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Galaxy distribution and extreme-value statistics
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Abstract – We consider the conditional galaxy density around each galaxy, and study its
fluctuations in the newest samples of the Sloan Digital Sky Survey Data Release 7. Over a large
range of scales, both the average conditional density and its variance show a non-trivial scaling
behavior, which resembles criticality. The density depends, for 10� r� 80Mpc/h, only weakly
(logarithmically) on the system size. Correspondingly, we find that the density fluctuations follow
the Gumbel distribution of extreme-value statistics. This distribution is clearly distinguishable
from a Gaussian distribution, which would arise for a homogeneous spatial galaxy configuration.
We also point out similarities between the galaxy distribution and critical systems of statistical
physics.

Copyright c© EPLA, 2009

Introduction. – One of the cornerstones of modern
cosmology is the mapping of three-dimensional galaxy
distributions. In the last decade two extensive projects,
the Sloan Digital Sky Survey (SDSS —[1]) and the Two-
degree Field Galaxy Redshift Survey (2dFGRS —[2]),
have provided redshifts of an unprecedented quality
for more than one million galaxies. A common feature
observed in these surveys [3,4] is that galaxies are orga-
nized in a complex pattern, characterized by large-scale
structures: clusters, super-clusters, and filaments with
large voids of extremely low local density [5]. Recent
analyses of these catalogs have shown that galaxy
structures display large amplitude density fluctuations
at all scales limited only by sample sizes [6–10]. In
addition, the conditional density [11] has been found to
decay with distance as a power law function with an
exponent close to one, up to ∼ 30Mpc/h (see footnote1).
At larger scales, the situation was unclear since in
the 2dFGRS the relatively small solid angle prevents
the proper characterization of correlations at larger
scales [9,10]. Conversely, the SDSS samples (data release
6 —DR6) clearly show that conditional fluctuations are
not self-averaging for r > 30Mpc/h. In the latter case,

1We use H0 = 100 h km/s/Mpc, with 0.4≤ h≤ 0.7, for Hubble’s
constant.

the sample volumes were found to be too small to obtain
statistically stable result due to wild fluctuations [6,7].
Therefore, although there are unambiguous evidences for
the inhomogeneity of the galaxy distribution at least up
to scales of 100Mpc/h [6,7,9,10], the scaling properties at
scales larger than 30Mpc/h were poorly understood.
The new galaxy samples from the data release 7 (DR7

—[12]) doubled in size since the DR6 sample. This new
catalog is large enough to facilitate the study of fluctua-
tions in the galaxy distribution. In particular, we calcu-
late the galaxy density in a sphere of radius r around
each galaxy, i.e., the conditional density. For uniformly
positioned galaxies [11], the average conditional density
is independent of the radius r, and the fluctuations over
galaxies are Gaussian. Conversely, in DR7 we find that the
average density depends logarithmically on r, while the
fluctuations follow the Gumbel distribution of extreme-
value statistics. This behavior has an analog in statistical
physics, where logarithmically changing averages tend to
correspond to Gumbel-type fluctuations [13].
The rest of the paper is organized as follows. We first

discuss the quantities we consider in the measurements
and briefly discuss the main properties of the Gumbel
distribution. We then introduce the galaxy samples and
our main results on the average, the variance and the
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fluctuation distribution of the conditional density we
measured in the data. Finally, we discuss the results and
draw conclusions.

Statistical methods. – In this section we describe the
estimators we use in the analysis and then discuss the
properties of the Gumbel distribution. We also provide
some physical examples where the Gumbel distribution
was found fit to experimental data.

Estimators and their main properties. A particularly
useful characterization of statistical properties of point
distributions can be obtained by measuring conditional
quantities [11]. In this paper we focus on such a quan-
tity, namely we calculate the number N(r) of galaxies
contained in a sphere of radius r centered on a galaxy.
Note that not all galaxies can be considered as sphere
centers for a given radius r: a central galaxy has to be
farther than distance r from any border of the sample, so
that the sphere volume is fully contained inside the sample
volume [7,10]. As r approaches the radius of the largest
sphere fully contained in the sample volume, the statistics
become poorer. To deal with these limitations for large
values of r, two effects should be taken into account: i) the
number of points Ntot(r) satisfying the above condition is
largely reduced and ii) most of the points are located in the
same region of the sample. Any conclusion about statis-
tical properties must consider a careful analysis of these
limitations [7].

