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Formation of Liesegang patterns: Simulations using a kinetic Ising model
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A kinetic Ising model description of Liesegang phenomena is studied using Monte Carlo
simulations. The model takes into account thermal fluctuations, contains noise in the chemical
reactions, and its control parameters are experimentally accessible. We find that noisy, irregular
precipitation takes place in dimensiond52 while, depending on the values of the control
parameters, either irregular patterns or precipitation bands satisfying the regular spacing law emerge
in d53. © 2001 American Institute of Physics.@DOI: 10.1063/1.1342858#
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I. INTRODUCTION

Quasiperiodic precipitation patterns emerging in t
wake of chemical reaction fronts are called Liesega
patterns.1,2 They have been studied for more than a cent
and a number of theoretical approaches have been devel
to explain the experimental observations.3 Nevertheless, it
was only recently that a model with input parameters few
than the number of static and dynamic parameters chara
izing the patterns has appeared.4

This last theory is based on the assumption that the m
ingredients of a macroscopic description should be a mov
reaction front and the phase separation of the reaction p
uct behind the front. Taking the properties of the react
front from the theory of the fronts in theA1B→C process5

and describing the phase separation process by the C
Hilliard equation,6 one arrives at a model with a minima
number of parameters.

The above theory successfully explains that the positi
xn of the precipitation bands form a geometric series,xn

;(11p)n ~spacing law7!, and gives the spacing coefficien
p in terms of the initial concentrations of the reactantsA and
B in agreement with the Matalon–Packter Law.8,9 Further-
more, the parameters in the model can be determined f
experiments and the time scale of the emergence of a b
can be calculated.10 Finally, the width law relating the posi
tion and the width of the bands can also be derived10,11 in
agreement with observations.12

The success and versatility notwithstanding, this the
needs further developments since, in its present form,4 it is a
mean field theory without the fluctuations being accoun
for. There are two ways to include the fluctuations. One is
add conserved thermal noise to the Cahn–Hilliard equa
as it is done in Model B of critical dynamics.13 In this case,
there would be an additional problem of handling the no
3770021-9606/2001/114(8)/3770/6/$18.00
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in the reaction zone. It has been shown,14 however, that this
noise is irrelevant ford.2 so, in principle, it could be ne
glected.

In this work, another approach is taken for including t
fluctuations. Namely, we shall study the kinetic Ising mod
version of the process and thus include the noise through
probabilistic description of the transitions between discr
states of the system.

There are several reasons for our choice. First, the p
lem of difference between the handling of fluctuations in t
diffusive and reaction processes does not arise. Second
kinetic Ising version of the model has a meaning of a me
scopic ~or perhaps a microscopic! description. Since the
mechanism of band formation may be at work at a leng
scale that makes possible the construction of submicron
segang structures, this kinetic Ising model approach m
have a direct bearing on future experiments.15 Third, our
choice was also influenced by having more expertise
simulations of kinetic Ising models.

We shall start~Sec. II! by a detailed discussion of th
kinetic Ising model designed to describe the band formati
The simulation results for this model are presented in S
III. First, the d52 case is treated where we do not fin
regular band formation. Then thed53 simulations are dis-
cussed which show the emergence of Liesegang patterns
isfying the usual spacing law. A summary, suggestions
experiments, and comments about a possible compariso
the parameters in the Cahn–Hilliard and the kinetic Is
model description can be found in Sec. IV.

II. KINETIC ISING MODEL DESCRIPTION

A. General aspects of the theory

The aim of the theories of Liesegang phenomena is
explain how a high-concentration electrolyteA diffuses into
0 © 2001 American Institute of Physics
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3771J. Chem. Phys., Vol. 114, No. 8, 22 February 2001 Formation of Liesegang patterns
a gel soaked by a low-concentration electrolyteB and how
the spatial distribution of the precipitateD is formed in the
wake of the diffusive reaction front. Accordingly, all th
theories follow the scheme

A1B→C→D, ~1!

whereC is an intermediate reaction product which is gen
ally not very well known. This uncertainty is then the bas
for the existence of a number of competing theories16–23with
the differences arising from the interpretation ofC and from
the level of details in the description of the dynamics ofC’s.
A significant drawback of all these theories is that they c
tain a large number of parameters and many of them
uncontrollable experimentally. Thus it is not entirely surpr
ing that thorough comparisons between experiments
theories have not been carried out.

