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Liesegang patterns emerge from precipitation processes and may be used to build bulk structures at submi-
crometer length scales. Thus they have significant potential for technological applications provided adequate
methods of control can be devised. Here we describe a simple, physically realizable pattern control based on
the notion of driven precipitation, meaning that the phase separation is governed by a guiding field such as, for
example, a temperature or pH field. The phase separation is modeled through a nonautonomous Cahn-Hilliard
equation whose spinodal is determined by the evolving guiding field. Control over the dynamics of the
spinodal gives control over the velocity of the instability front that separates the stable and unstable regions of
the system. Since the wavelength of the pattern is largely determined by this velocity, the distance between
successive precipitation bands becomes controllable. We demonstrate the above ideas by numerical studies of
a one-dimensional system with a diffusive guiding field. We find that the results can be accurately described by
employing a linear stability analysis �pulled-front theory� for determining the velocity–local-wavelength rela-
tionship. From the perspective of the Liesegang theory, our results indicate that the so-called revert patterns
may be naturally generated by diffusive guiding fields.
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I. INTRODUCTION

Pattern formation is a ubiquitous phenomenon in out-of-
equilibrium systems, and ordered structures often emerge in
the wake of a moving reaction front �1�. There has been
increasing interest recently, both experimental and theoreti-
cal, in the study of various types of chemically generated
patterns. The main reason is that they are expected to provide
new bottom-up, self-assembling technologies for engineering
bulk patterns on mesoscopic and microscopic scales �for il-
lustration, see, e.g., �2–7� from a rapidly growing bibliogra-
phy�, for which the traditional top-down methods �i.e., re-
moving material in order to create a structure� are reaching
the limits of their capabilities.

Detailed understanding of the mechanisms responsible for
pattern formation is a key element in developing technologi-
cal applications since it helps in constructing the appropriate
tools for the control of the characteristics of the emerging
patterns. In this paper we shall focus on designing a simple
method to control the so-called Liesegang structures �8,9�. In
particular, this method should be useful for a recently pro-
posed experimental setup that allows one to create stamps of
such structures �4�.

Depending on the geometry, Liesegang precipitation pat-
terns are bands �in an axially symmetric configuration�, rings
�in a circular�, or shells �in a spherically symmetric configu-
ration�, clearly separated in the direction of motion of a
chemical reaction front. Several generic experimental laws
characterize the patterns �see, e.g., �10,11� for reviews�. In
particular, it is found that the positions of the bands usually
obey simple laws; e.g., they form, with a good approxima-
tion, a geometric series with increasing distance between
consecutive bands. This is the so-called regular banding situ-
ation, which has been recently explained �12� using the
phase separation in the presence of a moving front as the

underlying mechanism. Briefly, the reaction front, which
moves diffusively, leaves behind a constant concentration c0
of the reaction product, which we shall conventionally name
hereafter C particles �13–15�. At a coarse-grained level, the
dynamics of the C particles �which can diffuse, and are also
attracting each other� can be described by a Cahn-Hilliard
�CH� equation �16–18� with a source term corresponding to
the moving reaction front. Starting with a system free of C’s,
the dynamics of the front locally brings the system across the
spinodal line, provided that c0 is inside the unstable region of
the phase diagram. A phase separation then takes place on a
short time scale, and a band of precipitate is rapidly formed
just behind the front. This band acts as a sink for the C
particles. Then the local concentration of C’s decreases,
bringing the system locally into the stable phase again. Thus
Liesegang patterns are formed, since the state of the system
at the front is locally and quasiperiodically driven into the
unstable regime.

The characteristics of these regular patterns can be con-
trolled to some extent through an appropriate choice of the
concentration of the reagents �19�, of the nature of the gel
that is filling the reaction container �20�, of the shape of the
container �5�, or through an applied electric field �21–24�.

