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Abstract

We study a simple model of DNA evolution in a growing population of cells. Each cell contains
nucleotide sequence which randomly mutates at cell division. Cells divide according to a branching

rocess. Following typical parameter values in bacteria and cancer cell populations, we take the mutation
ate to zero and the final number of cells to infinity. We prove that almost every site (entry of the
ucleotide sequence) is mutated in only a finite number of cells, and these numbers are independent
cross sites. However independence breaks down for the rare sites which are mutated in a positive
raction of the population. The model is free from the popular but disputed infinite sites assumption.
iolations of the infinite sites assumption are widespread while their impact on mutation frequencies

s negligible at the scale of population fractions. Some results are generalised to allow for cell
eath, selection, and site-specific mutation rates. For illustration we estimate mutation rates in a lung
denocarcinoma.
ublished by Elsevier B.V.

1. Introduction

A population of dividing cells with a mutating DNA sequence is ubiquitous in biology. We
tudy a simple model of this process. Starting with one cell, cells divide and die according
o a supercritical branching process. As for DNA, we loosely follow classic models from
hylogenetics [16,25]. Each cell contains a sequence of the nucleotides A, C, G, and T, and
ach site (entry of the sequence) can mutate independently at cell division. We are interested
n the sequence distribution when the population reaches many cells.
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Let us discuss a specific motivation. In recent years, cancer genetic data has been made
vailable in great quantities. One especially common type of data consists of mutation
requencies in individual tumours. These data take the form of a vector (xi )i∈S, where i ∈ S

enotes genetic sites and xi is the frequency of cells which are mutated at site i . To make sense
f such data in terms of tumour evolution, simple mathematical models can be helpful.

Some important works on the topic are [4,8,26,27]. They consider branching process
nd deterministic models of tumour evolution. They compare theory with data, estimating
volutionary parameters such as mutation rates. A central feature of their theory, and of
ountless other works, is the so-called infinite sites assumption (ISA). The ISA states that
o genetic site can mutate more than once in a tumour’s lifetime. The assumption’s simplicity
rives its popularity. However recent statistical analysis of single cell sequencing data [20]
hows “widespread violations of the ISA in human cancers”.

For a ‘non-ISA’ model of a growing population of cells, there is in fact a famous example.
uria and Delbrück [22] modelled recurrent mutations in an exponentially growing bacterial
opulation. Subsequent works [14,17–19,21] (and others) adapted Luria and Delbrück’s model
o branching processes and calculated mutation frequencies. These works describe only two
enetic states, mutated or not mutated, effectively restricting attention to a single genetic site.
n [7] we offered an account of one such model, proving limit theorems for mutation times,
lone sizes, and mutation frequencies. We then briefly studied an extension to a sequence of
enetic sites. Now we offer a self-contained sequel to [7], slightly adapting the model, and
iming for a deeper understanding of the sequence distribution.

In [7] we studied several parameter regimes. In the present work by contrast, we study only
ne parameter regime which is the most biologically relevant. We take the final number of cells
o infinity and the mutation rate to zero with their product finite. This limit is relevant because

detected tumour has around 109 cells while the mutation rate per site per cell division is
round 10−9 [15]. This limit is also standard in Luria–Delbrück-type models of bacteria.

Now we introduce our main results. The number of cells mutated at a given site (mutations
re defined relative to the initial cell) converges to the Luria–Delbrück distribution. This
ecovers a well-known result of single site models [7,14,17,19,21]. So a site is mutated in
nly a finite number of cells, standing in contrast to the infinite total number of cells. Going
eyond [7,14,17,19,21], we also study the rare event that a site is mutated in a positive fraction
f cells. We show that, when appropriately scaled, this fraction of cells follows a power-law
istribution.

Across sites, mutation frequencies are asymptotically independent. The independence leads
o a many-sites law of large numbers. Specifically, the site frequency spectrum (empirical

easure of mutation frequencies) converges to a deterministic measure concentrated at finite
ell numbers. At positive fractions of cells, away from the mass concentration, independence
reaks down and the site frequency spectrum converges to a Cox process. These results
o beyond [4,7,8,10,26] who only give the expected site frequency spectrum, so our work
ontributes an appreciation of randomness.

Our results are not all at the same level of generality. For sites mutated in a positive fraction
f cells, results are proven for a zero death rate and homogeneous division and mutation rates.
or sites mutated in a finite number of cells, results are proven for sequence-dependent death,
ivision, and mutation rates.

We also assess the infinite sites assumption’s validity. Our results say that for typical
arameter values, the number of sites to violate the ISA is at least millions, or even billions, in

single tumour. Thus our work agrees with [20]’s statistical analysis of single cell sequencing
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data which says that ISA violations are widespread. It should be emphasised however that ISA
violations do not necessarily invalidate the ISA. One of our results says that ISA violations do
not impact mutation frequencies viewed at the scale of population fractions. Bulk sequencing
data, which is the majority of cancer genetic data [8], views mutation frequencies at the scale
of population fractions. Therefore our work endorses analyses of bulk sequencing data which
are reliant on the ISA, such as [4,8,26,27].

Before commencing the paper, let us note that there are a wealth of other works on mutations
in branching processes. Especially common are infinite alleles models, for example [6,9,13,23],
where each individual in the population has an allele which can mutate to alleles never before
seen in the population. In an infinite alleles model, a mutation always deletes an individual’s
ancestral genetic information. In an infinite sites model on the other hand, a mutation never
deletes ancestral genetic information; mutations simply accumulate. The DNA sequence model
which we study sits between those extremes.

The paper is structured as follows. In Section 2, we introduce the model in its simplest form.
In Section 3, we give notation and preliminary ideas. In Section 4, we present the paper’s main
results. In Section 5, we give generalisations and open questions. In Section 6, we prove results
on sites mutated in a finite number of cells. In Section 7, we prove results on sites mutated in
a positive fraction of cells. In Section 8, we discuss the infinite sites assumption’s validity. In
Section 9, we consider data from a lung adenocarcinoma and estimate mutation rates.

