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Abstract

Finite-size scaling functions are investigated both for the mean-square
magnetization fluctuations and for the probability distribution of the
magnetization in the one-dimensional Ising model. The scaling functions
are evaluated in the limit of the temperature going to zero (7 — 0), the size of
the system going to infinity (N — o0) while N[1 — tanh(J/kgT)] is kept
finite (J being the nearest neighbour coupling). Exact calculations using
various boundary conditions (periodic, antiperiodic, free, block) demonstrate
explicitly how the scaling functions depend on the boundary conditions. We
also show that the block (small part of a large system) magnetization distribution
results are identical to those obtained for free boundary conditions.

PACS number: 05.50.+q

1. Introduction

Finite-size scaling has been developed intensively during the last few decades [1-4] and it
has become a standard tool in the studies of critical systems. An interesting application of
the method is using the finite-size scaling of the distribution function of the order-parameter
fluctuations as hallmarks of universality classes. The idea goes back to Bruce [5-7] who
used it, e.g., to verify that the gas—liquid transition of the two-dimensional Lennard—Jones
fluid belongs to the Ising universality class [8]. The list of applications to thermodynamic
critical points is long [9] and the idea has re-emerged in non-equilibrium critical (or effectively
critical) systems [10—13], as well.

The usefulness of scaling functions as hallmarks of universality classes depends on their
availability for comparisons. Indeed, a significant portion of the applications is about the Ising
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universality class where the scaling functions for the d = 2, 3, 4, dimensional distribution
functions are well known from simulations [14, 15] and field-theoretic results in d = 4 — € are
also available [16]. The picture gallery of scaling functions is clearly far from complete since
these functions have been systematically worked out only for surface growth models [10] and
for Gaussian 1/f*-type noise processes [13].

An important issue concerning the critical distribution functions is their dependence on the
boundary conditions (BCs). While theoretical calculations usually address periodic systems,
the building of a histogram of a physical quantity (e.g., the magnetization) in an experimental
system involves measuring the magnetizations in patches of a given size within the bulk of the
system (corresponding to block-spin magnetizations in an Ising model). As has been shown
by Binder [14], the block-spin distribution function at criticality depends on the BCs on the
block, a finding that is not entirely unexpected since the infinite-range critical correlations feel
the boundaries of the system.

The BC dependence of the scaling functions is an interesting problem and, indeed, there
has been a series of works where the PDF of the magnetization for the d = 2 Ising model at the
critical point has been investigated for various BCs [17] including some exotic ones (Mdbius
strip, Klein bottle). Similar problems have also been studied for the roughness distribution
of 1/f*-type noise processes [13]. Analytical results about BC dependence of the scaling
functions are scarce: they are restricted to Gaussian models [13], expansions around d = 4
[16] and around the spherical limit [18]. This is why we decided to revisit the d = 1 Ising
model where the effect of BCs can be seen in analytical detail.

Although the critical temperature of the d = 1 Ising model is zero, it displays non-trivial
features in its finite-size scaling as the critical point is approached. The particular case of the
distribution function of the magnetization in bulk blocks has already been discussed by Bruce
[5]. The purpose of this paper is to calculate the scaling function for the case of periodic
(PBCs), antiperiodic (APBCs), free (FBCs) and block (BBCs) boundary conditions, and thus
gauge the importance of the role played by the BCs.

For pedagogical purposes, we also compute the finite-size scaling of the magnetization
fluctuations. The calculation is elementary in this case and one can easily observe that the
periodic, antiperiodic and free BCs yield distinct scaling functions. Furthermore, one can also
see explicitly how the scaling function associated with the block BCs emerges when a small
part of a large system is used for measuring the fluctuations.

The evaluation of the magnetization distribution is somewhat more involved but can be
carried out relatively simply by using a combinatorial approach. For the periodic and free BCs,
the calculations yield non-trivial functions which are combinations of two delta peaks and a
continuum background, with the relative weight of the delta functions reduced for the case of
FBCs. The delta functions disappear entirely for antiperiodic BCs. Finally, the combinatorial
approach reproduces Bruce’s result for the BBCs and it turns out that the block scaling function
is identical to that of the FBC case.