The spinodal decomposition scenario has proved its
power by describing regular patterns and, furthermore, by
explaining how those patterns can be influenced by the con-
centration of the outer and inner electrolytes and by an ex-
ternal electric field. We will show that it can be extended to
describe other situations, as well. Indeed, there is experimen-
tal evidence of Liesegang-type precipitation patterns with de-
creasing distances between successive bands �25�, which is
termed inverse banding. In the borderline case between regu-
lar and inverse banding, the distances between successive
bands are constant, a situation called equidistant banding
�26�. In our attempts at describing the above patterns we
were led to a mechanism that may provide a simple, experi-
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mentally realizable control tool of the emerging pattern.
As described in detail in Sec. II, our proposal is based on

a phase separation mechanism in a space- and time-
dependent guiding field, which could represent, for example,
a temperature or pH field. The pattern formation is thus mod-
eled through a nonautonomous CH equation, whose spinodal
line is controlled by the guiding field. Note that the present
design of the guiding field is different from the homogeneous
�overall� cooling that was used in most of the previous stud-
ies of nonautonomous CH models �see, e.g., �27–30��. As we
shall demonstrate, a simple guiding field is sufficient to gen-
erate crossover between regular and inverse patterns. For ex-
ample, such a guiding field can be a temperature field evolv-
ing diffusively due to a temperature difference at the
boundaries of the system, whose characteristics are detailed
in Sec. III. The features of the corresponding emerging pat-
terns are analyzed in Sec. IV. As discussed in Sec. V, our
numerical findings can be justified by theoretical arguments
relating the velocity of the front of the guiding field to the
pulled-front velocity resulting from a linear stability analysis
of the phase separation process. Other, more flexible ways to
control the patterns are also briefly presented in Sec. VI.
Finally, conclusions and perspectives are discussed in Sec.
VII.

II. THE MODEL

Let us consider a tube filled with gel, and an initially
uniform concentration c0 of C particles throughout the tube.
Assuming axial symmetry along the x axis of the tube, we
shall consider that the C-particle concentration c�x , t�
evolves in time according to the Cahn-Hilliard equation in
one dimension. After rescaling the space and time variables,
this equation can be written in the following dimensionless
form:

�c�x,t�
�t

= −
�2

�x2��c�x,t� − c3�x,t� +
�2c�x,t�

�x2 � , �1�

with 0�x�L, where L is the dimensionless length of the
tube. Note that we also performed an appropriate shift and
scaling of the concentration that allows us to write the CH
equation in a form that is more convenient for the exposition
of our problem; namely, this form is symmetric with respect
to the change in sign of c, c↔−c �see, e.g., �10,12� and �32�
for a more detailed discussion of this point�. The shifted and
rescaled concentration can take both positive and negative
values, and the stable configurations are symmetric around
c=0.

The parameter � measures the deviation of the tempera-
ture from the critical temperature Tc; it is negative for tem-
peratures above Tc �for which no phase separation is pos-
sible�, while it is positive for temperatures T�Tc. Below the
critical temperature, a uniform concentration profile c0 inside
the spinodal decomposition domain, i.e., �c0 � �cs=�� /3, is
linearly unstable. A small, localized perturbation of the con-
centration can then trigger a phase separation throughout the
system, through the amplification of the unstable modes of
wave numbers �k � ���. A large body of work �see, e.g., �31��

has been devoted to the study of the phase separation process
in the simple case of a uniform parameter � taking the same
value throughout the system.

