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Exponential velocity tails in a driven inelastic Maxwell model
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The problem of the steady-state velocity distribution in a driven inelastic Maxwell model of shaken granular
material is revisited. Numerical solution of the master equation and analytical arguments show that the model

has bilateral exponential velocity tails@P(v);e2uvu/AD#, whereD is the amplitude of the noise. Previous study

of this model predicted Gaussian tails@P(v);e2av2
#.
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Recently, granular systems have been intensively stu
@1,2#. One reason of such an interest is the fact that in m
respects these systems are highly unconventional and
exotic @3#. As a result, very often even standard laws of s
tistical physics require certain modification when applied
granular systems.

As an example, let us consider the Maxwell-Boltzma
law for velocity distributionP(v) of atoms or molecules in a
gaseous state, which states thatP(v);e2av2

. Under certain
experimental conditions, a granular system can be con
ered as a gas and a natural question is what is its velo
distribution. Numerous theoretical and experimental stud
do not provide a simple answer to this question. On the c
trary, they show thatP(v) depends on certain details of th
system as, for example, how energy is transferred by a t
mostat into the system, in order to balance the energy
during inelastic collisions. Theoretical works have sho
that P(v) might be of the forme2av2

@4,5#, e2av3/2
@6,7#, or

e2av @8#. Under certain conditions experiments show cle
deviations from the Maxwell-Boltzmann law, but it is sti
rather difficult to decide what is the form ofP(v) in real
granular systems@9#.

Very often granular systems are described using the
called inelastic hard-sphere models, which could be t
analyzed using corresponding Boltzmann equations. Th
off-lattice two- or three-dimensional systems are, howev
very difficult to study, especially when we want to explo
large-velocity regions of the phase space. A possible alte
tive is to construct simplified models for which more acc
rate calculations are possible. One class of such models
Maxwell models for which the collision term in the corre
sponding Boltzmann equation is velocity independent. R
cent studies show that for Maxwell modelsP(v) might take
either exponential (e2av) @10# or Gaussian (e2av2

) form
@11,12#.

A particularly interesting Maxwell model was propose
by Ben-Naim and Krapivsky~BNK! @12#. These authors pre
sented an elegant solution of the master equation of t
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model using a Fourier transform method. However, th
conclusion thatP(v) has a Gaussian decay is based on c
tain approximation whose validity is difficult to asses
Namely, they infer the large-velocity behavior ofP(v) from
the low-k behavior of the Fourier transformP̂(k). Since
BNK model is one of the very few models for which exact
numerical but very precise calculations can be made
would be desirable to clarify the validity of this approach

In the present paper, we reexamine the BNK model. A
lyzing numerically the solution of the master equation of t
model, we obtain the velocity distributionP(v). Asymptoti-
cally (v→`), this quantity shows bilateral exponential tai
@P(v);e2auvu# and such a behavior is seen over more th
ten decades. We also present analytical arguments that
port existence of bilateral exponential tails in this mod
From our analysis, it follows thata51/AD, whereD is the
amplitude of noise which simulates the input of energy in
the system.

To introduce the model, we consider a collection of p
ticles that are characterized by a single parameter, their
locity v. In this model, positions of particles are not spe
fied hence the model neglects any spatial correlatio
Particles undergo two-body inelastic collisions that chan
their velocities according to (v1 ,v2)→(v18 ,v28), where

S v18

v28
D 5S g 12g

12g g D S v1

v2
D ~1!

andg is the inelasticity parameter (0,g,1). Particles that
participate in a collision are chosen at random. In addition
the collision rule~1!, particles are subjected to the uncorr
lated white noise of strengthD. Existence of noise ensure
that the model has a well-defined nontrivial steady state
the steady state, the velocity distributionP(v) satisfies the
following equation@12#:

2DP9~v !52P~v !1
1

12gE2`

1`

duP~u!PS v2gu

12g D ,

~2!

where double prime9 denotes the second derivative wi
respect to velocity. To solve Eq.~2!, BNK introduced the
©2002 The American Physical Society01-1
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Fourier transform of the velocity distributionP̂(k)
5*dveikvP(v), which in the steady state satisfies

~11Dk2!P̂~k!5 P̂@gk# P̂@~12g!k#. ~3!