B. Cahn–Hilliard equation with source

In our view, the uncertainty about the intermediate pro
uct and its dynamics can be used to advantage in buildin
general theory of band formation. One can interpret the c
centration ofC’s, c, as a kind oforder parameterthat takes
a value cp in the ordered~precipitate! phase and anothe
valuecg in the disordered~low-density! phase. TheC’s are
obtained from theA1B→C process so they are produced
the reaction zone. Furthermore, the dynamics ofC’s obeys
global conservation and it should be a phase-separation
dynamics since, in the expected final state, one has reg
of high-~precipitation! and low-density~interband! regions in
equilibrium. This phase-separation dynamics can be
scribed on a coarse-grained level by the Cahn–Hilli
equation6 with the generation ofC appearing as an additiona
source term. The resulting equation for the space- and ti
dependent order-parameter density,c(x,t) is given by4

] tc52lDFd f ~c!

dc
1sDcG1S~x,t !. ~2!

Herel is a kinetic coefficient,f (c) is the Landau–Ginzburg
free energy of the system which should have two eq
minima atc5cp andc5cg . The termsDc with s.0 pro-
vides stability against short-wavelength fluctuations, and
nally S(x,t) is the production rate ofC’s in the reaction-
diffusion processA1B→C. The properties of the source a
known.5,24,25It is localized, its center,xf , moves diffusively
(xf5A2D ft), and it leaves behind a uniform concentrati
c0 of C’s.

The parametersl ands in Eq. ~2! can be used to set th
time-scale and length-scale, respectively, and the sourcS,
is completely specified by the initial densities (a0 ,b0) and
diffusion constants (D5Da'Db) of A andB.5,24,25Only the
function f (c) remains to be parameterized. One expects
the details of this function will not affect the overall prope
ties of the pattern-formation process, the existence of
minima atcp andcg being the only important feature. Thu
assuming, e.g., a coexistence curve that is symmetric a
c̄5(cp1cg)/2, one can parametrize this function asf (c)
52e(c2 c̄)21g(c2 c̄)4. The scale of the concentration ca
be set by the parameterg ande remains a free parameter i
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the theory. Consequently, one has a theory which has on
single adjustable parameter apart from the parameters se
the scale of the length, time, and the concentration field.

As discussed in the Introduction, all the observed g
eral features of Liesegang phenomena can be derived f
the above theory,4 including the time scale of the emergen
of a single band and the length-scale for the width of
bands.10,11Actually, it is somewhat surprising that the mea
field level description in terms of Eq.~2! performs so well.
The reason for this may lie in the experimental observat
that the patterns are frozen~they do not evolve over time
scales extending up to 30 years2! meaning that the dynamic
takes place at a very low effective temperature, i.e., the n
is negligible.

The noise may indeed be negligible in the late stages
the formation of precipitation bands but the initial stag
should be related to some instabilities and there the fluc
tions should play a more prominent role. In particular, t
mean-field description relies on a spinodal-decomposition
stability ~the moving front generates particles and pushes
concentration past the spinodal! and the possibility for the
precipitation to take place through a nucleation-and-grow
mechanism~where the fluctuations are important! is com-
pletely lost.

C. Kinetic Ising model with Kawasaki ¿Glauber
dynamics

In order to include fluctuations in the Liesegang proce
a kinetic Ising model will now be considered that is, w
believe, a finite-temperature extension of the theory emb
ied in Eq.~2!. The model introduced below can be viewed
two ways. Either it is a discretization scheme to Eq.~2! and
then the description is on a mesoscopic level withc(x,t)
being the discretized concentration of the order parameteC.
Or, it can also be viewed as a simulation of the stocha
motion of C’s which are now particles at microscopic scal
~in this case the coarse graining has been carried out in tim!.
In the following we shall use the latter ‘‘particle’’ language

Let us begin the introduction of discretized descripti
by identifying the particlesC with the up-spins of an Ising
model on a hypercubic lattice. Then the down-spin sites
empty places and the formation of precipitation bands
modeled by a combination of spin-flip and spin-exchan
dynamics.26 Namely, the initial state is prepared with a
spins down~no C particles present! and the localized front
flips the down spins~Glauber dynamics27! thus producing the
C’s. The flip ratewr at siter is given by

wr5S~x,t ! 1
2~12s r !, ~3!

where s r561 is the Ising spin at siter5(x,r') with x
being the coordinate in the direction of the motion of t
reaction front whiler' representing the coordinates in th
transverse direction~length is measured in units of the lattic
spacinga!. The factor (12s r) ensures that the front flips
only down spins~the particles are produced in the front an
the back reaction is negligible!. Finally, S(x,t) is a function
describing the motion of the reaction front and the change
the reaction rate with time. The front is assumed to be
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mogeneous in the transverse direction and its actual sh
S(x,t), can be taken from the solution and simulations of
A1B→C process.5,28 Since the width of the reaction zone
small and it changes with time very slowly, for all practic
purposes, the functionS(x,t) can be approximated by a con
stant within a small interval@xf2D, xf1D# around the cen-
ter of the reaction zonexf5A2D ft,