Here we shall concentrate on a different situation, namely,
when � is a field, which evolves according to its own dynam-
ics. Moreover, it is possible to control its evolution. For a
simple realization of this control consider the following situ-
ation. Suppose that at a time t=0 the temperature at one end
of the tube is lowered and kept at a constant value T0�Tc
thereafter. The other end of the tube is supposed to be ther-
mally isolated �33�. The temperature profile then evolves in
time along the tube according to the usual Fourier law of
heat conduction, and so does the related ��x , t� field,

���x,t�
�t

= D
�2��x,t�

�x2 , �2�

where D is the dimensionless thermal diffusion coefficient.
Through an appropriate scaling of the temperature, the value
of � can be set to −1 throughout the system at t=0, while
�= +1 at t�0 at the left �x=0� end of the tube; at the right
�x=L� end of the tube there is no heat flow:

��x � 0,t = 0� = − 1,

��x = 0,t� = + 1,

��

�x
�x = L,t� = 0. �3�

These equations �2� and �3� define completely the evolution
of ��x , t� along the tube, from the onset of the cooling pro-
cedure until the asymptotic uniform profile �= +1 is reached
throughout the tube �32�.

For the value �=−1, the uniform concentration profile c0
is stable, while for �= +1 it tends to phase separate �i.e., the
initial concentration �c0 � ��1/3�. Therefore, with the ad-
vancing cooling front, the C-particle concentration becomes
locally unstable with respect to phase separation. As a con-
sequence, a pattern made of alternating low- and high-
density phases of C appears simultaneously to the propaga-
tion of the cooling front along the tube. Its properties and
characteristics result thus from the CH equation �1� coupled
to the evolution equation �2� for ��x , t�. Appropriate bound-
ary conditions �i� guarantee the conservation of C particles
inside the tube �more precisely, zero particle fluxes Jc at the
edges�, and �ii� associated with the initial condition, also
ensure the uniqueness of the solution. The boundary condi-
tions we used in our numerical discretized procedure
amount, in the continuum limit, to

Jc�x = 0 and L,t� = 0,

�3c

�x3 �x = 0 and L,t� = 0, �4�

with Jc�x , t�=���c−c3+�2c /�x2� /�x. Setting �3c /�x3=0
means that c at the boundaries relaxes to c= ±�� determined
by the boundary value of �. More detailed considerations,
including other types of boundary conditions and appropriate
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discretization schemes, are discussed, e.g., in Refs. �34�.
The field ��x , t� related to the diffusive temperature pro-

file is thus playing the role of a guiding field. One can think,
however, of other types of fields ��x , t�, and other boundary
and initial conditions for an experimental setup. As an ex-
ample, one can assume that a chemical agent is diffusing
from one reservoir at the x=0 end of the tube; its concentra-
tion changes the local pH of the system, and thus may drive
the C particles to phase separation, etc. Accordingly, we
hereafter call � the guiding field, and thus do not restrict
ourselves to the temperaturelike interpretation.

III. CHARACTERISTICS OF THE DIFFUSIVE GUIDING
FIELD �„x , t…

During its time evolution, the guiding field ��x , t� will
locally modify the position of the spinodal line. At a fixed
time t, the spinodal density cs=���x , t� /3 will reach the
value �c0� at a given point xf =xf�t�, therefore initiating a
phase separation locally. The point xf�t� defines the position
of the instability front, which is thus determined by the con-
dition ��x=xf , t�=3c0

2. Behind the front, which propagates to
the right, the system becomes locally unstable, and phase
separates into a precipitation pattern of alternate high- and
low-density regions of C.

The diffusion equation �2� for ��x , t� with the prescribed
boundary and initial conditions �3� can be solved through a
simple Laplace transform method �35�. One obtains for xf an
implicit equation comprising an infinite sum,

	
n=0

�
�− 1�n

2n + 1
exp
−

�2n + 1�2�2

4
� tD

L2 ��
	 cos
 �2n + 1��

2
�1 −

xf

L
�� =

��1 + 3c0
2�

8
. �5�

The resulting trajectory of the instability front xf�t�, as well
as its velocity v f�t�=dxf�t� /dt for a particular choice of c0 are
represented in Fig. 1. Note that, when the spatial, temporal,
and velocity variables are rescaled, respectively, by L, L2 /D,
and D /L, as indicated on the axis of these plots, the curves
for the trajectory and velocity of the instability front are uni-
versal �for a given value of c0�.