The Gumbel distribution. The Gumbel (also known
as Fisher-Tippet-Gumbel) distribution is one of the three
extreme-value distribution [14,15]. It describes the distri-
bution of the largest values of a random variable from a
density function with faster than algebraic (say exponen-
tial) decay. The Gumbel distribution’s PDF is given by

P (w) =
1

β
exp

[
−w−α
β
− exp

(
−w−α
β

)]
. (1)

With the scaling variable

x=
w−α
β

(2)

the density function (eq. (1)) simplifies to the parameter-
free Gumbel

P (x) = e−x−e
−x

(3)

with (cumulative) distribution e−e
−x
. Note that this distri-

bution corresponds to maxima values, while for minima
values, x is used instead of −x in the Gumbel distribu-
tion.
The mean and the standard deviation (variance) of the

Gumbel distribution (eq. (1)) is

µ= α+ γβ, σ2 = (βπ)2/6, (4)

where γ = 0.5772 . . . is the Euler constant. For the scaled
Gumbel (eq. (3)) the first two cumulants of eq. (4) simplify
to γ and π2/6.

Gumbel in critical systems. Away from criticality, any
global (spatially averaged) observable of a macroscopic
system has Gaussian fluctuations, in agreement with the
central-limit theorem (CLT). At criticality, however, the
correlation length tends to infinity, and the CLT no longer
applies. Indeed, fluctuations of global quantities in critical
systems usually have non-Gaussian fluctuations. The type
of fluctuations is characteristic to the universality class of
the system’s critical behavior [16,17].
To fit experimental data, the generalized Gumbel PDF
P (x) =C(e−x−e

−x
)a has often been used, where a> 0 is

a real parameter, and C = aa/Γ(a) is a normalization
constant. For integer values of a, this distribution corre-
sponds to the a-th maximal value of a random variable.
The a= 1 case corresponds to the Gumbel distribution.
Experimental examples for Gumbel or generalized Gumbel
distributions include power consumption of a turbulent
flow [18], roughness of voltage fluctuations in a resistor
(original Gumbel a= 1 case) [19], plasma density fluctua-
tions in a tokamak [20], orientation fluctuations in a liquid
crystal [21], and other systems cited in [13]. The Gumbel
distribution describing fluctuations of a global observable
was first obtained analytically in [19] for the roughness
fluctuations of 1/f noise. Its relations to extreme-value
statistics have been clarified [22,23], generalizations have
appeared [24], and related finite-size corrections have been
understood [25].
In a recent paper Bramwell [13] conjectured that only

three types of distributions appear to describe fluctuations
of global observables at criticality. In particular, when
the global observable depends logarithmically on the
system size, the corresponding distribution should be a
(generalized) Gumbel. For example the mean roughness of
1/f signals depends on the logarithm of the observation
time (system size), and the corresponding PDF is indeed
the Gumbel distribution [19].

The data. – We have constructed several sub-samples
of the main-galaxy (MG) sample of the spectroscopic cata-
log SDSS-DR72. We have constrained the flags indicat-
ing the type of object to select only the galaxies from
the MG sample. We then consider galaxies in the redshift
range 10−4 � z � 0.3 with redshift confidence zconf � 0.35
and with flags indicating no significant redshift determina-
tion errors. In addition we apply the apparent magnitude
filtering condition mr < 17.77 [26]. The angular region we
consider is limited, in the SDSS internal angular coordi-
nates, by −33.5◦ � η� 36.0◦ and −48.0◦ � λ� 51.5◦: the
resulting solid angle is Ω= 1.85 steradians. We do not use
corrections for the redshift completeness mask or for fiber
collision effects. Fiber collisions in general do not present
a problem for measurements of large-scale galaxy corre-
lations [26]. Completeness varies most near the current
survey edges, which are excluded in our samples. In addi-
tion the completeness mask could be the main source
of systematic effects on small scale only, while we are