2. Model and notation

We consider the one-dimensional Ising chain of N spins (o; = *1,i = 1,..., N) with
ferromagnetic (J > 0) coupling and with various BCs. The interaction energy of a given
configuration of spins {o;} is given by

N—-1
E({o;) = —J ) 0i0is1 — JpcoN0I )

i=1
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where J,, = J, —J, 0 for periodic, antiperiodic and free BCs respectively. The model is
exactly solvable using, e.g., the transfer matrix formalism [19], and the partition functions for
periodic BCs (upper signs) and for antiperiodic BCs (lower signs) are

7@ = 2N (cosh" K =+ sinh" K) (2)
while the correlations are given by
n 4 Uan
o yoh@ Y 3
(0i0i4n) TE oV 3)

where v = tanh K with K = J/kgT and, furthermore, 1 < i,i+n < N. The above quantities
are particularly simple for free BCs

ZE = 2N coshV ! K (010714n) ) = V", €]

Note that the correlations only depend on the distance of the two spins and not on their particular
positions within the chain. This is true not only in the periodic case but also for APBCs and
FBCs. Also note that the (p), (a) and (f) superscripts refer to periodic, antiperiodic and free
BCs respectively throughout the paper.

3. Finite-size scaling of fluctuations

The mean square fluctuations of the total magnetization M = Z[N: 1 0i can be calculated via
the spin correlations as

N
(M%) =" (oi07). ©)
i j=1
We begin with the discussion of (M?) for the periodic, free-, and antiperiodic BCs, leaving
the case of block BCs for a separate subsection.
3.1. Periodic-, free-, and antiperiodic BC

Substituting the expressions for the spin correlations (3), (4) into equation (5), one easily finds

1+v 1l —2oY
(MZ) 1 i v 1+oV PBC
1+v 1 +0V 4v
N livlivN_N(l—v)z APBC (6)
L+v _ 20 — oY)
1 - v N —0v)? FBC.
In the thermodynamic limit (N — oo) all the above expressions reduce to
(M?) l+v
= . (N
N 1—v

One can see that the fluctuations diverge as T — 0, and they have a power-law singularity
providedt =1 —v =1 —tanh J/kgT is used as the control parameter. One can also read off
(7) the value (y = 1) of the susceptibility exponent [20].

The correlation-length exponent, v, is another exponent needed in finite-size scaling. It
is obtained from the spin—spin correlations which decay exponentially in the thermodynamic
limit. The correlation length, &, defined by the exponential decay is independent of the BC

(0i0ian) Nroo = V" = e "IN/ = e7/8, (8)
and diverges for T — 0 as
1 ~1 ~1
§= ~(1—-v) =1 ©)

CIn[l = (1 —v)]
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Figure 1. Magnetization fluctuations in the scaling limit for various BCs (see equation (13)). The
scaling variable is ¢ = Nt/2.

thus providing us with v = 1. As noted by Chen and Dohm [21], the above definition of the
correlation length (rather than that found from the second moment of the correlation function)
is the appropriate one to discuss finite-size scaling for this model.

The scaling form one expects in finite-size scaling in dimension d is as follows [1]:

(M)

~a = QENTY) (10)

with N being the number of spins. Putting in the above expression d = y = v = 1, the
finite-size scaling suggestion takes the form

(M?)
N2
where m = M /N is the magnetization density.
Dividing both sides of equations (6) by N, we indeed find that (M 2y/N? = (m?) yields
well-defined scaling functions in the limit of # = 1 — v — 0 while tN = 2¢ is kept finite.
The scaling variable ¢ has a simple meaning since, in the scaling limit

= (m*) = ®(N) (1)

2¢ = Nt = NJE, (12)

i.e., 2¢ is the average number of domains (or domain walls) in the system. The actual scaling
functions are given below

%tanhg PBC

(M?)

= (m?) = { $(coth¢ — }) APBC (13)
H-1£5) FBC

and they are shown in figure 1. The functions belonging to different BC are clearly distinct
thus demonstrating explicitly the BC dependence of the scaling functions.

The scaling functions coincide for { — oo. This is understandable since large { means
large number of domain walls which means that the disordered regime is approached where
the effects of the BCs diminish. The differences in { — 0 limit can be accounted for by the
number of domain walls in the system. In particular, the ground state is completely aligned
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Figure 2. Correction to scaling for magnetization fluctuations for periodic BCs. First equation in
(6) is used to calculate (m?) = (M?)/N? for system with N = 2,4, 8, 16, 32 and oc. The scaling
variable is { = Nt/2. The 1/N dependence of the correction can be visually observed (note that
the distance from the N = oo curve is halved as N is doubled).

for PBCs and FBCs systems while it contains an arbitrarily positioned single domain wall in
the case of APBCs. As a result

(m2) () = | (m*)@ =1/3 (14)

explaining the values of the scaling functions at ¢ = 0.