As can be seen in Fig. 1, the front moves diffusively at the
beginning, and it accelerates past a crossover point P where
the acceleration is zero. The large-time asymptote for the
front position can be obtained by keeping only the leading
n=0 term in the sum �5�,

xf�t� � L1 −
2

�
arcos
��1 + 3c0

2�
8

exp��2Dt

4L2 ��� . �6�

This approximate expression is valid provided L2 /2�2D
= tmin
 t
 tmax= �4L2 /�2D�ln�8/ ���1+3c0

2��� where tmin is
the time when the n=1 term in the sum �5� becomes negli-
gible with respect to the n=0 term, while tmax represents a
rough estimate of the time it takes the instability front to
reach the end �x=L� of the tube. The function given by Eq.
�6� is shown in the upper panel of Fig. 1, and one can see

that the asymptote is an excellent approximation past the
crossover point P.

The corresponding asymptote for the velocity of the front
has the remarkable property that, when expressed in scaled
variables and in terms of the position of the front, it becomes
independent even of the initial concentration c0,

L

D
v f =

�

2
cot

�

2
�1 −

xn

L
� . �7�

The above expression is displayed in the lower panel of Fig.
1 and one notices again that the approximation is very good
past the crossover point.

IV. RESULTS

The coupled nonautonomous CH �1� and guiding field �2�
equations have been solved numerically for different values
of the initial density c0, diffusion constant D, and length L of
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FIG. 1. �Color online� Upper panel: Time evolution of the front
position for c0=−0.05 �solid line�. The front moves diffusively for
small t, xf�t���t �dotted line�, while the large-time asymptote is
given by Eq. �6� �dashed line�. Lower panel: The velocity of the
instability front v f as a function of the front position xf �solid line�.
The short-time asymptote v f�t��1/�t �dotted line� and large-time
behavior given by Eq. �7� �dashed line� are also displayed, with P
denoting the crossover point. The scaling of the spatial, temporal,
and velocity variables is described in the text.
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the tube. Figure 2 illustrates the early stages of the cooling
process, with the profiles of the concentration c�x�, guiding
field ��x�, and spinodal line ±cs�x�= ±���x� /3 at a given
time t� tmax �before the instability front reaches the end of
the tube�. The concentration field inside the high- and low-
density emerging bands relaxes rather rapidly to the instan-
taneous, local equilibrium values ±���x , t�, respectively.

The pattern initiated by the instability front evolves after-
ward till reaching a stationary profile, made of alternate re-
gions of c= ±1 and rather sharp interfaces between them,
throughout the whole tube. Strictly speaking, this “station-
ary” profile is still evolving through coarsening and band
coalescence, as predicted, e.g., in �36�. However �except
eventually for some very closely spaced bands; see below the
comments on the plug�, its characteristic evolution time is
usually well beyond any reasonable experimental time �37�;
from a practical point of view one can therefore safely as-
sume its stationarity.

Three typical stationary patterns of the C-particle concen-
tration field are represented in Fig. 3.

Before going into a more detailed analysis, let us enumer-
ate some general qualitative features of the emerging pat-
terns.

�i� The total number of bands increases as D increases, for
fixed c0 and L.

�ii� For fixed D and L, however, the number of bands
decreases with increasing �c0� �approaching the spinodal�.

�iii� The first part of the pattern displays regular banding
�i.e., increasing distance between consecutive bands�, while
the second part displays inverse banding. It is important to
note that the transition from one type of pattern to the other
is related to the change in the behavior of the velocity of the
guiding field, namely, from the initial diffusivelike motion to
the later-time accelerated one �see Fig. 1�.

