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Formation of Liesegang Patterns: A Spinodal Decomposition Scenario
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Spinodal decomposition in the presence of a moving particle source is proposed as a mech
for the formation of Liesegang bands. This mechanism yields a sequence of band positionsxn that
obeys the spacing lawxn � Q�1 1 p�n. The dependence of the parametersp and Q on the initial
concentration of the reagents is determined and we find that the functional form ofp is in agreement
with the experimentally observed Matalon-Packter law.
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Pattern-forming chemical, physical, and biological pro
cesses are common in nature and patterns often emerg
the wake of a moving front [1]. In particular, when a
electrolyteA diffuses into a gel containing another elec
trolyte B, the eventual formation of a rhythmic patter
of precipitate by the moving chemical reaction front i
known as theLiesegang phenomenon [2,3]. The observed
precipitation patterns usually consist of a set of bands
rings (depending on the geometry of the system) clea
separated in the direction perpendicular to the motion
the front. This phenomenon is believed to be responsi
for many precipitation patterns such as, e.g., the struct
of agate rocks [3]. Although the Liesegang phenomen
has been studied for a century, the mechanisms resp
sible for these structures are still under discussion [4].

Most of the reproducible Liesegang patterns are char
terizable by the following generic laws. First, the positio
of the nth bandxn (measured from the initial interface of
the reagents) is proportional to

p
tn wheretn is the time

elapsed until the appearance of the band. This so-ca
time law [5] is a direct consequence of the diffusive natu
of the dynamics. Secondly, the positionsxn of the bands
usually form a geometric series (spacing law [6]),

xn
n large
! Q�1 1 p�n, (1)

where p . 0 is called the spacing coefficient andQ is
the amplitude of the spacing law. Finally, the widthwn

of the bands has been observed to increase withn and to
obey thewidth law [7], wn � xn.

Most of the detailed experimental observations conce
the spacing law. It has been found that the spacing coe
cientp is a nonuniversal quantity depending (among oth
parameters) on the experimentally controllable concent
tionsa0 andb0 of the outer (A) and inner (B) electrolytes.
This dependence is expressed by theMatalon-Packter law
[8,9],

p � F�b0� 1 G�b0�
b0

a0
, (2)

whereF andG are decreasing functions of their argume
b0 [10].

The task of theories is to explain the existence of pa
terns obeying the spacing law (1) and, on a more s
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phisticated level, to derive the Matalon-Packter law (2
The theoretical approaches proposed up to now can
divided into two categories. The first one contains t
ion-product supersaturation type theories [11–13] where
the outer and inner reactants turn directly into precipita
(A 1 B ! D) whenever their local concentration prod
uct is above a thresholdq�. The second category con
tains theintermediate-compound theories [14,15] which
assume the existence of a speciesC (A 1 B ! C ! D).
The C’s are produced in a moving reaction front and th
precipitationC ! D takes place only if the local con-
centrationc reaches some threshold valuec�. In the pres-
ence ofD, the process continues until the concentration
C drops below another thresholdd�. The problem with
these theories is that either they contain parameters s
as, e.g.,d� that are difficult to control experimentally and
not easy to grasp theoretically, or they describe a deta
mechanism that is too complicated to deduce quantitat
consequences such as the Matalon-Packter law. Our g
with this Letter is to describe the formation of Liesegan
patterns in terms of a model that contains the basic mec
nism of phase separation that underlies the band forma
but, at the same time, simple enough so that quantitat
predictions are readily made. In particular, we show t
existence of the spacing law, obtain the Matalon-Pack
law with estimates ofF�b0� andG�b0� and, furthermore,
the b0�a0 dependence of the amplitudeQ of the spacing
law is also determined.

All the theories discussed above can produce t
spacing law and it is possible that different mechanism
are at play in different systems. Comparison wi
the Matalon-Packter law suggests, however, that
intermediate-compound theories are clearly prefera
[4]. Accordingly, we shall assume that the motion of th
reaction-diffusion front and the dynamics of theC particles
deposited by the front should be the main ingredien
of a theory of Liesegang patterns. The dynamics of t
A 1 B ! C front has been solved so its motion and th
production ofC’s are known [16]. Thus the new aspec
of our theory is the model for the dynamics ofC’s.

In our picture, theC’s are particles that can move
only by diffusion due to the presence of the gel. The
© 1999 The American Physical Society
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is an attractive interaction between the particles that
induces aggregation at low enough temperatures and high
enough densities. An easily understandable, spatially
discretized version of the model is the following spin-
1�2 kinetic Ising model with competing spin-flip and
spin-exchange dynamics [17]. Empty and occupied lattice
sites are associated with down and up spins, respectively.
The initial state is empty (all spins are down) and
the moving front flips the down spins at a given rate
(Glauber dynamics [18]). The diffusion is described
by a spin-exchange process (Kawasaki dynamics [19]).
The rates of exchanges are governed by a heat bath
at temperature T with ferromagnetic couplings between
the spins modeling the attraction among the C’s. The
experimentally observed freezing of the emerging patterns
implies that the corresponding dynamics takes place at
a very low effective temperature [20]. If this model
represents the pattern-forming process correctly, then one
expects the emergence of bands of up and down spins
in the wake of the moving spin-flip front. In order to
understand how the bands arise, let us consider the phase
diagram of an Ising model depicted in Fig. 1.