This equation admits the following solution:

P̂~k!5)
i 50

`

)
j 50

i

@11g2 j~12g!2(i 2 j )Dk2#2~ j
i
!. ~4!

After some transformations, Eq.~4! can be written as

P̂~k!5expF (
n51

`
~2Dk2!n

na2n~g! G , ~5!

where an(g)512(12g)n2gn. To obtain a large-velocity
behavior ofP(v), BNK truncate the series in Eq.~5! keeping
only the first, quadratic ink, term

P̂~k!'expF2Dk2

a2~g! G . ~6!

Subsequently, taking the inverse Fourier transform of t
Gaussian function they obtainP(v);exp(2v2/2v0

2), where
v0

252D/a2(g).
In our opinion, the above procedure of truncating the

ries and inverting the resulting function is not well justifie
The approximation~6! agrees with the exact expression~5!
only up to thek2 term of the Taylor expansion. Equally con
sistent approximation can be given as

P̂~k!'
c2

c21k2
, ~7!

wherec5Aa2(g)/D. But the inverse Fourier transform o
Eq. ~7! is (c/2)exp(2cuvu), which is qualitatively different
than the Gaussian decay obtained by BNK. Both Eqs.~6! and
~7! are consistent with the exact solution~5! up to thek2

order, but differ at the higher-orders. Apparently, the
higher-order terms qualitatively affect the large-veloc
limit of P(v). Consequently, without more detailed arg
ments such approximations are not justified. Indeed, as
will show below,P(v) has a bilateral exponential decay b
with a different coefficientc.

To check the validity of the BNK approach, we calcula
P(v) numerically as an inverse Fourier transform ofP̂(k).
One way to computeP̂(k) is to evaluate the infinite sums i
the logarithm of Eq.~4!. However, it turns out that using Eq
~5! leads to a better precision. Let us notice, however, t
the series in Eq.~5! converges but only foruku,kc51/AD.
To calculateP̂(k) for uku.kc , we can then use Eq.~3!,
provided thatgk and (12g)k fall within the range of con-
vergence. If not, we have to calculateP̂(gk) and P̂„(1
2g)k… referring again to Eq.~3!. Implementing this recur-
sive procedure, we calculatedP̂(k) and then using the fas
Fourier transformation algorithm we obtainedP(v). Our re-
sults forD51 are shown in Fig. 1. This figure clearly show
06230
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that P(v) decays exponentially. Forg50.5 and 0.8, such a
behavior is seen for more than ten decades. Forg close to
unity there is an exp(2av2) decay for small velocities which
asymptotically is replaced by the bilateral exponential de
@exp(2cuvu)#. Moreover, as shown in Fig. 1, the asympto
slopec is independent ofg and is approximately equal to 1
As we will show below this slope only depends on the a
plitude of noiseD. Before doing that let us notice that theD
dependence of the velocity distributionP(v) can be easily
inferred from the fact thatD andk enter its Fourier transform
only throughDk2 terms @see Eqs.~4! and ~5!#. From this
property, one can easily obtain that

P~v,D !5
1

AD
PS v

AD
,D51D , ~8!

where we explicitly indicated the dependence on the noiseD.
In the following, we provide some analytical argumen

showing thatP(v) decays exponentially. Let us assume th
in Eq. ~2! the second term~gain! can be neglected. Then Eq
~2! simplifies toDP9(v)5P(v) and the normalizable solu
tion reads

P~v !;e2uvu/AD. ~9!

Let us note that the exponential part isg independent~since
g enters the master equation only through the neglected
term!. Moreover, such a solution is in a very good agreem
with the numerical calculations~see Fig. 1!.