S~x,t !5
A

At
u~x2xf1D!u~xf1D2x!, ~4!

whereu(x) is the step function and the amplitude

A5
A2D f

4D
c0 ~5!

is chosen such that the front leaves behind a constantc0)
concentration of particles.3,5

Once the particles are created, they diffuse and inter
This part of the dynamics can be described by a spin
change process~Kawasaki dynamics29!. The rates of the ex-
changes are assumed to satisfy detailed balance at tem
tureT with ferromagnetic coupling (J.0) between the spins
in order to describe the expected attraction among theC’s.
Assuming the usual nearest-neighbor Ising Hamiltonian,

H52J (
^r ,r8&

s rs r8 , ~6!

the rate of exchange between neighboring sitesr andr 8 can
be chosen to be29

wr↔r85
1

te
@11edE/~kBT!#21, ~7!

wherete sets the time scale,T and kB are the temperature
and the Boltzmann constant, respectively, anddE is the
change in the energydE5dH(s r↔s r8) due to the ex-
change of spins atr and r 8.

Without the spin-flip dynamics, the system would rel
to the equilibrium of the Ising model at temperatureT and at
fixed magnetization. Thus choosing the temperature
enough~below Tc of the Ising model! and making the spin-
flip front produce the right magnetization density, the syst
will be in the unstable part of the phase diagram of the Is
model and phase separation will take place. If this mo
represents the pattern forming process correctly then one
pects the emergence of bands of up and down spins in
wake of the moving spin-flip front.

III. SIMULATION RESULTS

A. Parameters

Monte Carlo simulations of the kinetic Ising model d
scribed above have been performed in dimensionsd52 and
3. The dimension-specific properties of the lattices used
the simulations will be given in the appropriate subsectio
below. Here we enumerate and discuss only those adjus
parameters which are used independently of dimension:
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~1! The temperatureT is measured in units ofJ/kB , whereJ
is the nearest-neighbor coupling of the Ising model~6!.
It is clear from the considerations of the previous sect
that T,Tc should be used.

~2! The particle concentration,c0 , deposited by the front
must be chosen so that, at the givenT, it places the
system in the metastable or unstable region of the ph
diagram of the Ising model.

~3! Length is measured in units of the lattice spacinga. It
should be noted that the value ofa depends on the inter
pretation ofC anda can be a microscopic length-scale
well as a mesoscopic one.

~4! Time is measured in units of the ‘‘microscopic’’ tim
scale te @see Eq.~7!#. Again, this time scale may be
coming from microscopic or mesoscopic processes
pending on the interpretation ofC.

~5! The diffusion coefficient of the front (D f) is, in prin-
ciple, a well defined quantity.5 The uncertainty of the
connection between the microscopic and macrosco
length- and time-scales, however, makes it difficult to
a value forD f in terms ofa andte . We shall thus treat
D f as a parameter that can be freely varied.

~6! The width of the reaction front~2D! does not appear to
influence the emerging patterns~this is the experience
both from the mean-field theory4 and from small scale
simulations!. Thus, in most of our simulations, we se
D51/2, i.e., the front coincides with one of the lattic
planes perpendicular to the motion of the front.

The three important parameters areT, c0 , andD f , and
one should search for pattern formation in this thre
dimensional parameter space. This is not necessarily an
task since it is known, both experimentally2 and
theoretically,21 that patterns are formed only in a restricte
domain of the available free parameters. Since our searc
finite, our statements~especially about the absence of pa
terns! are always pertinent only to the parameter domain
vestigated.

B. Two-dimensional simulations

Simulations have been performed on stripes of lengthLx

and widthLy550 or 100 with periodic boundary condition
in the transverse (y) direction. Lx was chosen to be long
enough so that no end effects would be observed withLx

53000 being a typical value. The initial position of the fro
was always atx51 and we used closed boundary conditio
~no particle crossing! at bothx50 andx5Lx .

The possible formation of patterns was investigated
the following ranges of the adjustable parameters, 0.02<T
<1.5, 0.01<D f<1, and 0.05<c0<0.5. About 200 sets of
values have been studied in the above domain and no reg
patterns were observed. A typical result is displayed in Fig
for T50.7, D f50.025, andc050.3.

We have also made a few simulations outside of
above domain in order to check the possible strong effec
the changes in a single parameter. These nonsystem
searches did not lead to pattern-forming regimes either.