2http://www.sdss.org/dr7
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interested on the correlation properties on relatively large
separations [8].
To construct volume-limited (VL) samples we computed

the metric distances R using the standard cosmological
parameters, i.e., ΩM = 0.3 and ΩΛ = 0.7. We computed
absolute magnitudes Mr using Petrosian apparent magni-
tudes in the mr filter corrected for Galactic absorption.
We considered the sample limited by R ∈ [70, 450]Mpc/h
and Mr ∈ [−21.8,−20.8] containing M = 93821 galaxies.
In this sample there are about 1/5 of the whole galaxies
in DR7; it has relatively large spatial extensions and small
spread in galaxy luminosity. Note that in other samples
limited at scales smaller than ∼400Mpc/h we found simi-
lar results.
We have checked that our main results in this VL sample

do not depend significantly on K-corrections and/or evolu-
tionary corrections as those used by [27]. In this paper
we use standard K-correction from the VAGC data3 (see
discussion in [7] for more details).

Results. – In this section we present our findings from
the analysis of the galaxy data.
We have computed the number of galaxies Ni(r) within

radius r around each galaxy i satisfying the boundary
condition previously mentioned. By normalizing it by
the volume Vr = 4πr

3/3 of the sphere, we obtain the
conditional galaxy density ni(r) =Ni(r)/Vr around each
galaxy i. This quantity is our main interest in this
paper. The variable ni(r) differs for each galaxy, hence
we consider this local density ni(r) as a random variable,
and study its statistical properties. For example the
conditional average density within radius r is defined as

n(r) =
1

Ntot(r)

Ntot(r)∑
i=1

ni(r), (5)

where n(r) is “conditioned” on the presence of the central
galaxy. Here Ntot(r) is the total number of galaxies
in the survey —counting only those ones which are
farther from the sample borders than distance r [7]. The
simplest quantity to characterize density fluctuations is
the variance, or mean square deviation at scale r; its
estimator is defined as

σ2(r)≡ var [n(r)] = 1

Ntot(r)

Ntot(r)∑
i=1

n2i (r)−n(r)
2
. (6)

In the following subsections we are going to study the
whole distribution of ni(r) as well.

Self-averaging properties. Conditional fluctuations
have been found to be not self-averaging in several
SDSS-DR6 samples, i.e., there were systematic differ-
ences between statistical properties measured in different
parts of a given sample [6,9]. It was concluded that this
behavior is due to galaxy density fluctuations which are

3http://sdss.physics.nyu.edu/vagc/
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Fig. 1: (Colour on-line) PDFs of the conditional density in
spheres of radius r= 30Mpc/h (left) and r= 80Mpc/h (right),
in two distinct regions: a nearby (S1) and a far away (S2) one.
Notice that the two PDFs statistically give the same signal.

too large in amplitude and too extended in space to be
self-averaging inside the considered volumes. The lack
of self averaging prevents one to extract a statistically
meaningful information from whole sample average quan-
tities, as for example the conditional average density. We
repeated the stability test of statistical quantities within
the new SDSS-DR7 sample, since it almost doubled in size
compared to SDSS-DR6. To this aim we cut the sample
volume into two regions, a nearby and a faraway one as
in [6,7], and we determine the PDFs P (n(r))≡ P (n; r) of
the conditional density separately in both regions, and at
two different r scales. We conclude from fig. 1 that the
PDF is statistically stable and does not show systematic
dependence on system size, as opposed to the case of
the SDSS-DR6 data on scales r > 30Mpc/h [6,7]. Hence
in this new sample, conditional statistical quantities
computed over the whole sample volume are useful and
meaningful indicators.

Scaling at small scales. At small length scales
(r < 20Mpc/h) the exponent for the conditional average
density is close to minus one (see fig. 2). This result is in
agreement with ones obtained by the same method in a
number of different samples (see [6,7,9,10] and references
therein). This scaling can be interpreted as a signature
of fractality of the galaxy distribution in this range of
scale. In addition, this implies that the distribution is not
uniform at these scales, and thus the standard two-point
correlation function is substantially biased.

