(z). For special cases of integer b, we can explicitly compute the scaling
function p∗(n̂), and verify the exponential tail. We relegate these details to appendix B.
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4.4. Small mutation, large time limit

In many biological applications the mutation rate refers to a single base-pair change,
which is typically very small (in human DNA the probability of such a mutation is around
5× 10−10 per base-pair per cell division [34]). Hence in this subsection we study the joint
large time small mutation rate limit.

We consider again the case where both types are advantageous, and also λ2 > λ1 > 0.
We take the ν → 0 and t → ∞ limits. As ν → 0, we have λ1 → 1−β1, and using (24)–(25)
we obtain

a ∼ a1ν, a1 =
1

α2(1 − β1)
, b → b0 =

1 − β1

λ2
(59)

where 0 < b0 < 1. Also, we anticipate the corresponding scaled number of B cells
n̂ → 0, then η → ∞, hence also z ∼ −1/η → 0. Therefore we take a simultaneous
ν → 0, η → ∞ limit, while keeping η(a1ν)1/b0 constant. The reason for keeping this
particular combination constant will become clear later.

The smallest order terms of (28) are particularly simple due to (C.3)

F1(z) ∼ F2(z) ∼ 1,

F3(z) ∼ a1b0

1 + b0
ν, F4(z) ∼ a1b0

1 − b0
ν

while from (55)

C ∼ a1νB0e
πb0 , B0 =

π

sin πb0
.

Substituting these limits into (27) we obtain

Ψ(−1/η) =
−b0

1 + B−1
0 [η(a1ν)1/b0 ]−b0

. (60)

It is clear that we obtain the only nontrivial limit when the new scaling variable
ζ = (a1ν)1/b0η = χ(t, ν)(1 − y) is kept constant, with

χ(t, ν) =
α2

λ2
eλ2t(a1ν)1/b0 . (61)

Since for ν → 0 the survival probability (44) is s∞ → 1 − β1, and ω ∼ λ2a1ν, the scaling
function A∗ from (56) becomes

A∗(ζ) =
1

1 + B0ζb0
. (62)

This scaling function depends only on the single parameter 0 < b0 < 1. The corresponding
scaled number of B cells is ñ = n/χ(t, ν), with the scaling function p∗(ñ). This generating
function has been studied numerically in [18], and it has already been derived in a very
appealing approximate model in [21].

Let us explore the properties of p∗(ñ). For the special case b0 = 1/2 we can evaluate
the inverse Laplace transform of A∗(ζ) from (62) explicitly:

p∗(ñ) =
1

π2

[√
π

ñ
− eñ/π2

Erfc

√
ñ

π

]

. (63)
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For general b0, from the large η limit of A∗(ζ), we can obtain the small ñ series of the
scaling function

p∗(ñ) =
∑

j≥1

−1

(−B0)jΓ(b0j)
ñb0j−1 (64)

where B0 > 0 is given by (60). Indeed, by taking the Laplace transform of the formal series
expansion of p∗(ñ) around ñ = 0 and equating it term by term to the series expansion of
A∗(ζ) around ζ = ∞, we obtain (64). Conversely, from the small η asymptotic of A∗(ζ)
we obtain the large ñ series

p∗(ñ) =
∑

j≥1

(−B0)j

Γ(−b0j)
ñ−b0j−1. (65)

This is achieved similarly to the small ñ series, but some care is needed. To avoid certain
singularities, the series expansion of the derivative (d/dζ)A∗(ζ) should be compared to
the Laplace transform of the expanded ñp∗(ñ). Note that the small ñ series (64) has
an infinite radius of convergence. Conversely, the large ñ series (65) has zero radius
convergence, but it is asymptotic and hence truncating it after a finite number of terms
provides an excellent approximation [32].

There are two surprising features of the scaling function p∗(ñ). First, from the small
ñ series (64) we find that the density is singular at ñ = 0 as p∗(ñ) ∝ ñb0−1, where
−1 < b0 − 1 < 0. Second, from the large ñ series (65) we find that the density has a
power law tail p∗(ñ) ∝ ñ−(1+b0), with the exponent being 1 < 1 + b0 < 2. This means that
this density function has an infinite average. The scaling for large times is demonstrated
in figure 2, while the scaling function p∗(ñ) is depicted in figure 3 for several values of its
only parameter b0.

The power law tail of p∗(ñ) has been observed numerically in [18]. Note also that we
have already encountered a limit density with infinite average in section 4.2, for a critical
process for arbitrary mutation rate. Here, however, a power law density appeared in a
non-critical situation, where we expect exponential tails in general (see appendix B).