We have extended the simulations to cases where
interactions are not restricted to nearest neighbors but ex
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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up to seven lattice spacings. No patterns were found,
though the randomness of the pattern slightly decrea
when the range of the interaction was increased. This is
pected as in the limit of long-range interactions one sho
reach a continuum, noiseless limit. Thus the Cahn–Hilli
description@Eq. ~2!# should apply and we should observ
regular band formation.

The nonexistence of regular banding should not be c
sidered as a contradiction with the experimental observat
of d52 Liesegang patterns. The experimental systems
ways have macroscopic width in the third dimension and
appears to stabilize the patterns. Indeed, Fig. 2 shows a s
lation with the same parameters as those in Fig. 1, excep
extra layer in the third dimension is added. As one can s
the bands in the two-layer system are much better defi
and they display some regularity. Note in particular, that
concentration within the bands in Fig. 2 has reached
equilibrium value (c'cp'1) while the maximum concen
tration regions in Fig. 1 are roughly halfway in between t
equilibrium values,cg'0 andcp'1.

FIG. 1. Concentration profile ofC’s averaged over the transverse directi
for a two-dimensional pattern obtained in a stripe of size 5033000 withT
50.7,D f50.025, andc050.3. The distance along the slab (x) is measured
in units of the lattice spacing. The dotted line shows the position of the f
at the time (t51.83107) the concentration was measured. The time is
units of the inverse of the rate of hopping for freeC particles (te).

FIG. 2. Concentration pattern in a system of size 503233000. The param-
etersT, D f , andc0 and the notations are the same as on Fig. 1. The do
line shows the position of the front.
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C. Three-dimensional simulations

The simulations were performed on slabs of lengthLx

and of cross section of sizeLy3Lz . Periodic boundary con-
ditions were used in the transverse (y,z) directions while
closed boundary conditions were employed at the two e
of the slabs. As in the two-dimensional case,Lx was chosen
so (Lx'3000) as to avoid end effects from the transve
wall at x5Lx . Most of the simulations were done forLy

5Lz[L510, 20, and 40 in order to observe finite-size e
fects. The initial condition was again an empty~all spins
down! state with the front situated atx51.

Precipitation patterns were observed forT<1 if c0

>0.25 was chosen well in the metastable or unstable reg
of the phase diagram of thed53 Ising model. For large front
diffusion (D f>1), these patterns were not regularly spac
and were not stable. Namely, coarsening was obser
within reasonable observation time~time of formation of
about 7–10 bands!. A typical example is shown on Fig. 3.

The bands are more stable at lower temperaturesT
<0.8) and their spacing becomes more regular, as the f
diffusion coefficient is decreased belowD f<0.1. For D f

<0.05, one observes the emergence of Liesegang-type
patterns, typical examples being those shown on Figs. 4~a!–
4~c!. In this case, the system is of size (L3L33000) and the
parameter values used areT50.7, D f50.025, andc050.3.
Results of runs for three cross sections (L510, 20, and 40!
are displayed. Comparing these pictures, one cannot see
obvious finite-size trends.

In order to investigate the spacing law one would nee
large number of bands. Unfortunately, in the regime wh
the best Liesegang-type patterns are obtained one is
stricted in the extent of explorations by the computing
sources. Due to the low value ofD f , the front is moving
very slowly and consequently the computation time for o
taining, e.g., 10 bands becomes very large. The CPU t
necessary to produce the pattern in Fig. 4~a! was about 1500
h on a Sun Ultra-10 workstation.

Figure 4 shows roughly the limits of the possibilities
our simulations at present. To establish the spacing
firmly, we would certainly need more bands. Using the l
4–6 bands obtained from pictures similar to those on Fig
one can see that the positions of the bands (xn) do approxi-
mate a geometric seriesxn;(11p)n well, and one can ex-
tract an approximate the spacing parameter,p. In general, we
find that the spacing coefficient does not show discern
finite-size trends. For example, the spacing parameterp
'0.17 for all values ofL in Fig. 4.

An interesting feature of the patterns emerging in o
simulations is the presence of material~C! in between the
bands@see Figs. 3~a!–3~c! and 4~a!–4~c!#. Of course, it is not
entirely clear whether part of this material should be cons
ered as a low density precipitate~seen in many experiments2!
or should it be just regarded as a ‘‘gas’’ phase of particlesC.
Visual inspection of the interband region reveals the pr
ence of both small clusters and single particles. The sm
clusters live long~especially at lower temperatures!, their
lifetime is comparable to the time of formation of sever
bands. Thus the interpretation of part of the interband ma
rial as low density precipitate may have some validity.

t

d
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3774 J. Chem. Phys., Vol. 114, No. 8, 22 February 2001 Antal et al.
order to make progress in this problem, one would ne
larger scale simulations as well as more understanding o
connection between the microscopic and macroscopic ti
and length-scales.