The small ¢ = 0 behaviour of (m?) can be understood in terms of the smallest energy
excitations above the ground states. These excitations are obtained from the ground state by
adding a pair domain walls in the case of PBC and APBC, while they consist of a single
domain wall for FBC. Their effect is a quadratic (linear) decrease of (m?) near ¢ = 0 for PBCs
and APBCs (FBCs) systems.

We close this section with a note on the speed of convergence of the scaling
function. Looking at equation (6), one can see that (M?)/N converges exponentially to
its thermodynamic limit for PBCs, while the convergence is only power law (N ') for FBCs
and APBCs. As to the scaling function, it can be easily shown that the convergence is power
law (N~!) even in the PBCs case. More precisely, the correction term is of the form N ' g(¢)
where g(¢) < 0 with g(¢ — 0) = 0 and g(¢ — o0) = —1. Figure 2 displays (m?)
calculated from equation (6) for the PBCs case (note that for finite N and using the scaling
variable ¢, the results are meaningful only for ¢ < N). It should be clear from figure 2 that the
convergence is slow although it may appear to be quite good at small ¢ due to the particular form

of g(¢).

3.2. Block (window) boundary conditions

When studying magnetization fluctuations in an experiment, one usually divides the system into
blocks and measures the block magnetizations. The corresponding theoretical construction in
the d = 1 Ising model is to consider a block (window) of length £ at a position £ in a system
of total length N, and study the fluctuations of the block magnetization defined as

k+0—1

(MK2>: Z(O’,O’j> (15)

i,j=k
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Provided the full length of the block is within the system (i.e., it does not contain the boundary
with the coupling Jp.), the correlations entering equation (15) and, consequently, <MZZ) does
not depend on the location of the block, k, and we can write
-1
(m?) :z+22(£ — 1) (01014n). (16)

n=1
Substituting now the correlations for PBCs (3), one readily obtains an expression which
depends both on the block size £ and the system size N
(M7 1=V 14v 20—V 1!
2 1T+uN el —v) T+vy 221 —v)?

a7

where the superscript (p) denotes the periodic BCs. Introducing the ‘aspect ratio’ b = ¢/N,
and using the scaling variable ¢ = ¢(1 — v)/2, the scaling limit N — oo, £ — oo with b and
¢ finite yields the following scaling function:

)"
EZ

= (m3)” (¢ b)

| — o281 — e=201=b)/b
) (18)

1

As one can see, the scaling function goes over into the FBCs case if » — 0 while it becomes
the scaling function for the PBCs case if » = 1. The function smoothly interpolates between
the limiting cases in 0 < b < 1.

If the block is embedded in a FBC system then (M f)(f  can be deduced from the observation

that (oy014,) is independent of the system size (see equation (4)). Namely, <Mf)(f) must

coincide with (M?) for the FBCs with N replaced by £. Thus we have a scaling function (13)
which does not depend on the ‘aspect ratio’ b

( M[2>(f )
02
Finally, the fluctuations in a block embedded in an antiperiodic chain, can also be
calculated and the somewhat more complicated result has a similar structure as in the case of
embedding in a periodic chain. Namely, changing the aspect ratio from b = 1 to b = 0, the
result interpolates between the APBCs and the FBCs scaling functions in equation (6).
The common feature of all the above results is that the BCs become irrelevant in the limit
b — 0 where the block is much smaller than the system. Furthermore, we find that this bulk
behaviour coincides with the FBCs result. Whether this coincidence with the FBCs result is
a general feature of bulk fluctuations is not quite clear and should be investigated in more
complicated and higher dimensional systems.

= (m2)" (¢, b) = M) D (). (19)

4. Magnetization distribution

If at a given temperature, i.e., at a given correlation length, the system size goes to infinity
then the magnetization distribution goes to a Gaussian around zero due to the central limit
theorem, and goes eventually to a Dirac delta function

lim lim P(m) = §(0). (20)
T—0 N—oo
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On the other hand, at any given system size as the temperature goes to zero, i.¢., the correlation
length goes to infinity, the magnetization goes to either plus or minus one, and the distribution
becomes

lim lim P(m) = %[8(m+1)+8(m— DI (21)

N—ooT—0

The importance of the { = Nt /2 scaling variable is that if N — oo and T — 0 in such a way
that the correlation length is always proportional to the system size ( i.e., ¢ is a constant (12))
then a non-tirivial distribution arises even for the d = 1 Ising model.