�iv� In some situations, the pattern contains an initial plug,
i.e., a rather wide initial region of constant concentration;

see, e.g., the second panel of Fig. 3. This effect has already
been encountered in the usual Liesegang-pattern formation
�10,11�. The plug may sometimes result from the coales-
cence, on a time scale of the order O�tmax�, of a certain
number of very closely spaced bands �37�. A plug can also
form at the end of the pattern, where the bands can again be
close enough to each other. In contrast to the standard Lie-
segang pattern, whose spatial extension is limited only by the
length of the tube, in our case the length of the patterned
region can thus be limited by this band-coalescence effect.

Let us consider now the characteristics of the patterns
from a more quantitative perspective. Figure 4 shows a plot
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FIG. 2. �Color online� Early stage of pattern formation: snap-
shots of the concentration field c�x� �continuous line�, guiding field
��x� �dashed line�, and spinodal lines ±���x� /3 �dash-dotted line�.
Dotted lines indicate the local equilibria ±���x�. The big dot rep-
resents the position of the instability front. The parameters are c0

=−0.05, L=1000, D=4, and t=4000. The inset shows various pos-
sible profiles of the guiding field �see Sec. VI�, namely, the usual
diffusive configuration �dash-dotted line�, a steplike profile �dashed
line�, and a rigid parabola �continuous line�.
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FIG. 3. Numerical solution c�x� of the nonautonomous Cahn-
Hilliard equation �1� in the long-time limit t� tmax, and for system
size L=4000. Top panel: c0=−0.05 and D=1; middle panel: c0=
−0.05 and D=8; and bottom panel: c0=−0.2 and D=1.

ANTAL et al. PHYSICAL REVIEW E 76, 046203 �2007�

046203-4



of the band positions xn �which are taken, conventionally, to
be the points where c=0, with an ascendent slope,
dc�xn� /dx�0, and are enumerated in the order of their ap-
pearance, starting from the x=0 end of the tube� as a func-
tion of n; different values of the diffusion constant D were
considered, for fixed c0=−0.05 and L=4000. The presence of
a large initial plug may have some important effects on the n
dependence of xn for small n values. Accordingly, a simple
and experimentally measurable functional expression is ex-
pected only for sufficiently large values of n, precisely as in
the case of the usual Liesegang patterns.

For the initial, regular-banding part of the pattern, if
enough bands are present, one can fit the positions of the
bands reasonably well with a geometric series, xn�exp�np̃�,
as for a standard Liesegang pattern �10,11�. This is obviously
related to the initial diffusivelike motion of the instability
front, which does not differ qualitatively from the motion of
the reaction front in the usual Liesegang configuration �12�.
However, a power-law fitting cannot be excluded either, and
further detailed work meant to clarify this point is in
progress and will be presented elsewhere.

For the second, inverse-banding part of the pattern, the
positions of the bands for large n’s can be fitted equally well
as xn� ln n or with a power law xn�n�, where the exponent
��0.2–0.3 is practically independent of D. Since the corre-
sponding distance �n=xn+1−xn between consecutive bands
behaves like �n�n�−1, the inequality ��1 ensures precisely
the inverse-banding character of the pattern.

Figure 5 displays �n=xn+1−xn as a function of n, for the
same parameter values as in Fig. 4. One notices clearly the
initial region of regular banding �with the eventual spurious
initial plug� and the inverse banding, with the final plug. The
tails of these plots for large-n values do not allow to dis-
criminate further between the two above-suggested fittings of
the relation between xn and n in the inverse-banding region.

Finally, in Fig. 6 we plot the width wn of the nth high-
density band as a function of n. It is remarkable that, except
for a crossover region between direct and inverse banding,
one can fit throughout, with a good approximation,

wn � Wxn + U . �8�

For the regular-banding region W�0, and one can easily
justify this result simply by using mass-conservation argu-

ments for the C particles, as well as the geometric progres-
sion of band positions �see �10,11��. However, for the
inverse-banding region W�0, and the approximate nature of
this relationship is related to the fact that the band positions
are not well fitted by a geometric series in this case. On this
figure one can clearly see that, as already stated above, the
transition from regular to inverse banding is marked by the
crossover point P of the motion of the instability front, see
Sec. III.