Scaling at large scales. We first computed the
average conditional density (eq. (5)) at large scales
(r > 10Mpc/h). For a uniform point distribution this
quantity is constant, i.e., independent of the radius
r [11]. Conversely, in our data we find a pronounced r
dependence, as can be seen in fig. 2. Our best fit is

n(r)≈ 0.0133
log r

, (7)
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Fig. 2: (Colour on-line) Conditional average density n(r) of
galaxies as a function of radius. In the inset panel the same is
shown in the full range of scales. Note the change of slope at
≈20Mpc/h and also the lack of flattening up to ≈80Mpc/h.
Our conjecture is that we have a logarithmic correction to the
constant behavior, although we cannot exclude the possibility
that it is power law with an exponent ≈−0.3.

that is the average density depends only weakly (logarith-
mically) on r. Alternatively, an almost indistinguishable
power law fit is provided by

n(r)≈ 0.011× r−0.29. (8)

We emphasize our preference for the logarithmic fit,
where the only fitting parameter is the amplitude. Note
that the logarithmic fit should in principle be written
as A/log (r/r0), where A is the amplitude and r0 is a
reference length scale. We avoid introducing parameter
r0, since the fit with eq. (7) is already quite good. As
can be seen in fig. 2, we find a change of slope in the
conditional average density in terms of the radius r at
about ≈ 20Mpc/h. At this point the decay of the density
changes from an inverse linear decay to a slow logarithmic
one. Moreover, the density n(r) does not saturate to a
constant up to ∼ 80Mpc/h, i.e., up to the largest scales
probed in this sample. Note that up to r= 80Mpc/h the
number of points Ntot(r) is larger than 10

4, making this
statistics very robust.
This result is in agreement with a study of the SDSS-

DR4 samples [28], where, in the average conditional
density, a similar change of slope was observed at about
the same scale r≈ 20Mpc/h, together with quite large
sample to sample fluctuations. Indeed, some evidences
were subsequently found to support that the galaxy distri-
bution is still characterized by rather large fluctuations
up to 100Mpc/h, making it incompatible with unifor-
mity [6–10]. Similarly, in the Luminous Red Galaxy (LRG)
sample of SDSS, Hogg et al. [29] also found a slope change
in the average conditional density. On the other hand,
we do not observe a transition to uniformity at about
70Mpc/h, which they reported. Note also that a study
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Fig. 3: (Colour on-line) Variance σ2 of the conditional density
ni(r) as a function of the radius. Conversely, the corresponding
variance of a Poisson point process would display a 1/r3 decay.
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Fig. 4: (Colour on-line) Data curves of different r scaled
together by fitting parameters α and β for each curves. The
solid line is the parameter-free Gumbel distribution, eq. (3).
In the inset panel the same is shown on log-linear scale to
emphasize the tails of the distribution.

of the self-averaging properties of fluctuations in the LRG
sample is still lacking.
Compared to the average density, it is harder to find the

correct fit for the variance σ2(r) of the conditional density
(eq. (6)). Our best fit is (see fig. 3)

σ2(r)≈ 0.007× r−2.4. (9)

Given the scaling behavior of the conditional density
and variance, we conclude that galaxy structures are
characterized by non-trivial correlations for scales up to
r≈ 80Mpc/h.
To probe the whole distribution of the conditional

density ni(r), we fitted the Gumbel distribution (eq. (1))
via its two parameters α and β. One of our best fits
is obtained for r= 20Mpc/h, see fig. 4. The data,
moreover, convincingly collapses to the parameter-free
Gumbel distribution (eq. (3)) for all values of r for
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10� r� 80Mpc/h, with the use of the scaling variable
x from eq. (2) (see fig. 4). Note that for a Poisson point
process (uncorrelated random points) the number N(r)
(and consequently also the density) fluctuations are
distributed exactly according to a Poisson distribution,
which in turn converges to a Gaussian distribution for
large average number of points N(r) per sphere. In our
samples, N(r) is always larger than 20 galaxies, where
the Poisson and the Gaussian PDFs differ less than the
uncertainty in our data. Note also that due to the central-
limit theorem, all homogeneous point distributions (not
only the Poisson process) lead to Gaussian fluctuations.
Hence the appearance of the Gumbel distribution is a
clear sign of inhomogeneity and large-scale structures in
our samples.
The fitting parameters in eq. (1) varied with the radius
r approximately as