The meaning of ¢ suggests the development of a small ¢ (small number g of domain walls)
expansion. Thus we shall first calculate P, (M), the probability of a given magnetization in the
presence of ¢ domain walls. Once P, (M) is known, the probability of a given magnetization
P (M) can be obtained by summing up Py (M)

P(M) =" P,(M). (22)
8

The states with ¢ domain walls are degenerate as their energy E, depends only on the number
of walls

g =

(23)

J(2g — N) PBC APBC
J2g —N+1) FBC.

Thus, the calculation P, (M) reduces to counting all possible spin configurations €2, (M) at
given g and M values

—Eg/ksT
P,(M) = Tﬂg(M). (24)

Here Z is the partition function corresponding to a given BC which, in the scaling limit,
becomes

2eNK cosh ¢ PBC

Z = {2eNKsinh¢ APBC (25)
2eW-DKet FBC.
For g = 0, i.e., if there is no domain wall in the configurations
Qo(M) =Su.n +8u,—n- (26)

For g > 0, let W; be the position of the jth wall (say W; = i when it is just before o0;)
with j =1,...,¢g,ie, W; < Wy, for j =1,..., g — 1, and also note that by definition
Wi > 0and W, < N. Let us denote the magnetization of the domain between W; and W, by
M. Now, it is sufficient to obtain the number of configurations with the restriction M; > 0
and denote it as Q;(M ),

Q, (M) = QM) + QL (—M). Q7

Note that fixed magnetization also means fixed number of upspins Ny = (N + M)/2 and
downspins N| = (N — M) /2.

4.1. Periodic boundary conditions

PBCs enforce the number of domain walls to be always even g = 2s, withs =0, ..., [N/2],
where [ ] stands for the integer part. As there is at least one spin after each domain wall, we
can imagine those spins as being attached to the walls. A typical configuration looks like

WA W) 1 Wa )) L (W 1) L (28)
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Now counting all the possible configurations is equivalent to distributing in all possible ways
the Ny — s (not attached) upspins among the s up domains (those domains where the spins
are up, i.e., between W,;_; and W,;) and independently distributing the N| — s (not attached)
downspins among the s + 1 down domains (between W;; and W;;,, also in front of W; and

behind W)
Ny —1\ (N
SHAM)=(Sﬂ_1)(;). (29)

Note that the binomial coefficient (7)) = 0 for a < b, which reflects the fact that there are no

configurations with more domain walls than either 2N or 2N, i.e., s < min(N4, N). With
formula (27) one can easily arrive at 2, without restriction on the sign of M

_(Ny =1\ [N)\ (N, =1\ (N,
oson=(*-)(2)+(-)(%)

In the N — oo limit, for fix ny = Ny/N and ny = N /N the number of configurations
becomes

(nTn i)x—l
slis — DU
In this limit we also need to switch from the discrete probabilities P (M) to the probability

density P (m), which brings in a factor N /2, and substituting equation (31) into equation (24)
leads to

Qo (M) = N*~! 31)

NK

e
Py (m) = m

Now the scaling limit can be finally taken using (25), and for s = 0 one realizes that the
expression of equation (26) develops singularities

e—4SKN2S (nTn‘L)x_]' (32)

Po(m) = [8(m+1)+8(m — 1)]. (33)

2cosh¢
For s # 0, using ¢ = N e 2 leads to the final result for the magnetization distribution with a
fixed 2s number of walls
(/2> (1 —m?)~!
Py (m) = / . (34
s!(s — 1)!cosh¢

It becomes clear at this point that we are doing a small ¢ expansion and that a fixed 2s number
of domain walls belongs to the order 2s of the expansion.

The magnetization distribution without restrictions on the number of walls can be obtained
from equation (22) which is valid also in the continuum limit

[o.¢]
P(m) =) Py(m). (39)

s=0

Using the series form of the modified Bessel functions
oo
(x/2)2k+v

I,(x) = —_— 36
0 ;k!(k+v)l 50)

leads to the final expression for periodic BCs

PP (m) = [S(m+1)+8(m — 1 Li(¢V1 —m?). (37)

1 )] + ;
2cosh¢ 2mcosh§

The above function is displayed in figure 3.
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P(m)

Figure 3. Magnetization distribution P (m) in the d = 1 Ising model with periodic BCs in the
T — 0and N — oo limit as a function of m = M /N with the scaling variable { = Nt/2 fixed
at values ¢ = 1, 2, 4, 8, 16 (from bottom at origin). The arrows symbolize the singular parts
~§(m =+ 1) of the distributions of equation (37).