V. THEORETICAL ARGUMENTS

Our goal is to devise a simple theoretical approach able to
explain the characteristics of the patterns observed in the
numerical simulation of the nonautonomous CH equation
�1�, and to be used further on for predictive purposes. A basic
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FIG. 4. �Color online� Position xn of the nth band with respect to
its label n for c0=−0.05, L=4000, and different values of D.
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FIG. 5. �Color online� Distance �n=xn+1−xn between two suc-
cessive bands as a function of n, for c0=−0.05, L=4000, and dif-
ferent values of D. One can notice outlier points at the beginning
and ends of the curves. They correspond to the initial and final plug
regions.
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FIG. 6. �Color online� Width wn of the nth band as a function of
the band position xn, for c0=−0.05, L=4000, and different values of
D. The vertical dashed line indicates the position of the crossover
point P �see Sec. III�. The jumps at the end points of the curves are
due to the plugs.
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element of our approach is the numerical finding that the
characteristics of the patterns are directly related to the mo-
tion of the instability front. In particular, the local wave-
length of the pattern �n=xn+1−xn �see Figs. 5 and 6� is re-
lated to the velocity v f =v f�xf� of the front �see the second
panel of Fig. 1�, as discussed below.

Our approach is based on several assumptions, the valid-
ity of which is verified a posteriori by comparison of the
theoretical findings with the results of the numerical simula-
tions. Our first hypothesis is that the guiding field moves
faster than the diffusing C particles; therefore, the phase
separation does not take place ahead of the instability front,
but only behind it. Note, however, that the velocity of the
front should not be too high either, since otherwise our sec-
ond hypothesis about the quasistationarity may not be satis-
fied. The meaning of the second hypothesis is that, although
the local value of the spinodal concentration cs�x , t�
=���x , t� /3 evolves in time in the wake of the instability
front, this evolution can be assumed to be slow enough so
that the local instability boundaries associated with the spin-
odal curve are in a quasistationary state. We assume there-
fore that the onset of the phase separation instability is pulled
by the motion of the guiding front, and consequently we can
use the standard results of the pulled-front theory �38–40� to
establish the characteristics of the emerging pattern.

Let us recall here the main results of the standard theory.
Consider an autonomous CH equation �1� with � constant
throughout the system, and a uniform unstable concentration
c0, �c0 � �cs=�� /3. A sharply localized perturbation of this
state will then evolve into an instability front, with a well-
defined velocity, leading to phase separation behind it and to
the appearance of a pattern of well-defined wavelength. Us-
ing linear stability analysis arguments, one can easily com-
pute both the wavelength �* of the most unstable mode and
the asymptotic velocity v* of the instability front as a func-
tion of the distance between the initial concentration and the
spinodal value; namely,

�* =
16��2��7 + 2�

3��7 + 3�3/2
a−1/2, �9�

v* =
2��7 + 2�

3��7 + 1�1/2
a3/2, �10�

where a�3�cs
2−c0

2�=�−3c0
2. Except for the cases when one

has band coalescence �coarsening�, this wavelength provides
the wavelength of the asymptotic emerging pattern. By
eliminating the parameter a between these two expressions,
one obtains a direct relationship between the asymptotic
wavelength of the pattern and the asymptotic velocity of the
instability front,

�* =
9.642

�v*�1/3 . �11�

Note, however, that the relaxation of the system to this
asymptotic state goes rather slowly, like �1/ t�, both for the
wavelength of the pattern and for the velocity of the insta-
bility front. Moreover, the transient effects tend to increase

the wavelength of the pattern above its asymptotic value �*

�see �38–40� for further details�.
Using the above results of the pulled-front theory, we now

make the ansatz that the relationship �11� remains valid for
our nonautonomous CH equation. More precisely, we as-
sume that the local wavelength of the pattern is determined
by the instantaneous or local velocity of the instability front
as