2. Model

Here the model is stated in its simplest form. It comprises two parts.

1. Population dynamics: Starting with one cell, cells divide according to the Yule process.
That is, cells divide independently at constant rate.

2. Genetic information: The set of nucleotides is N = {A,C,G, T }. The set of genetic sites
is some finite set S. The set of genomes (or DNA sequences) is G = NS. Each cell has
a genome, i.e. is assigned an element of G. Suppose that a cell with genome (vi )i∈S ∈ G

divides to give daughter cells with genomes (V (1)
i )i∈S and (V (2)

i )i∈S. Conditional on (vi ),
the V (r )

i are independent over i ∈ S and r ∈ {1, 2}, and

P
[
V (r )

i = ψ |(vi )
]

=

{
µ/3, ψ ̸= vi ;

1 − µ, ψ = vi .

It is also assumed that mutations occur independently for different cell divisions.

The model is generalised to cell death, selection, and nucleotide/site-specific mutation rates
in Section 5.

3. Preliminaries

3.1. Luria–Delbrück distribution

Let (Yk)k∈N be an i.i.d. sequence of random variables with

P[Y1 = j] =
1

j( j + 1)
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for j ∈ N. Let K be an independent Poisson random variable with mean c. The Luria–Delbrück
distribution with parameter c is defined as the distribution of

B =

K∑
k=1

Yk . (1)

It is commonly seen in its generating function form (e.g. [21,30])

EzB
= (1 − z)c(z−1

−1). (2)

The connection between (1) and (2) is made explicit in [7] for example. Although the
distribution is named after Luria and Delbrück (due to their groundbreaking work [22]), it
was derived by Lea and Coulson [21]. See [30] for a historical review.

The Luria–Delbrück distribution’s power-law tail was derived in [24].

Lemma 3.1. limm→∞ mP [B ≥ m] = c.

3.2. Yule tree

The set of all cells to ever exist, following standard notation, is

T = ∪
∞

l=0{0, 1}
l .

A partial ordering, ≺, is defined on T. For x, y ∈ T, x ≺ y means that cell y is a descendant
of cell x . That is, x ≺ y if

1. there are l1, l2 ∈ N0 with l1 < l2 and x ∈ {0, 1}
l1 , y ∈ {0, 1}

l2 ; and
2. the first l1 entries of y agree with the entries of x .

Note that ∅ ∈ T and that ∅ ≺ x for any x ∈ T\{∅}. So ∅ is the initial cell from which all other
cells descend. For further notation, write x ⪯ y if x ≺ y or x = y. Also, write x0 and x1 for
he daughters of x ∈ T; precisely, if x ∈ T and j ∈ {0, 1}, then x j is the element of {0, 1}

l+1

whose first l entries are the entries of x and whose last entry is j .
Let (Ax )x∈T be a family of i.i.d. exponentially distributed random variables with mean 1.

Ax is the lifetime of cell x . The cells alive at time t are

Tt :=

{
x ∈ T :

∑
y≺x

Ay ≤ t <
∑
y⪯x

Ay

}
.

he proportion of cells alive at time t which are descendants of cell x (including x) is

Px,t :=
|{y ∈ Tt : x ⪯ y}|

|Tt |
.

emma 3.2. For each x ∈ T,

lim
t→∞

Px,t = Px :=

∏
∅≺y⪯x

Uy

almost surely, where

1. the Uy are uniformly distributed on [0, 1];
2. for any y ∈ T, Uy0 + Uy1 = 1;
3. (Uy0)y∈T is an independent family.

Lemma 3.2 will be proved in Section 7.
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3.3. Mutation frequency notation

When DNA is taken from a tumour, the tumour’s age is unknown, but one may have a rough
idea of its size. Therefore we are interested in the cells’ genetic state at the random time

σn = min{t ≥ 0 : |Tt | = n},

hen the total number of cells reaches some given n ∈ N.
Write V µ(x) = (V µ

i (x))i∈S ∈ G for the genome of cell x ∈ T (where µ is the mutation
rate). So (V µ(x))x∈T is a Markov-process indexed by T with transition rates given in Section 2.
Write V µ(∅) = (ui )i∈S for the initial cell’s genome. A genetic site is said to be mutated if its
nucleotide differs from that of the initial cell. Note that, according to this definition, a site which
mutates and then sees a reverse mutation to its initial state is not considered to be mutated.
Write

Bn,µ
i =

⏐⏐{x ∈ Tσn : V µ

i (x) ̸= ui }
⏐⏐ (3)

for the number of cells which are mutated at site i ∈ S when there are n cells in total. The
quantity (3), and its joint distribution over S, is the key object of our study.

3.4. Parameter regime

The number of cells in a detected tumour may be in the region of n = 109, whereas
the mutation rate is in the region of µ = 10−9 [15]. The human genome’s length is around
|S| = 3 × 109. Very roughly,

n ≈ µ−1
≈ |S|.

Therefore we study the limits:

• n → ∞, µ → 0, nµ → θ < ∞;
• n → ∞, µ → 0, nµ → θ < ∞, |S| → ∞ (sometimes with |S|µ → η < ∞).

Remark 3.3. Taking the number of sites to infinity is not to be confused with the infinite sites
assumption.

4. Main results

The first result shows that sites are typically mutated in only a finite number of cells, and
that these numbers are independent across sites.

Theorem 4.1. As n → ∞ and nµ → θ ∈ [0,∞),

(Bn,µ
i )i∈S → (Bi )i∈S

in distribution, where the Bi are i.i.d. and have Luria–Delbrück distribution with parameter
2θ .

Remark 4.2. Taking |S| = 1, Theorem 4.1 recovers results of single site models [7,14,17,19,

1].
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The site frequency spectrum is a popular summary statistic of genetic data. It is defined as
he empirical measure of mutation frequencies:∑

i∈S

δBn,µ
i
.