One can easily check that P (m) is normalized, i.e., fll dm P(m) = 1, by changing the
integration variable m to 6 = arcsin m and using the series form of equation (36). In the same
way the expression for the second moment of P (m) in equation (13) can also be obtained.

One can investigate the speed of convergence in N of the magnetization distribution
P (m) of equation (37). Instead of making Monte Carlo simulations on the Ising model we
calculated numerically the probabilities of possible magnetizations for finite chains, based on
equations (24) and (35), and multiplied the results by (N + 1)/2 for the sake of comparison
with the probability density P (m) in the scaling limit

[N/2]
N+1 ,
Pm, N) = —— eV K Q) (M) (38)
s=0

where Q,(M) is given by equation (26), (30), and K = arctanh(l — 2{/N). Equation (38)
can be easily evaluated numerically, as the the computation time increases linearly with N as
opposed to the exponentially long time needed to encounter all possible configurations. One
observes in figure 4 that the convergence is faster for smaller values of ¢, in agreement with
figure 2.

4.2. Antiperiodic boundary conditions

The main difference from the periodic case is that the number of domain wallsisodd g = 2s—1,
withs =1, ..., [(N +1)/2]. As there has to be at least one domain wall in each configuration
there are no Dirac delta peaks at m = %1 in the distribution. A typical configuration looks
like

W WD)t Wa ) J b (W 1) 111 (39)

The number of configurations with the restriction of M; > 0 is

Ny —1 N
(M) = ( O )(s - 1) (40)
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1.2 ]

P(m)

Figure 4. Magnetization distribution P (m) for periodic BCs in the N — oo limit (only the
regular part of equation (37) is depicted) compared to its finite N = 20 (square), 40 (circle), and
80 (triangle) forms of equation (38) with the scaling variable being ¢ = 3 (closed symbols), and 6
(open symbols). Observe the evolving singularities at m = %1 for finite systems (closed triangles
are out of range).

as we have Ny — s free upspins to distribute into s up domains and N, — s + 1 free downspins
for s down domains. In the continuum limit the number of configurations becomes

L (npny)T!
Qoy_ (M) =2N» 2122 41
25-1(M) G_DP (4D
and the magnetization distribution with fixed number of walls (24) reads
2 2s—1 1 — 2ys—1
Py gy = &2 U= “2)

(s — 1)!2sinh ¢
Summing this expression up over the possible number of walls (22) leads to the final result

PO(m) = - (V1 —m?). (43)

¢
—1
sinh ¢

4.3. Free boundary conditions

In the case of free BCs the number of domain walls can be both even g = 2s andodd g = 25 —1
with s = 1,...,[N/2]. The only difference in counting all possible configurations, with a
given g, M, and the condition M; > 0, is the supplementary restriction that there always has to
be a down spin before the first wall for obvious reasons, which can be visualized as (| W; 1)
in example (28). Now the number of configurations can be easily obtained

Ny —1\ /N, —1

o on = (V) ()
Ny —1\ /N, —1

o= (7))

and one observes that in the scaling limit they are equal to the corresponding periodic (31) or

antiperiodic (41) result, i.e., Qg)(M) = Q(z’;)(M) and Q(2{>—l M) = Qéf)_l (M). The energies
of both the even and odd states are greater than the energies of the corresponding periodic and

(44)
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14

:
periodic

free ———
. antiperiodic

P(m)

Figure 5. Comparison of the regular parts of the magnetization distribution P (m) for periodic,
antiperiodic, and free BCs in the scaling limit, with the scaling variable being ¢ = 1, 4, and 10
(from bottom at origin). Note that the Dirac deltas at m = %1 of the periodic and the free case are
not displayed.

antiperiodic states (23) by J and thus we can write the scaling limit of the probability of a
given M as

e—E /s

7

R g =0 (45)
ELPO(M) g=2s—1.

Pg(f)(M) Q((gf)(M)

Using equations (25), one finds that the prefactors of the distributions depend only on ¢,
thus collecting the contributions with different number of domain walls (22), we obtain an
expression for P D (m) through P 7@ (m)

PP (m) = e *[cosh ¢ PP (m) + sinh ¢ P (m)] (46)

which leads to

- - =
P (m) = 67[5(m + 1) +80m — D]+ ﬁll(;m —m?)+ “; Io(¢V/1 = m?).

47

As we shall see in the following section, the above expression applies for bulk BC as well.
The bulk result was obtained previously by Bruce (see [5] equation (3.20)). Note also that the
relationship established between the distributions for different BCs (46) is certainly valid for
the fluctuations of the magnetization (13) as well.