5. Conclusions

In this paper we presented an explicit solution for a general two-type birth–death process
with one-way mutations. This process was proposed by Kendall [16] to model the onset of a
driver mutation in an evolving cell population. We computed the generating function (26)–
(28) that encapsulates the probability distribution Pm,n(t). The generating function can
be turned into the exact probabilities Pm,n(t) by a fast Fourier transform [23].

Our explicit result (26)–(28) is not easy to grasp, as it involves the ratio of
hypergeometric functions. It becomes somewhat simpler, equation (36), in the bi-critical
case, that is when both cell types behave critically, λ1 = λ2 = 0. The complete
solutions, however, contain all information; for instance one immediately knows the
survival probability of cells, or any order moments of the cell distribution. We have
also extracted several interesting limits from the exact solutions. In the bi-critical case
we showed in section 4.2 how different types of scaling apply in different regions of the
(m, n) plane. For the onset of an advantageous mutation, λ2 > λ1 > 0, we derived the
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Figure 2. Scaling of the probability Pn(t) of having n copies of B cells at
time t in the supercritical case for the simultaneous limit of large time, large
number of cells and small mutation rate, t, n → ∞, ν → 0 with ñ = n/χ(t, ν)
constant and χ(t, ν) given by (61). We chose α1 = 1, β1 = 0.81, α2 = 1.29,
β2 = 0.91, which correspond to the scaling parameter b0 = 1/2. The plots are
for mutation rate ν = 0.0001 at different times, calculated numerically from the
exact generating function (26). The scaled distributions converge to the limit
function χ(t, ν)Pn(t)/SB(t) → p∗(ñ) given by (63), where SB → 1 − β1.

Figure 3. Scaling function p∗(ñ) of B cells for the supercritical case in the large
time small mutation limit evaluated from (64). We plotted this function at four
values of the single parameter b0. Note the explicit formula (63) for b0 = 1/2.
The small and large ñ asymptotic power law behavior can be observed.

large time scaling limit, which limit function still involved hypergeometric functions. This
demonstrates that the large time limit behavior can still be very complicated. For certain
special cases though, we derived the explicit scaling functions, with generic exponential
tails. Conversely, in the simultaneous large time and small mutation limit, the scaling
function has a power law tail, with infinite average value. As a consequence, an enormous
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number of samples are needed in simulations to recover the exact (finite time) average
values.

There are, of course, numerous interesting open questions for two-type branching
processes which deserve further attention. The long term description of tumor
development though must involve more than two cell types corresponding to multiple
stages of tumors [3, 27, 35]. These multi-type branching processes are likely too
cumbersome for explicit solutions, and one needs simplifying assumptions to deduce the
relevant asymptotic behavior [21, 33]. Nevertheless, some effective models have recently
proved to be remarkably successful in connecting theory and clinical data [20].
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Appendix A. Mutation at cell divisions

Here we briefly discuss a version of the two-type process (2), where mutations happen
at cell divisions (4). In (11a) the term νA should be replaced by νAB; everything else
in (11a)–(11b) remains the same. We follow the exact same steps as for the original model,
and we arrive at the same solution (26)–(30), but with parameters

a =
ω

λ2
, b =

ω + 1 − β1

λ2
, c = 1 + a + b − ν

α2

and

ω = −
(
λ1

2
+

νβ2

2α2

)
+

√(
λ1

2
+

νβ2

2α2

)2

+
νλ2

α2

instead of (24) and (25). Also, while F1(z) and F3(z) are unchanged from (28), we need
F2(z) and F4(z) in their general forms:

F2(z) = F (1 + a − c, 1 + b − c; 2 − c; z)

F4(z) =
(1 + a − c)(1 + b − c)

2 − c
F (2 + a − c, 2 + b − c, 3 − c; z)

since in (28) we simplified these general formulas by using c = 1 + a+ b, which is not true
in the present case.

Appendix B. Case of integer b

In section 4.3 we conjectured that the scaled distribution p∗(n̂) has an exponential tail in
general. In this appendix we review a few concrete examples for the special case of integer
b values. Recall that we assumed λ2 > λ1 > 0 in section 4.3, which implies b > a > 0
from (24). We do not impose any other restriction on a.