The site frequency spectrum sees a law of large numbers.

Theorem 4.3. As n → ∞, nµ → θ ∈ [0,∞), and |S| → ∞,
1
|S|

∑
i∈S

δBn,µ
i

→ Λ

n probability, where Λ is the Luria–Delbrück distribution with parameter 2θ . Convergence is
on the space of probability measures on the non-negative integers equipped with the topology
of weak convergence.

Theorems 4.1 and 4.3 teach us that almost every site is mutated in only a finite number of
cells. What about the rare sites which are mutated in a positive fraction of cells? Heuristically,
the Luria–Delbrück distribution’s tail gives the probability that site i is mutated in at least
fraction a of cells:

P[n−1 Bn,µ
i > a] ≈ P[Bi ∈ (na, n)] (4)

≈ 2µ(a−1
− 1). (5)

Approximation (4) is a hand-waving consequence of Theorem 4.1. Approximation (5) is due
to Lemma 3.1. The next result offers rigour (see Fig. 1).

Theorem 4.4. Let i ∈ S and a ∈ (0, 1). As n → ∞ and nµ → θ ∈ [0,∞),

µ−1P[n−1 Bn,µ
i > a] → 2(a−1

− 1).

Theorem 4.4 and linearity of expectation yield the mean site frequency spectrum at positive
fractions of the population.

Corollary 4.5. Let a ∈ (0, 1). As n → ∞, nµ → θ ∈ [0,∞), and |S|µ → η ∈ [0,∞),

E
∑
i∈S

δn−1 Bn,µ
i

(a, 1) → 2η(a−1
− 1).

The next result gives the distribution of the site frequency spectrum at positive fractions of
the population.

Theorem 4.6. As n → ∞, nµ → θ ∈ [0,∞), and |S|µ → η ∈ [0,∞),∑
i∈S

δn−1 Bn,µ
i

→

∑
x∈T\{∅}

MxδPx

in distribution, with respect to the vague topology on the space of measures on (0, 1]. That is,
the measure applied to a finite collection of closed intervals in (0, 1] sees joint convergence.
The random variables which appear in the limit are:

• (Mx ) is a family of i.i.d. Poisson(η) random variables;
• (Px ) is from Lemma 3.2 and is independent of (Mx ).
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Fig. 1. The number of mutant cells with respect to a single site is simulated 105 times. The parameters are
µ = 10−3 and n = 103. The plot compares P[n−1 Bn,µ

1 ∈ (a, 1)] (simulation), P[n−1 B1 ∈ (a, 1)] (Theorem 4.1),
nd 2µ(a−1

− 1) (Theorem 4.4), for a ∈ (0, 1). Simulation and Theorem 4.1 appear indistinguishable.

emark 4.7. The mean site frequency spectrum, according to Theorem 4.6’s limit, is

E

⎡⎣ ∑
x∈T\{∅}

MxδPx (a, 1)

⎤⎦ = 2η(a−1
− 1),

hich recovers the limit of Corollary 4.5.

emark 4.8. The variance of the site frequency spectrum, according to Theorem 4.6’s limit,
s bounded below by

Var

⎡⎣ ∑
x∈T\{∅}

MxδPx (a, 1)

⎤⎦ ≥ 2η(a−1
− 1).

n particular, the coefficient of variation tends to infinity as a ↑ 1.

The details of Remarks 4.7 and 4.8 are given in Section 7.5 (see Fig. 2).

. Generalisations

Motivated by biological reality, we introduce some generalisations: cell death, selection, and
eterogeneous mutation rates.

.1. Model and notation

Starting with one cell, the cell population grows according to a continuous-time multitype
S
arkov branching process. The types are the genomes, elements of G = N . It will be helpful
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Fig. 2. The site frequency spectrum is simulated a single time. The parameters are µ = 10−3, n = 103,
and |S| = 103. The plot compares

∑
i∈S δn−1 Bn,µ

i
(a, 1) (simulation), |S|P[n−1 B1 ∈ (a, 1)] (Theorem 4.3), and

|S|µ(a−1
− 1) (Corollary 4.5), for a ∈ (0, 1).

o classify different types of genetic site. Partition the sites into neutral and selective sites:

S = Sneut ∪ Ssel,

ith Ssel ̸= ∅. For a genome v = (vi )i∈S, write v′
= (vi )i∈Ssel for its restriction to the selective

ites. Let α and β be functions with domain NSsel and range [0,∞). A cell with genome v
ivides at rate α(v′) (to be replaced by two daughter cells) and dies at rate β(v′).

The initial cell is said to have genome u, which is assumed to give a positive growth rate:
α(u′) > β(u′).

Consider a cell with genome (vi )i∈S dividing to give daughter cells with genomes (V (1)
i )i∈S

nd (V (2)
i )i∈S. Conditional on (vi ), the V (r )

i are independent over i ∈ S and r ∈ {1, 2}, and

P
[
V (r )

i = ψ |(vi )
]

= µ
vi ,ψ
i .

Slightly adapting previous notation, write

µ =

(
µ
χ,ψ

i

)
i∈S;χ,ψ∈N

or the collection of mutation rates. Now let us state the notation for mutation frequencies (for
revity, unlike in Section 3.3, we shall do so in words). Write Bn,µ

i for the number of cells
hich are mutated at site i when n cells are first reached conditioned on the event that n cells
re reached.

.2. Generalised Luria–Delbrück distribution

Let (ξk)k∈N be an i.i.d. sequence of exponentially distributed random variables with mean
−1
. Let (Yk(·))k∈N be an i.i.d. sequence, where Y1(·) is a birth-death branching process with



6588 D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624

a
p

5

c

w

T
χ

i
t

fi
c

s
j

T
|

birth and death rates a and b respectively and initial condition Y1(0) = 1. Let K be a Poisson
random variable with mean c. The (ξk), (Yk(·)), and K are independent. The generalised
Luria–Delbrück distribution with parameters (λ, a, b, c) is defined as the distribution of

B =

K∑
k=1

Yk(ξk).