One should note that the coefficient of the singular part is larger for the periodic case, i.e.,
a periodic system is more likely to be in the completely ordered steady state. This is expected
due to the lower energy of the states with 2s — 1 domain walls than that with 2s domain walls.
In figure 5 we display the non-singular part of the distributions. This non-singular part also
shows the expected sequence from PBCs resulting in the most ordered state to APBCs yielding
the most disordered state.
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4.4. Block boundary conditions

We start with the simplest case, i.e., impose free BCs on the chain and investigate the
magnetization of a finite segment (block) of length £. As we shall show the distribution
of M, is identical to the free end result for any £. In order to see this, consider the Boltzmann
weight of a configuration of the spins for the segment of spins between oy and 0;,—+¢

N—1
Z{U}I.k—l-{a}nﬂ,N 28% (K Z Ujaj+1)

j=1
P({O'ka e G’l}) =

(48)
N-1

2 (o)1 XP <If )y 0707+1)
j:

where > (o) denotes summing over possible values of the spins between sites 7 and j. One

can ‘integrate out’ the end spin oy = %1 in both the numerator and the denominator yielding

cancelling factors eX +e~X. This can be repeated till the spin oy, is reached and then the same
can be done starting from the other end (o) of the chain. As a result one obtains

P({Gk, cee G’l}) =

(49)

This is the free end probability distribution for the spins in the segment [k, k + £], thus the
magnetization distribution P (m;), with m; = M, /¢, is identical to the FBCs case given by
equation (47), i.e., PP (my) = P (m).

The above derivation does not hold for chains with PBCs and APBCs and one expects
that the P(M,) depends on the aspect ratio b = ¢/N. In the b — 0 limit, i.e., when the
window size is relatively small, however, P (M,) becomes independent from the BCs imposed
on the whole chain. More precisely, this happens in the scaling limit £, N — oo, — 0 with
¢ ={t/2 and b = £/N kept constant, a limit where the correlation length & ~ ¢ < N and
the effects of the boundaries of the chain can be neglected.

4.5. Asymptotic regimes

The small ¢ expansion is already given by equation (22). For sufficiently small ¢ the
distribution P (m) can be approximated by the first few terms, e.g., the Dirac delta functions
(except for the antiperiodic case) plus a constant probability density for all BCs.

For large values of ¢ a Gaussian approximation can be obtained using only the first term
of the large x asymptotic of the Bessel functions

eX
N 2mx

and using also the condition m < 1, where P (m) significantly differs from zero, due to the

factor exp(¢+/1 — m?)

P(m) ~

I (x) ~ Iop(x) ~

(50)

1
V2L

P (m) eventually evolves to a Dirac delta function § (m) for ¢ — oo.

e /2, (51)
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5. Final remarks

The fluctuations of the magnetization in the one-dimensional Ising model have been
investigated near its critical point in the limit of 7 — 0 and N — oo with the average
number of domain walls (2¢ = Nr) kept constant. A simple combinatorial derivation
has been presented for the magnetization distributions and it was shown that in this limit
these distributions are non-trivial well-defined functions of the magnetization and the control
parameter ¢.

The ¢ dependence of the magnetization distribution should be emphasized, as it means
that the order parameter distribution of a system can, in general, depend on the way the critical
point is approached and the thermodynamic limit is taken.

We focused our attention on the effect of boundary conditions, namely we imposed
periodic, antiperiodic and free BCs on the chain. The magnetization distributions are shown
to be sensitive to the BCs and well distinguishable for all values of ¢. For antiperiodic BCs
the distributions differ fundamentally from the periodic and free BCs case (lack of Dirac delta
peaks for APBCs).

We also showed that the distribution of the magnetization of a segment (BBCs) of the
whole chain with FBCs coincide with the distribution of the total magnetization, independently
of the size of the segment. For PBCs or APBCs chains the above statement is true only if the
relative segment size b goes to zero.

It is worth mentioning the analogies to a simple random walk. The corresponding quantity
is the distribution of the width of the walk (mean square deviation of the position of the walker),
and for that two distinct functions have been exactly derived for periodic and free BCs [13].
The qualitative behaviour of BBCs is also the same as that of the Ising model discussed above.

It would be very interesting to see similar calculations for the order parameter distribution
in other equilibrium one-dimensional models, e.g., the classical and quantum XY and
Heisenberg models, or non-equilibrium ones, e.g., absorbing state phase transitions.
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