Equation (55) shows that C diverges when b is a non-negative integer. This case
corresponds to particular values of the mutation rate

ν =
1 − β1 − bλ2

1 − (bα2)−1
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from the definitions (17) and (24), provided that 0 < ν < 1 − β1. Our sole reason to
consider these special mutation rates is to make the problem more tractable, and we
anticipate that the behavior is qualitatively similar for arbitrary mutation rates. Indeed,
when C = ∞, equation (27) simplifies to

Ψ = 1 − c + z
F4(z)

F2(z)

and hence (56) becomes

A∗(−1/z) = 1 +
1

s∞

[
ω + λ2(1 − c) + λ2 z

F4(z)

F2(z)

]
.

Note that η = −1/z in this limit. The constant term on the right-hand side vanishes,
see (43), and therefore we finally arrive at

A∗(−1/z) =
λ2zF4(z)

s∞F2(z)
=

z

b

d log F2

dz
. (B.1)

Here we also used that s∞/λ2 = b from (24) and (44). Note that this relation provides
another interpretation for integer b. Let us consider now concrete examples. Since b > 0,
the simplest possible choice is b = 1.

B.1. b = 1

Since c = a + b + 1 = a + 2 we conclude that

F2 = F (−1,−a;−a; z) = 1 − z, F4 = −1.

Therefore equation (B.1) becomes A∗(−1/z) = z/(z − 1). In other words, A∗(η) =
1/(1 + η), from which p∗(n̂) = exp(−n̂). Thus in this case the scaled distribution of B
cells is a pure exponential.

B.2. b = 2

We have c = a + b + 1 = a + 3 and

F2 = F (−2,−a;−1 − a; z) = 1 − 2a

a + 1
z +

a − 1

a + 1
z2

F4 =
dF2

dz
= − 2a

a + 1
+ 2

a − 1

a + 1
z.

Equation (B.1) becomes

A∗(η) =
a − 1 + aη

a − 1 + 2aη + (a + 1)η2

and its inverse Laplace transform

p∗(n̂) =
1

2

[
e−n̂ +

a − 1

a + 1
exp

(
−n̂

a − 1

a + 1

)]

is a combination of two exponents. It is possible to obtain explicit expressions for larger
b values in particular, but let us consider the problem now in general.
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B.3. Arbitrary integer b

In this case F2 = F (−b,−a; 1 − b − a; z) is a polynomial of the order b; hence F4 is a
polynomial of order b− 1. It is easy to see that A∗(η) is the ratio of a polynomial of η of
the order b − 1 to the polynomial of η of the order b. Therefore one can write an exact
expansion

A∗(η) =
b∑

j=1

Uj

uj + η
.

Thus when b is integer, the scaling function is a combination of b exponentials:

p∗(n̂) =
b∑

j=1

Uj e−uj n̂.

Appendix C. Useful formulas

Here we list a few identities and limits of special functions from [36, 37]. The modified
Bessel functions satisfy

2I ′
1(z) = I0(z) + I2(z), −2K ′

1(z) = K0(z) + K2(z),

2I1(z)/z = I0(z) − I2(z), −2K1(z)/z = K0(z) − K2(z)
(C.1)

and their z → ∞ asymptotic behavior is

Ia(z) ∼ 1√
2πz

ez, Ka(z) ∼
√

π

2z
e−z. (C.2)

The hypergeometric function has the series expansion

F (a, b; c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · · (C.3)

and the derivative

d

dz
F (a, b; c; z) =

ab

c
F (1 + a, 1 + b; 1 + c; z). (C.4)

We use the transformation formulas

F (a, b; c; z) = (1 − z)−aF (a, c − b; c; 1 − 1/z)

= (1 − z)−bF (b, c − a; c; 1 − 1/z) (C.5)

and the identity

F (a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
(C.6)

for Re c > Re(a + b).
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[36] Gradshtĕin I S, Ryzhik I M and Jeffrey A, 2000 Table of Integrals, Series, and Products (San Diego, CA:
Academic)

[37] Olver F W J, 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press)

doi:10.1088/1742-5468/2011/08/P08018 22

http://dx.doi.org/10.1073/pnas.0712345105
http://dx.doi.org/10.1126/science.2889267
http://dx.doi.org/10.1088/1742-5468/2011/08/P08018

	1. Introduction
	2. General case
	3. Critical cases
	4. Asymptotic behaviors
	4.1. Survival probability
	4.2. Critical case
	4.3. Supercritical case
	4.4. Small mutation, large time limit

	5. Conclusions
	Acknowledgments
	Appendix A. Mutation at cell divisions
	Appendix B. Case of integer b 
	B.1. b=1 
	B.2. b=2 
	B.3. Arbitrary integer b 

	Appendix C. Useful formulas
	References