Its generating function

EzB
= exp

(
c(b/a − 1)F

[
1,

λ

a − b
; 1 +

λ

a − b
;

b/a − z
1 − z

])
when a > b is seen in [7,17,19]. Here F is Gauss’s hypergeometric function.

Taking parameters (λ, λ, 0, c) recovers the Luria–Delbrück distribution with parameter c.
The generalised Luria–Delbrück distribution with parameters (λ, λa, λb, c), for λ > 0 and
, b, c ≥ 0, does not depend on λ. So one could define the distribution with 3 rather than 4
arameters. We choose 4 for a cleaner interpretation of results.

.3. Results

To begin, Theorem 4.1 is generalised. The genomes whose only difference from the initial
ell’s genome is at site i ∈ S,

Gi = {v ∈ G : ∀ j ∈ S, (u j ̸= v j ⇐⇒ i = j)}, (6)

ill play a crucial role.

heorem 5.1. Take n → ∞ and nµχ,ψi → θ
χ,ψ

i ∈ [0,∞) for all i ∈ S and χ,ψ ∈ N with
̸= ψ . Then

(
Bn,µ

i

)
i∈S →

⎛⎝∑
v∈Gi

Xv

⎞⎠
i∈S

n distribution, where the Xv are independent and have generalised Luria–Delbrück distribu-
ions with parameters(

α(u′) − β(u′), α(v′), β(v′),
2α(u′)θui ,vi

i

α(u′) − β(u′)

)
.

In the next result, which generalises Theorem 4.3, we keep the number of selective sites
nite while taking the number of neutral sites to infinity. For this limit, mutation rates require
onsideration. Partition the set of neutral sites:

Sneut =

⋃
j∈J

S( j),

uch that mutation rates and the initial genome’s nucleotides are homogeneous on S( j) (J is
ust some indexing set). Write µχ,ψ ( j) = µ

χ,ψ

i for the mutation rates of the sites i ∈ S( j).
Write u( j) = ui for the initial genome’s nucleotide at the sites i ∈ S( j).

heorem 5.2. Take n → ∞, nµχ,ψ ( j) → θχ,ψ ( j) ∈ [0,∞), |Sneut| → ∞, and
S( j)|/|Sneut| → q( j), for all j ∈ J and χ,ψ ∈ N with χ ̸= ψ . Then

1
|S|

∑
δBn,µ

i

p
→

∑
q( j)Λ( j)
i∈S j∈J
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where the Λ( j) are generalised Luria–Delbrück distributions with parameters⎛⎝α(u′) − β(u′), α(u′), β(u′),
2α(u′)

α(u′) − β(u′)

∑
ψ∈N\{u( j)}

θu( j),ψ ( j)

⎞⎠ .
onvergence is on the space of probability measures on the non-negative integers equipped
ith the topology of weak convergence.

.4. Open problems

To generalise Theorem 4.6 to a non-zero death rate, selection, and heterogeneous mutation
ates, we conjecture the following.

onjecture 5.3. Take n → ∞, nµχ,ψ ( j) → θχ,ψ ( j) ∈ [0,∞), and µχ,ψ ( j)|S( j)| →
χ,ψ ( j) ∈ [0,∞), for all j ∈ J and χ,ψ ∈ N with χ ̸= ψ . Then∑

i∈S

δn−1 Bn,µ
i

→

∑
x∈T

Rx∑
r=1

Mx,rδPx

n distribution, where convergence is in the same sense as Theorem 4.6. The random variables
hich appear in the limit are:

• (Px )x∈T\{∅} is distributed as in Lemma 3.2 (and Theorem 4.6), and P∅ = 1;
• (Rx )x∈T\{∅} is an i.i.d. family of geometric random variables with parameter (α(u′) −

β(u′))/(α(u′) + β(u′)), and R∅ is independent of (Rx ) but with R∅

d
= R0 − 1;

• (Px ) is independent of (Rx ) if and only if β(u′) = 0;
• (Mx,r )x∈T,r∈N is an i.i.d. family of Poisson random variables with mean∑

j
∑

ψ ̸=u( j) η
u( j),ψ ( j), independent of (Px , Rx ).

See the Appendix for a heuristic derivation of Conjecture 5.3, which is based on a Yule
pinal decomposition of the branching process.

Selection in cancer is a major research topic, and there have been attempts to infer selection
rom cancer genetic data [5,8,27]. Pertinently, Theorem 5.2 and Conjecture 5.3 suggest that
election may not be visible in mutation frequency data, which according to [26] is the case
or around 1/3 of tumours. However we have assumed that the number of selective sites is kept
nite. According to [5], there are 3.4 × 104 selective sites at which mutations can positively
ffect growth rate. Thus insight could be gleaned, for example, by taking |Ssel| → ∞ with
γ
|Ssel| → η for γ ∈ (0, 1].

. Mutations at finite numbers

In this section we prove results on mutations present in only a finite number of cells. In
ections 6.1 to 6.5 we prove Theorems 4.1 and 5.1 (where S is finite). In Section 6.6 we prove
heorems 4.3 and 5.2 (where |S| tends to infinity).

.1. Counting genomes

Assuming mutation rates µ = (µχ,ψi )i∈S;χψ∈N, write

Xµ(t) (7)
v
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for the number of cells with genome v ∈ G at time t ≥ 0. (Recall that the initial condition is
Xµ
v (0) = δu,v .) Write

σµn = min

{
t ≥ 0 :

∑
v∈G

Xµ
v (t) = n

}
or the time at which n ∈ N cells are reached, and use the convention min ∅ = ∞.