For more general models it is known that neglecting
gain term is justified forv→` when the resulting solution
decays faster than exponentially@6,7#. Our solution ~9! is
thus a marginal case. However, we can show that for
model the gain term in the limitv→` indeed can be ne
glected. First, let us evaluate the gain term for the solut
~9!. Elementary integration forD51 andv.0 gives

FIG. 1. The velocity distributionP(v) as a function ofv calcu-
lated for D51. Due to symmetry onlyv.0 part is shown. The
thick line represents the exponential function exp(2v).
1-2
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1

12gE2`

1`

du exp~2uuu!expF2Uv2gu

12g UG
5

2

2g21 Fg expS 2v
g D1~g21!expS 2v

12g D G . ~10!

One can see that since 0,g,1, the gain term decays expo
nentially with v but faster than the solution~9! @i.e., a non-
neglected loss term in Eq.~2!#. We expect that Eq.~9! is only
an asymptotic (v→`) solution of the master equation~2!.
Thus, for velocitiesu;O(1) the distributionP(u) deviates
from the asymptotic form~9!. This will modify the integral
~10!, but only in the vicinity ofu50 andu5v/g. As we
argue below, such a modification ofP(u) still leads to the
gain term decaying faster than the loss term.

Indeed, the contribution aroundu50 is a product ofP(u)
and of the exponential term exp@(2v2gu)/(12g)#. Thus, for
largev, a modification ofP(u) aroundu50 will change our
estimation~10!, but only at the order of exp@2v/(12g)#.
Similarly, one can show that a modification ofP(u) around
u5v/g will change Eq.~10! by a factor of the order of
exp(2v/g). Consequently, the gain term again decays fa
than the solutionP(v), which justifies its neglect. Let us als
notice that wheng approaches 0 or 1 the model becom
energy conserving and the bilateral exponential distribut
~9! is no longer expected to hold. But it is easy to notice t
in such cases the decay of the gain term matches the dec
the solutionP(v), and it cannot be neglected.

As a comment let us notice that knowing the second m
ment ofP(v) @12# enables us to calculate the effective te
peratureT of our systems defined as an averaged square
locity,

T5^v2&5
D

g~12g!
. ~11!

To check the validity of our calculations, we also ma
Monte Carlo simulations of this model. Results, which a
shown in Fig. 2, confirm the bilateral exponential decay
P(v) although the accuracy is this time much lower. O
Monte Carlo data are rescaled in such a way that their v
ance matches that obtained using the Fourier transf
method, and a very good agreement is seen even on
logarithmic scale.
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In conclusion, we have shown that the Maxwell mod
proposed by Ben-Naim and Krapivsky has velocity distrib
tion decaying as a bilateral exponential. Together with
recent results by Ernst and Brito@10#, it indicates that such a
decay might be of more generic nature for this class of m
els. As a possible extension, it would be desirable to exam
some other Maxwell models where velocities are not sca
but ratherd-dimensional vectors. Actually, such models we
already studied and the analysis indicates that, for increa
d, correlations between the velocities and the deviation fr
the pure Gaussian distribution decrease@13#. One possibility
is that there might be a critical dimensiondc and such that
for d,dc the velocity distribution has a bilateral exponent
decay~as in the present model!, while it has Gaussian deca
for d>dc . Analysis of such models is, however, left for th
future.

Note added.After our paper was completed, U. M. B
Marconi brought to our attention a Maxwell model of
granular mixture for which an exponential velocity distrib
tion was also obtained@14#. Morever, P. Krapivsky and E
Ben-Naim sent us another analytical derivation of an ex
nential velocity distribution for the BNK model.
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FIG. 2. Velocity distributionP(v) calculated using Monte Carlo
simulations. Simulations were made forN5105 particles. Continu-
ous lines are the results obtained from Fourier inversion. The in
shows our data in the semilogarithmic scale.
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