α≈ 0.007
r0.21

, β ≈ 0.035
r
, (10)

although a logarithmic fit α≈ 0.0115/log r cannot be
excluded either. With the fitted values of α and β
we recover the (directly measured) average conditional
density of galaxies through eq. (4). On the other hand, we
have a discrepancy when comparing the directly measured
σ2 to that obtained from the Gumbel fits through eq. (4).
The reason for this discrepancy is that the uncertainty in
the tail of the PDF P (n, r) is amplified when we directly
calculate the second moment.

Data collapse without fitting. It is possible to obtain a
scaling of the data without any fitting procedure. We can
compute the average, µ, and the standard deviation, σ2,
of the data and use the scaled variable

y=
N −µ
σ
. (11)

The density functions for different values of r scale to the
single curve

Φ(y) = ae−(ay+γ)−e
−(ax+γ)

(12)

with a= π/
√
6. (This function, of course, has mean zero,

and standard deviation one.) This type of fitting-free
data collapse has been used extensively in statistical
physics [16,19]. As shown in fig. 5 we find a satisfactory
agreement with eq. (12). Note also that Gaussian fluctu-
ations can be clearly excluded. Compared to the fitting
results of fig. 4, the agreement in fig. 5 is better around
the tails of the distribution, but it gets worse around the
maximum. The reason for this latter mismatch is again
due to the uncertainty in the second moment.

Discussion. – Given the observed scaling and data
collapse in the spatial galaxy data, is there any supporting
evidence for the appearance of the Gumbel distribution?
Due to the scaling and data collapse we argue that
the large-scale galaxy distribution shows similarities with
critical systems. Here the galaxy density around each
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Fig. 5: (Colour on-line) The fitting-free data collapse (eqs. (11),
(12)) based on the first two moments of the distribution. Note
again the satisfactory data collapse on all scales. The black line
is the Gumbel distribution of eq. (12), while the blue line is the
corresponding normal Gauss distribution with zero mean and
unit variance.

galaxy is analogous to a random variable describing a
spatially averaged quantity in a volume. The average
conditional galaxy density depends on the volume size
(∼r3) only logarithmically n(r)∼ 1/ log r from eq. (7).
According to the conjecture of Bramwell for critical
systems [13], if a spatially averaged quantity depends
only weakly (say logarithmically) on the system size,
the distribution of this quantity follows the Gumbel
distribution. This is indeed what we see in the galaxy data.
Hence our two observations about the average density and
the density distribution are compatible with the behavior
of critical systems in statistical physics.
We note that standard models of galaxy forma-

tion predict homogeneous mass distribution beyond
≈10Mpc/h [6,7,30]. To explain our findings about non-
Gaussian fluctuations up to much larger scales presents a
challenge for future theoretical galaxy formation models
(see [6,7,9,10,30] for more details).
In summary, we have established scaling and data

collapse over a wide range of radius (volume) in galaxy
data. Scaling in the data indicates criticality. The average
galaxy density depends only logarithmically on the radius,
which suggests a Gumbel scaling function [13]. The scaled
data is indeed remarkably close to the Gumbel distribu-
tion, which is one of the three extreme-value distributions.
How this distribution arises through galaxy formation, or
what the extreme quantity is in the galaxy data, are chal-
lenging questions needed to be addressed in the future.
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Rev. Lett., 87 (2001) 240601.
[20] Van Milligen B. P. et al., Phys. Plasmas, 12 (2005)

052507.
[21] Joubaud S. et al., Phys. Rev. Lett., 100 (2008)

180601.
[22] Bertin E., Phys. Rev. Lett., 95 (2005) 170601.
[23] Bertin E. and Clusel M., J. Phys. A, 39 (2006)

7607.
[24] Antal T., Droz M., Györgyi G. and Rácz Z., Phys.
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