Recall from (6) that Gi is the subset of genomes with exactly one mutation which is at site
. Write

G≥2 = {v ∈ G : |{i ∈ S : vi ̸= ui }| ≥ 2}

or the subset of genomes with at least two mutations.

heorem 6.1. Take n → ∞ and nµχ,ψi → θ
χ,ψ

i ∈ [0,∞) for i ∈ S and χ,ψ ∈ N with
̸= ψ . Then[

(Xµ
v (σµn ))v∈G\{u}|σ

µ
n < ∞

]
→ (Xv)v∈G\{u}

n distribution, where the Xv are independent and distributed according to:

• for v ∈ Gi , Xv has generalised Luria–Delbrück distribution with parameters(
α(u′) − β(u′), α(v′), β(v′),

2α(u′)θui ,vi
i

α(u′) − β(u′)

)
;

• for v ∈ G≥2, Xv = 0.

Theorem 6.1 says that cells with at least two mutated sites are non-existent. However
imulations and biology tell the opposite story, that cells typically have many mutated sites.
his apparent contradiction comes because, while the population size and mutation rate

eciprocal converge to infinity, the number of sites is kept finite. So the result only makes
ense if one is considering a small subset of the billions of sites.

The mutation frequencies are

(
Bn,µ

i

)
i∈S =

⎛⎜⎝∑
v∈G
vi ̸=ui

Xµ
v (σµn )

⎞⎟⎠
i∈S

onditional on the event {σ
µ
n < ∞}. Therefore Theorem 6.1, via the continuous mapping

heorem, implies Theorems 4.1 and 5.1.
Theorem 6.1’s proof is rather lengthy. So, before jumping in with the technical details, let

s give an overview.
In Section 6.2 we present a construction of (Xµ

v (σµn ))v∈G. The construction will ultimately
lluminate the importance of various subpopulations and the mutations between them. Of
articular importance is the primary subpopulation, which is defined as those unmutated cells
hich have an unbroken lineage of unmutated cells going back to the initial cell. The primary

ubpopulation, in the limit, grows deterministically and exponentially.
In Sections 6.3 and 6.4 we show that several events are negligible: primary cells divide

o give two mutant daughters; primary cells mutate at multiple sites at once; mutated cells
eceive further mutations, including backwards mutations. With these events neglected, the
ituation is pleasingly simplified. The primary subpopulation seeds, as a Poisson process
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with exponential intensity, single-site mutant subpopulations. The mutant subpopulations grow
without further mutations, independently. This gives independent Luria–Delbrück distributions.
Finally, in Section 6.5 we condition on the event that the population reaches n cells.

Although the proof’s overview may sound simple, the details are less so. The reader will
nd that the random time σµn shoulders a large responsibility for complexity.

.2. Construction

Additional notation to be used in the proof: for v ∈ G,

ev = (δv,w)w∈G

s the element of (N0)G denoting that there is one genome v and zero other genomes.
Let

[µn]n∈N =

[(
µ
χ,ψ

n,i

)
i∈S;χ,ψ∈N

]
n∈N

be a sequence of mutation rates. Assume that

lim
n→∞

nµχ,ψn,i = θ
χ,ψ

i ∈ [0,∞)

for χ ̸= ψ .
Fix n ∈ N. For v,w ∈ G, write

pn(v,w) =

∏
i∈S

µ
ui ,vi
n,i µ

ui ,wi
n,i (8)

for the probability that a cell with genome u which divides, gives daughters with genomes v,w
(which implies that we have assumed an ordering of the daughters — the first has genome v and
the second has genome w). Now the construction of (Xµn

v (σµn
n ))v∈G begins. For the foundational

tep, introduce the following random variables on a fresh probability space.

1.

(Zn(t))t≥0

is a birth-death branching process with birth and death rates

αn := α(u′)pn(u, u)

and

βn := β(u′) + α(u′)
∑

v,w∈G\{u}

pn(v,w).

The initial condition Zn(0) = 1 is assumed.
2. For j ∈ N,

En
j

are {∅} ∪ (G\{u})2-valued random variables, with

P[En
j = ∅] =

β(u′)
βn

,

and for v,w ∈ G\{u}

P[En
j = (v,w)] =

α(u′)pn(v,w)
βn

.
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3. For v ∈ G\{u} and j ∈ N,

Yn
v, j (·)

is a (N0)G-valued Markov process, with the same transition rates as (Xµn
x (·))x∈G (defined

in (7)) and with the initial condition Yn
v, j (0) = ev .

4. For v,w ∈ G\{u} and j ∈ N,

Yn
v,w, j (·)

is a (N0)G-valued Markov process, with the same transition rates as (Xµn
x (·))x∈G and with

the initial condition Yn
v,w, j (0) = ev + ew.

5. For v ∈ G,

(Nv(t))t≥0

are Poisson counting processes with rate 1.

The random variables[
Zn(·), En

j ,Y
n
v, j (·),Y

n
v,w, j (·), Nv(·)

]
(9)

re assumed to be independent ranging over v,w, j .
Let us explain the meaning of the random variables introduced so far. Zn(·) represents the

primary’ subpopulation — which we define as the type u cells whose ancestors are all of type
. That is to say, there is an unbroken lineage of type u cells between any primary cell and the

nitial cell. The rate, αn , that a primary cell gives birth to another primary cell, is simply the
ype u division rate multiplied by the probability that no mutation occurs in either daughter
ell. The rate, βn , that a primary cell is removed, is the rate that a type u cell dies plus the
ate that a type u cell divides to produce two mutant daughter cells.

The En
j describe what happens at the j th downstep in the primary subpopulation trajectory.

f En
j = ∅, then the downstep is a primary cell death. If En

j = (v,w), then the downstep is a
rimary cell dividing to produce two mutant daughter cells of types v and w.

Sometimes a primary cell divides to produce one primary cell and one mutant cell of type v.
For the j th time that this occurs, Yn

v, j (t) is the vector which counts the cells with each genome
mongst the descendants of that type v cell, time t after its birth.