One starts from the all-spins-down state (SI in Fig. 1).
Since an A 1 B ! C reaction front leaves behind a
constant density c0 of C’s [4,16], the spin-flip front is
chosen such that it produces a local magnetization m0 �
2c0 2 1. We would like the front to bring the system
into the unstable regime, thus m0 . ms is assumed. As
m is increasing from 21 to m0 in the front, the local
state moves from SI towards S0 (Fig. 1). With time,
one crosses the coexistence line (m � me) and enters
the metastable phase [20]. Small clusters of up spins
nucleate at and aggregate behind the front. However, the

−1 0 1
                     m=2c−1

Tc

0

T

SI

me ms m0

unstable

metastable

S0

FIG. 1. Qualitative phase diagram for the Ising model. The
magnetization m is related to the density c of C particles
through m � 2c 2 1. The solid line is the coexistence curve
and the dashed one is the spinodal line. SI is the initial
state with m � 21, 6me are the equilibrium magnetizations
at a given temperature T , while 6ms are the magnetizations
at the spinodal line. The front alone would leave behind a
magnetization m0.
nucleation is an activated process and its characteristic
time scale tnucl is large at low temperatures. If tnucl
is much larger than the time tfront needed by the front
to put out the local magnetization m0, then the system
reaches the unstable state, i.e., crosses the spinodal line
(m � ms) [21]. Once the spinodal line is crossed, the
phase separation takes place on a short time scale and a
spin-up domain is rapidly formed at or behind the front,
hence the formation of a Liesegang band.

This band acts as a sink for the up spins and, in the
vicinity of the band, the local magnetization decreases and
the front is no longer in the unstable region of the phase
space. When the front moves far enough, the depleting
effect of the band diminishes. Thus the magnetization
grows and the spinodal line is crossed again resulting
in the formation of the next band. The repetition of
this process should lead then to the Liesegang pattern.
The new feature of the picture described above is the
assumption that the state of the front is quasiperiodically
driven into the unstable regime.

The above microscopic picture can be described on
the mesoscopic level as follows. The diffusive dynamics
of the coarse grained magnetization m is described by
Model B of critical dynamics [22] with the spin-flip front
appearing as a space- and time-dependent source term S,

≠tm � 2lD�em 2 gm3 1 sDm� 1 S . (3)

Here l is a kinetic coefficient, e measures the deviation
from the critical temperature Tc, and e . 0 ensures that
T , Tc. The parameter g is positive to guarantee overall
stability and s . 0 provides the stability against short-
wavelength fluctuations. In the following we shall restrict
our study to one-dimensional patterns (experiments in
long test tubes), i.e., we shall assume that m and S
depend only on a single spatial coordinate, m � m�x, t�
and S � S�x, t�.

In principle, Eq. (3) should contain two noise terms.
First, there should be thermal noise that, in the absence
of the source, would bring the system to equilibrium
described by the phase diagram in Fig. 1. Second, there
should be noise in the source S since the origin of this
term is a reaction-diffusion process. We shall omit both
noise terms. The thermal noise is neglected since the
effective temperature is expected to be low as discussed
above. As to the source term, it has been shown that
the properties of the A 1 B ! C type reaction fronts are
mean-field like above dimension two [23]. We take this
as an indication that the noise in S can be neglected.

In order to complete the description of the model, we
need to discuss the source term. S is the production
rate of C’s in the reaction-diffusion process A 1 B ! C.
Provided the reagents A and B are separated initially, [i.e.,
their densities are given by a�x, t � 0� � a0u�2x� and
b�x, t � 0� � u�x� where u�x� is the step function], the
scaling properties of S can be evaluated analytically [16].
The scaling function itself is determined numerically and
2881
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one finds that S is a Gaussian to an excellent accuracy [24],

S�x, t� �
A

t2�3 exp

∑
2

�x 2 xf�t��2

2w2�t�

∏
. (4)

The center of the front moves as xf�t� �
p

2Dft with
the diffusion constant Df given by the following equation
erf�

p
Df�2D � � �a0 2 b0���a0 1 b0� with D � Da �

Db being the diffusion coefficient of the A and B particles
[16,25].

The front is well localized since its width increases with
a small power of time w�t� � 2

p
D t1�6��ka0K�1�3 where

k is the reaction rate of the A 1 B ! C process, and K �
�1 1 b0�a0� �2

p
p �21 exp�2Df�D�. Finally, the ampli-

tude of the source can be expressed as A � 0.3ka2
0K4�3.