IV. FINAL REMARKS

Apart from the simplicity, an important feature of ou
model is that fluctuations are included. A frequent con
quence of the presence of fluctuations is the disappearan
order in low dimensions and, indeed, our simulations a

FIG. 3. Time evolution of the concentration ofC particles averaged over th
transverse (y,z) directions in slabs of size 2032033000. The parameters
~T51.0, D f51.0, c050.4) were chosen to be in the ‘‘coarsening patter
regime. The time is given in units ofte that is the inverse of the rate o
hopping for freeC particles. The distance along the slab (x) is measured in
units of the lattice spacing. The dotted lines show the positions of the r
tion front at timet.
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indicate that Liesegang type patterns are absent ind52 di-
mension while they exist ind53 dimensional samples.

Another advantage of including the noise is that t
model has pattern-forming regimes which have characte
tics of either the prenucleation theories20,21 or the postnucle-
ation competitive growth theories.22 Indeed, one can se
@Fig. 4~b!# that the bands are forming at the position of t
reaction front forD f small, while the bands are formed as
result of coarsening and competitive growth well behind
front in case of largeD f ~Fig. 3!. Note that the absence o
Liesegang-type patterns in the second regime is in agreem
with the inability of producing such patterns in postnuclati
competitive growth theories.22

We feel that the most important feature of the mode
that it makes clear that the important and experimenta
controllable parameters areT, c0 , andD f . Indeed, bothc0

c-

FIG. 4. Concentration averaged over the transverse (y,z) directions in slabs
of sizeL3L33000. The values of the parameters (T50.7,D f50.025, and
c050.3) are the same for three transverse sizesL540 ~a!, L520 ~b!, and
L510 ~c!. The distance along the slab (x) is measured in units of the lattice
spacing. The dotted lines show the positions of the reaction front@the front
is off the scale on Fig. 4~c!#.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3775J. Chem. Phys., Vol. 114, No. 8, 22 February 2001 Formation of Liesegang patterns
andD f are known functions of the initial densities (a0 ,b0)
and diffusion constants (D5Da'Db) of reagentsA and B
the A1B→C reaction.5,24,25 Although the diffusion con-
stantsDa andDb are usually not controllable,a0 andb0 can
be set to given values and, consequently,c0 andD f can be
varied independently.

Among the three parameters, a change inT leads to un-
predictable changes in the various diffusion coefficients
background processes in a real Liesegang experiment~for
example, the diffusion coefficients of the background io
may also be important30 in determining the spacing coeffi
cient!. Thus it is advisable to keep the temperature const
and the most promising and, indeed, most often used wa
looking for trends in experiments8,9 is the change of the con
centrations of the inner and outer electrolytes (a0 andb0).

An obvious consequence of our simulations is that o
should be able to observe a crossover from prenuclea
regime to a regime where postnucleation processes are d
nant. Namely this could be achieved by tuninga0 andb0 in
such a way that, at fixedc0 , the front diffusion coefficient
D f would be varied over as much a range as possible.

In closing, let us discuss the possible connection
tween the parameters in the kinetic Ising model and in
Cahn–Hilliard equation. There is a long history of trying
derive hydrodynamical equations~such as the Cahn–Hilliard
equation! from kinetic Ising models31–36 by taking a naive
continuum limit. These works have been most importan
identifying Langevin equations of correct symmetry in t
continuum limit but, in general, they have not been useful
deriving macroscopic parameter values. The reason for
failure is quite clear. On the way from microscopics to ma
roscopics, one changes the length-scale by several ord
magnitudes and one must average over the the microsc
degrees of freedom. This averaging renormalizes the par
eters but, in taking the naive continuum limit, the averag
is not carried out or carried out in a highly simplified an
uncontrolled manner. Thus, a meaningful comparison of
Cahn–Hilliard and the kinetic Ising model description of t
Liesegang phenomena is a nontrivial matter and it has
been dealt with in this paper.

We note, however, that there may be a phenomenol
cal ~‘‘experimental’’! way to do the comparison. Namely
one can investigate the various patterns produced by the
models in the various regions of the parameter space
make a fit of matching parameter values by searching
matching patterns. The problem with this type of approac
that, at present, the production of patterns by the kin
Ising model is limited to a few bands~see Fig. 4! due to
limited computer power. One expects, however, that
available computer power will be soon sufficient to carry o
the above project.
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