Sometimes a primary cell divides to produce two mutant cells of types v and w. For the j th
ime that this occurs, Yn

v,w, j (t) is the vector which counts the cells with each genome amongst
he descendants of the two mutants time t after their birth.

The Nv(·) will soon be rescaled in time to represent the times at which primary cells divide
o produce one primary cell and one cell with genome v.

The random variables introduced so far, seen together in (9), provide all the necessary
ngredients for the construction of (Xµn

v (σµn
n ))v∈G. Now we build upon these founding objects,

efining further random variables.

6. For v ∈ G\{u} and t ≥ 0,

K n
v (t) = Nv

(
2pn(u, v)α(u′)

∫ t

Zn(s)ds
)
. (10)
0
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7. For j ∈ N and v ∈ G\{u},

T n
v, j = min{t ≥ 0 : K n

v (t) = j}.

8.

Sn
1 = min{t ≥ 0 : Zn(t) − Zn(t−) = −1},

and then for j > 1, recursively,

Sn
j = min{t > Sn

j−1 : Zn(t) − Zn(t−) = −1}.

(Here Zn(t−) := lims↑t Zn(s).)
9. For v,w ∈ G\{u},

T n
v,w,1 = min{Sn

j : j ∈ N, En
j = (v,w)},

and then for j > 1, recursively,

T n
v,w, j = min{Sn

j : j ∈ N, Sn
j > T n

v,w, j−1, En
j = (v,w)}.

10. For v,w ∈ G\{u}, and t ≥ 0,

K n
v,w(t) = |{ j ∈ N : T n

v,w, j ≤ t}|.

Let us explain the meaning of the new random variables. The K n
v (t) specify the number of

times before time t that primary cells have divided to produce one primary cell and one type v
cell. Let us check that this interpretation makes sense. Conditioned on the trajectory of Zn(·),
K n
v (·) is certainly a Markov process, and increases by 1 at rate 2pn(u, v)α(u′)Zn(t) - i.e. the

rate at which primary cells divide multiplied by the probability that exactly one daughter cell
is primary and one is type v.

Sn
j is the time of the j th downstep of the primary subpopulation size. Then T n

v,w, j is the time
of the j th primary cell division which produces two mutant cells of types v and w. Note that a
primary cell division which produces two mutant cells necessarily coincides with a downstep
in the primary subpopulation size. K n

v,w(t) is the number of primary cell divisions before time
t which produce cells of types v and w.

The reader might question why we have decided to construct the ‘single mutation’ times
and the ‘double mutation’ times so differently. The reason for the difference is that single and
double mutations will play different roles in the limit, and require different techniques for the
proof.

At last the construction reaches its dénouement.

11. For t ≥ 0,

Xn(t) = Zn(t)eu

+

∑
v∈G\{u}

K n
v (t)∑

j=1

Yn
v, j (t − T n

v, j )

+

∑ K n
v,w(t)∑

Yn
v,w, j (t − T n

v,w, j ).

v,w∈G\{u} j=1
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12.

σn = min{t ≥ 0 : |Xn(t)| = n},

where | · | is the l1-norm on RG.

Note that Xn(·) has the same distribution as (Xµn
v (·))v∈G; both objects are Markov processes

on (N0)G, whose initial conditions and transition rates coincide.
Next we will show that certain elements of the construction converge in distribution.

Convergence will sometimes be in the Skorokhod sense. For notation, write D(I, R) for the
space of càdlàg functions from an interval I ⊂ [0,∞) to a metric space R (which will always be
complete and separable). The space D(I, R) is equipped with the standard Skorokhod topology.
Less standard, we will also consider the space D([0,∞], R), which is defined by identification
with D([0, 1], R). Let us be specific. Define ω : [0, 1] → [0,∞] by

ω : s ↦→

{
− log(1 − s), s ∈ [0, 1);
∞, s = 1.

For f ∈ D([0, 1], R) define ŵ( f ) = f ◦ ω−1. Then the space D([0,∞], R) is the image
of ŵ equipped with the induced topology. Note that according to this definition, for all
z ∈ D([0,∞], R), limt→∞ z(t) exists. In fact we will only consider z ∈ D([0,∞], R) with
limt→∞ z(t) = z(∞).

Lemma 6.2. As n → ∞,

(e−λn t Zn(t))t∈[0,∞] → (e−λt Z∗(t))t∈[0,∞]

in distribution, on the space D([0,∞],R). Here

λn = αn − βn

is the growth rate of the primary cell population;

λ = α(u′) − β(u′)

is the large n limit of λn; and Z∗(·) is a birth-death branching process with birth and death
rates α(u′) and β(u′).

Remark 6.3. The processes of Lemma 6.2 are defined at t = ∞. For n large enough that
λn > 0,

e−λn∞ Zn(∞) := lim
t→∞

e−λn t Zn(t) = W n,

and

e−λ∞ Z∗(∞) := lim
t→∞

e−λt Z∗(t) = W ∗.

The limits W n and W ∗ exist and are finite almost surely, which is a classic branching process
result [3].