Thus the initial densities (a0, b0), the diffusion constants
(D � Da � Db), and the reaction rate k determine all the
parameters in S�x, t� [16,25].

We turn now to the solution of Eq. (3). In the
absence of the source term, S � 0, the globally stable
homogeneous solutions are m0

h � 6
p

e�g. One can also
find other homogeneous solutions m�x, t� � mh which,
however, are unstable to small perturbations if jmhj ,p

e��3g� � ms. The value ms gives the location of the
spinodal line [20].

In the presence of the source term S, Eq. (3) can be
solved numerically using the initial condition m�x, t� �
2m0

h and starting the source at the origin. The source
alone would leave behind a uniform particle density
c0 � 0.85Ka0

p
D�Df [4,16] corresponding to a magneti-

zation m0 � 2c0 2 1. The solution that evolves depends
crucially on the value of m0.

If jm0j . ms, the system is always outside of the
unstable domain and a uniform band of precipitate is
formed. Since there is no noise in the system, this
band is stable. Phase separation does take place when
jm0j , ms and a pattern similar to that shown in Fig. 2 is
observed. If m0 is near the spinodal value, then, at early
stages of evolution, a nearly periodic set of narrow bands
emerges that coarsens with time. Later on, the newly
formed pattern crosses over to Liesegang type bands with
the distance between consecutive bands increasing. If
m0 is such that the systems are deep in the unstable
domain, well-defined Liesegang bands form from the very
beginning (Fig. 2).

In agreement with experiments, once formed, the
Liesegang type bands are static on the time scale we are
able to observe. Thus their spacing is well defined and
can be studied. As one can see in Fig. 3, two-parameter
functions of the form xn � Q�exp� p̃n� 2 1� provide
excellent fits to the xn data (similar quality fits can be
produced for a wide range of parameter values). Thus we
see that the model contains the spacing law (1) with the
spacing coefficient given by 1 1 p � exp� p̃�.

Next, one can investigate whether the patterns in our
model obey the Matalon-Packter law. Calculating the p’s
for a set of a0 at a fixed b0, we find (see Fig. 4) that
2882
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FIG. 2. Magnetization profile obtained for the following val-
ues of the front parameters: Df � 21.72, w0 � 4.54, and A �
0.181 with length, time, and the magnetization (concentration)
measured in units of

p
s�e, s��le2�, and

p
e�g, respectively.

The dotted line denotes the rate of local magnetization increase
due to the source S measured in units of le5�2��g1�2s� and
magnified by a factor 2 3 105. The dashed line is the magne-
tization at the spinodal line, ms � 21�

p
3.

the results indeed agree with the linear b0�a0 dependence
given by Eq. (2). The slopes and the intersections with
the p axis of the straight line fits provide us the functions
F�b0� and G�b0�. Because of the restricted interval of
b0 values that are available we can deduce only an
approximate functional form for these functions. It is
clear that both F and G are decreasing functions of
their arguments, in agreement with experimental findings
[8,9]. A fit to a power-law form gives F�b0� � b21.7

0 and
G�b0� � b21.1

0 .
From the point of view of applications, the a0 and

b0 dependence of the amplitude Q of the spacing law
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FIG. 3. Positions of the bands xn vs their order of appearance
n for various values of b0�a0 with b0 � 1 (units are given
in Fig. 2). Circles correspond to the pattern in Fig. 2 and the
dotted lines are fits to the form xn � Q�exp� p̃n� 2 1�.
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FIG. 4. Spacing coefficient p as a function of the ratio b0�a0
for several values of b0. The unit of b0 is fixed by considering
the front parameters given in Fig. 2 and setting b0�a0 � 0.01
(filled circle in this figure). All the ratios b0�a0 and the front
parameters were chosen to be in the experimentally accessible
range.

is also important. In our model we can investigate this
quantity as well and our preliminary results indicate that
Q�a0, b0� � �a0�b0�0.4. The increase of Q with a0 is a
somewhat surprising result. It means that, as far as the
number of bands in a given interval is concerned, there is
a competition between p and Q. When a0 is increased,
this number increases since p � a21

0 but it decreases due
to the change in the amplitude Q � a0.4

0 . This means that
in experiments where n is finite (typically n � 20 30)
one could observe thinning of the bands as a result of the
increase of the concentration of the outer electrolyte.

In conclusion we have proposed a new scenario for the
formation of Liesegang patterns based on a spinodal de-
composition mechanism. Our approach has the advantage
of involving only a small number of parameters and there
is no need to introduce artificial thresholds. Our model
yields the Matalon-Packter law and allows the calculation
of both the spacing coefficient p�a0, b0� and the amplitude
Q�a0, b0� of the spacing law.

This simple scenario can be improved by studying the
role of the noise either by adding it to the continuum model
(3) or by carrying out Monte Carlo simulations on the
kinetic Ising model with competing dynamics as described
above. Work along these lines is in progress [26].
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