�n �
9.642

�v f�xn��1/3 . �12�

The physical picture underlying the above assumption is the
following. The instantaneous pulled-front velocity v*=v f�t�
dictates �see Eq. �10�� an instantaneous value of the param-
eter a; let us call it af�t�. This means that the local concen-
tration in the vicinity of the quasistationary instability front
adjusts rapidly to the value cf�t� corresponding to the param-
eter af�t�, namely, af�t�=�(x=xf�t� , t)−3cf

2�t�.
The comparison of the theoretical findings based on the

above ansatz with the results of the numerical simulations is
displayed in Fig. 7, where the local wavelength of the pattern
�n is plotted versus xn for different values of D and L. This
figure provides a double check of the ansatz.

�i� If Eq. �12� is valid, then, since v f�xn� is universal under
appropriate scaling of space, time, and velocities �according
to Sec. III�, the plots from the numerical results should
merge when applying the rescaling �n→�n�D /L�1/3 and xn

→xn /L. This is, indeed, the case, as illustrated by both pan-
els of Fig. 7.

�ii� All the rescaled plots should fit the theoretical formula
�12� shown by solid lines in Fig. 7.

The agreement between our simple theoretical predictions
and the results of the simulations is surprisingly good. The
only exceptions are a few outlier points corresponding, re-
spectively, to the early band formation �initial plug� and to
the last bands close to the boundary �final plug�. There is also
a systematic initial and final mismatch, which may be due to
the high acceleration of the instability front at the very be-
ginning and the very end of its motion along the tube �see
Fig. 1�, and thus to the breaking of the quasistationarity hy-
pothesis that lies at the basis of our ansatz. Another origin of
discrepancy might be the dynamics of the guiding field pro-
file, which may, under some circumstances, fail to satisfy the
quasistationarity hypothesis.

We note that the agreement between numerics and theory
is better for large values of the velocity of the instability
front, i.e., for smaller values of L /D, as shown in the upper
panel of Fig. 7 as compared to the lower panel. This is prob-
ably related to a better, respectively worse, adequacy of the
basic hypothesis of a fast-moving front as compared to the
diffusion of the C particles. Finally, the fact that the numeri-
cal wavelengths are systematically larger that the theoreti-
cally estimated ones may be due to the combined effect of
slow relaxation to the asymptotic state and the quasistation-
ary nature of our configuration during the onset of the pattern
�see the comments above on the effects of transients on the
wavelength, in the autonomous case�.
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VI. PATTERN CONTROL

We address now the problem of controllability of the
characteristics of the emerging pattern. It is obvious from the
above results that both the qualitative �i.e., regular or inverse
banding� and quantitative �like total length of the pattern,
pattern local wavelength, width of bands, etc.� features can
be controlled in the described configuration through an ap-
propriate choice of the parameters L, c0, and �to a less extent,
as more difficult to manipulate� D. Moreover, these results
can be described theoretically in the frame of the pulled-front
approximation thus providing a method for estimating the
parameters of the patterns. However, this method of control,
although very simple, is somewhat rigid, since the above-
mentioned control parameters cannot be changed during the
process, while, ideally, one requires an easily tuned, flexible,
external tool of control. One can then think about moving the
tube with the gel �or maybe a thin film of gel� in a prescribed

temperature profile, with a velocity that can be changed at
any moment according to need. One achieves therefore a
guiding field ��x , t� that can be externally tuned at any mo-
ment and point.

For example, the simplest configuration one can imagine
is an abrupt, steplike temperature profile that moves with
velocity v f, such that ��x , t�=−1+2(x−xf�t�) �0�x�L�,
where � � designates the Heaviside step function and xf�t�
is the instantaneous position of the step. If the motion is
uniform v f =const, then one obtains equidistant banding. If
the motion of the step is accelerated �decelerated� then the
pattern presents inverse banding �regular banding�, with
characteristics that depend on the details of v f =v f�t�.

Another simple option is to propagate a smooth, given
temperature profile along the tube, such that ��x , t�=F(x
−xf�t�). Now, the characteristics of the emerging pattern de-
pend not only on the velocity v f�t� of the propagating rigid
guiding field profile, but also on the shape of this profile.

In order to illustrate these points, we considered, for com-
parison, the emerging pattern in three situations �also illus-
trated in Fig. 2�:

�i� The diffusive guiding-field profile, as discussed in the
previous sections, for a given set of parameters D, L, and c0.
Recall that the instability front moves with a velocity v f�t�
described in Sec. III.

�ii� A steplike profile of the guiding field that moves with
the same velocity v f�t�.

�iii� Finally, a parabolic profile of the guiding field,
��x , t�= �−1+A�xf�t�−x−x0�2(xf�t�−x−x0)�. One has �=
−1 for x=xf +x0 and the parameter A is determined such that
for x=xf one has �=1−3c0

2. As before, this rigid profile
moves with the same velocity v f�t�.

The results of the numerical simulation are represented in
Fig. 8, together with the theoretical result based on our an-
satz. One can notice the following:

�i� The pattern can be effectively controlled by the pro-
posed methods. The effects are qualitatively the same as for
our usual configuration, but these new methods allow for
more flexible control.

�ii� The pattern obtained for the paraboliclike profile �with
x0=70� is closer to the pattern obtained for our usual con-
figuration, as well as to the theoretical predictions based on
the pulled-front approximation; the pattern obtained for the
steplike profile is much different. This convincingly illus-
trates the importance of the quasistationarity hypothesis for
the pulled-front theory. Indeed, this basic ingredient is a
good approximation both for our usual configuration and for
the parabolic profile, but it is definitely absent in the case
of the steplike profile, for which the associated abrupt jump
in the local value of � forbids any possibility of quasistation-
arity.

VII. CONCLUSION

We have discussed the problem of how to control precipi-
tation patterns by bringing a system described by the Cahn-
Hilliard equation into an unstable state using a prescribed
guiding field. It was shown that a simple, physically realiz-
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FIG. 7. �Color online� Comparison of the local wavelengths of
the pattern as determined from numerical simulations �symbols�
with the theoretical results based on Eq. �12� �continuous line�. The
wavelengths �n and the band positions xn are rescaled as discussed
in the text. Upper panel: c0=−0.05 and L /D=1000. Lower panel:
c0=−0.05 and L /D=125. The vertical dashed lines indicate the po-
sition of the crossover point P where the instability front has a
minimal velocity �see Sec. III�. The outlier end points are due to the
plugs.
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able field, such as a temperature field generated by a tem-
perature jump at the boundary, is sufficient to generate rather
complex precipitation patterns even in one dimension. The
spacing characteristics of the patterns were determined nu-
merically for the case of a diffusive guiding field, and we
developed a quantitative theory for explaining the simulation
results. The theory is based on relating the velocity of the

instability front generated by the guiding field to the natural,
pulled-front velocity of the phase-separation process which,
in turn, controls the length scale of the pattern left in the
wake of the moving front.

From a theoretical point of view, our results suggest that
the inverse-banding phenomena observed in some Liesegang
experiments may have an explanation in terms of a diffusive
guiding field. This guiding field is perhaps not a temperature
field, but may be generated by the diffusion of some chemi-
cal species which do not take part in the reactions and the
precipitation but may change, e.g., the local pH value and
thus influence the precipitation thresholds.

As far as technological applications are concerned, it ap-
pears that the problem of microfabrication of bulk structures
by chemical reactions and precipitation �2–7� is just in the
first stages of its development. The usefulness of this field
will be decided on the possibility of creating flexible ways to
ensure controllability. Our results suggest experimentally
feasible solutions for the control of a particular precipitation
process �formation of Liesegang bands�. Clearly, further
studies are necessary to develop new methods of control and
to sort out the question of controllability in more complex
cases.
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