Proof of Lemma 6.2. The transition probabilities of the
(
e−λn t Zn(t)

)
t∈[0,∞] and(

e−λt Z∗(t)
)

t∈[0,∞] are well-known [3,7,11]. These transition probabilities depend continuously

on the birth and death rates, so finite-dimensional convergence is given. To show tightness we
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shall use Aldous’s criterion [1]. Extend ω(s) to s ∈ [0, 2] by setting ω(s) = ω(1) = ∞ for
s ∈ [1, 2]. Write

Mn(s) = e−λnω(s) Zn(ω(s))

for s ∈ [0, 2]. Let (ρn) be a sequence of [0, 1]-valued stopping times with respect to (Mn(·)).
Let (δn) be a positive deterministic sequence converging to zero. Then, writing Fρn for the
sigma-algebra generated by Mn(·) up to time ρn ,

E[(Mn(ρn + δn) − Mn(ρn))2
|Fρn ] = E[Mn(ρn + δn)2

|Fρn ] − Mn(ρn)2

=
(
e−λnω(ρn )

− e−λnω(ρn+δn ))
×
αn + βn

λn
Mn(ρn),

here the last equality comes thanks to the fact that

Mn(s)2
+
αn + βn

λn
e−λnω(s) Mn(s)

s a martingale. But

e−λnω(ρn )
− e−λnω(ρn+δn )

= (1 − ρn)λn − 1{1−ρn−δn≥0}(1 − ρn − δn)λn

≤ max{λnδn, δ
λn
n }.

ow,

E[(Mn(ρn + δn) − Mn(ρn))2] ≤ max{λnδn, δ
λn
n }
αn + βn

λn
EMn(ρn)

= max{λnδn, δ
λn
n }
αn + βn

λn
.

ake n → ∞ to see that Mn(ρn+δn)−Mn(ρn) converges to zero in L2 and hence in probability,
hus satisfying Aldous’s criterion. □

emma 6.4. As n → ∞,

Yn
v, j (·) → Yv, j (·)ev

n distribution, where Yv, j (·) is a birth-death branching process with birth and death rates α(v′)
nd β(v′) and initial condition Yv, j (0) = 1. Convergence is on the space D([0,∞),RG).

Proof. It is enough to note that the transition rates converge (see for example page 262
of [12]). □

Lemma 6.5. As n → ∞,⎛⎝ ∑
j≤kn3/2

1{En
j ̸=∅}

⎞⎠
k∈N

→ (0)k∈N

in distribution, on the space RN.
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Proof. Note that

lim
n→∞

n3/2P[En
j ̸= ∅] = 0.

Then

P

⎡⎣ ∑
j≤kn3/2

1{En
j ̸=∅} = 0; k = 1, . . . , r

⎤⎦ = P
[
En

j = ∅; j ≤ rn3/2]
=
(
1 − P

[
En

j ̸= ∅
])⌊rn3/2

⌋

→ 1. □

Remark 6.6. The number 3/2 which appears in Lemma 6.5 is not special. It only matters that
3/2 ∈ (1, 2). The relevance of the result will be seen in Section 6.3.

Lemma 6.7. As n → ∞,⎡⎣(e−λn t Zn(t))t∈[0,∞],
(
(Yn
v, j (t))t∈[0,∞)

)
v∈G\{u}, j∈N ,

⎛⎝ ∑
j≤kn3/2

1{En
j ̸=∅}

⎞⎠
k∈N

⎤⎦
converges in distribution to[

(e−λt Z∗(t))t∈[0,∞];
(
(Yv, j (t)ev)t∈[0,∞)

)
v∈G\{u}, j∈N , (0)k∈N

]
on

D([0,∞],R) × D
(
[0,∞),RG

)G\{u}×N
× RN,

where the Z∗(·) and Yv, j (·) are independent.

Proof. The convergence seen in Lemmas 6.2, 6.4, and 6.5 is joint convergence over the product
space due to independence. □

We are yet to say how the random variables in (9) are jointly distributed over n ∈ N. In
fact, the choice of this joint distribution over n ∈ N has no relevance to the statement of
Theorem 6.1. Hence the choice can be freely made, in a way that streamlines the proof. We
assume that:

lim
n→∞

(e−λn t Zn(t))t∈[0,∞] = (e−λt Z∗(t))t∈[0,∞] (11)

almost surely, on the space D([0,∞],R);

lim
n→∞

(Yn
v, j (t))t∈[0,∞) = (Yv, j (t)ev)t∈[0,∞) (12)

almost surely, on the space D([0,∞),RG), for v ∈ G\{u} and j ∈ N; and⎛⎝ ∑
j≤kn3/2

1{En
j ̸=∅}

⎞⎠
k∈N

→ (0)k∈N (13)

almost surely, on the space RN.
To justify that it is possible to have constructed the random variables in such a way that

(11), (12), and (13) hold, one can bring in Skorokhod’s Representation Theorem, to use with
Lemma 6.7.
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6.3. Neglecting double mutations

Call the event that a primary cell divides to produce two mutant cells a ‘double mutation’.
Recall that double mutations are represented by the events {En

j = (v,w)}, which occur at the
imes Sn

j when the primary cell population steps down in size. In order to comment on double
utations, we will first prove a rather crude upper bound for the number of downsteps in the

rimary cell population trajectory. Write

τn := min{t ≥ 0 : Zn(t) ∈ {0, n}}, (14)

or the time at which the primary cell population hits 0 or n. Write

Dn :=
⏐⏐{ j ∈ N : Sn

j ≤ τn}
⏐⏐

or the number of downsteps in the primary cell population before time τn .

emma 6.8.

sup
n∈N

n−3/2 Dn < ∞

lmost surely.

roof. For each n ∈ N, let (Rn
j ) j∈N be a sequence of i.i.d. random variables with

P[Rn
j = x] =

{
αn/(αn + βn), x = 1;

βn/(αn + βn), x = −1;

o ⎛⎝1 +

k∑
j=1

Rn
j

⎞⎠
k∈N

s a random walk, whose distribution matches that of the discrete-time embedded chain of
Zn(·). Write

ρn = min

⎧⎨⎩k ∈ N : 1 +

k∑
j=1

Rn
j ∈ {0, n}

⎫⎬⎭
or the number of steps until the walk hits n or 0. Then the number of downsteps before hitting

or 0 is

Dn
d
=

ρn∑
j=1

1{Rn
j =−1} ≤ ρn.

herefore we can bound the tail of Dn’s distribution:

P[D > n3/2] ≤ P[ρ > n3/2].
n n



6598 D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624
But {ρn > n3/2
} ⊂ {1 +

∑⌊n3/2
⌋

j=1 Rn
j < n}, so

P[Dn > n3/2] ≤ P

⎡⎣1 +

⌊n3/2
⌋∑

j=1

Rn
j < n

⎤⎦
≤ P

[⎛⎝⌊n3/2
⌋∑

j=1

Rn
j −

⌊n3/2
⌋λn

αn + βn

⎞⎠2

(15)

>

(
⌊n3/2

⌋λn

αn + βn
+ 1 − n

)2]

≤

(
⌊n3/2

⌋λn

αn + βn
+ 1 − n

)−2

Var

⎡⎣⌊n3/2
⌋∑

j=1

Rn
j

⎤⎦ (16)

≤ cn−3/2, (17)

for some constant c > 0. Inequality (16) holds for large enough n and Inequality (16) is
Chebyshev’s inequality. Finally, (17) gives that∑

n∈N

P[Dn > n3/2] < ∞,

and the result is proven by Borel–Cantelli. □

Now it is to be seen that double mutations occurring before time τn can be neglected.

Lemma 6.9. Let v,w ∈ G\{u}. As n → ∞,

K n
v,w(τn) → 0

almost surely.

Proof. From Lemma 6.8, C := supn∈N n−3/2 Dn < ∞. Then

K n
v,w(τn) =

Dn∑
j=1

1{En
j =(v,w)}

≤

⌈Cn3/2
⌉∑

j=1

1{En
j =(v,w)}

≤

⌈Cn3/2
⌉∑

j=1

1{En
j ̸=∅}.

By (13) this converges to zero as n → ∞. □

6.4. Convergence of genome counts

The purpose of this section is to show that Xn(σn) converges when conditioned on the event
{W ∗ > 0} (W ∗ is defined in Remark 6.3). The times τn (defined in (14)) will play the role of
a helpful stepping stone in the proof.
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Lemma 6.10. Condition on {W ∗ > 0}. Then, almost surely,

1. there exists n0 such that for all n ≥ n0, Zn(τn) = n; and
2. limn→∞ τn = ∞.

Proof. To see the first statement, observe that there exists n0 such that for all n ≥ n0,
W n > W ∗/2 > 0. For such n, limt→∞ Zn(t) = ∞, and hence Zn(·) > 0. To see the second
tatement, suppose for a contradiction that there exists a bounded subsequence (τnk ) ⊂ [0,C].
hen, for large enough k,

nk = Znk (τnk ) ≤ sup
n∈N

sup
t∈[0,C]

Zn(t).

he left hand side of the inequality is unbounded over k. On the other hand, the right hand
ide, which does not depend on k, is finite thanks to (11). □

emma 6.11. Condition on {W ∗ > 0}. Suppose that (an)n∈N is a sequence of real-valued
andom variables on the same probability space as everything else, with

lim
n→∞

an = ∞,

an ≤ τn

or each n, and

lim
n→∞

(an − τn) = l ∈ [−∞, 0]

lmost surely. Then, almost surely,

lim
n→∞

K n
v (an) =

{
K ∗
v (l), v ∈ Gi , i ∈ S;

0, v ∈ G≥2;

here

K ∗

v (s) = Nv(2λ−1α(u′)θui ,vi
i eλs).

oreover, for v ∈ Gi and j ∈ N,

lim
n→∞

(
an − T n

v, j

)
= l − T ∗

v, j

lmost surely, where

T ∗

v, j = min{s ∈ R : K ∗

v (s) = j}.

roof. Let t ∈ R. Since Zn(τn) = n,

n−1
∫ an+t

0
Zn(s)ds =

∫ t

−an

Zn(an + s)
eλn (an+s)

eλnτn

Zn(τn)
eλn (an−τn+s)ds.

Thanks to (11):

1. for any sequence (tn) which converges to infinity, limn→∞ e−λn tn Zn(tn) = W ∗ almost
surely; and

2. sup sup e−λn t Zn(t) < ∞ almost surely.
n∈N t∈[0,∞]
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So, using dominated convergence,

lim
n→∞

n−1
∫ an+t

0
Zn(s)ds = λ−1eλ(l+t)

almost surely. Note also that

lim
n→∞

npn(u, v) =

{
θ

ui ,vi
i , v ∈ Gi ;

0, v ∈ G≥2.

Then

lim
n→∞

2pn(u, v)α(u′)
∫ an+t

0
Zn(s)ds = 2λ−1α(u′)θui ,vi

i eλ(l+t).

Hence, recalling (10),

K n
v (an + t) = Nv

(
2pn(u, v)α(u′)

∫ an+t

0
Zn(s)ds

)
onverges almost surely to

K ∗

v (l + t) = Nv

(
2λ−1α(u′)θui ,vi

i eλ(l+t)) ,
because Nv(·) is almost surely continuous at any fixed point.

Finally we check convergence of the an − T n
v, j . Let ϵ > 0. For sufficiently large n,

K n
v (an − l + T ∗

v, j + ϵ) = K ∗

v (T ∗

v, j + ϵ) ≥ j;

so

an − l + T ∗

v, j + ϵ ≥ T n
v, j ,

or equivalently

an − T n
v, j ≥ l − T ∗

v, j − ϵ.

The argument is now repeated for an upper bound. For sufficiently large n,

K n
v (an − l + T ∗

v, j − ϵ) = K ∗

v (T ∗

v, j − ϵ) < j;

so

an − l + T ∗

v, j − ϵ < T n
v, j ,

or equivalently

an − T n
v, j < l − T ∗

v, j + ϵ. □

emma 6.12. Condition on {W ∗ > 0}. Suppose that (an) satisfies the conditions of
emma 6.11. Then, almost surely,

lim
n→∞

(
Xn(an) − Zn(an)eu

)
=

∑
i∈S

∑
v∈Gi

ev

K ∗
v (l)∑

j=1

Yv, j (l − T ∗

v, j ),

here the Yv, j (·) are from Lemma 6.4 and the K ∗
v (·) and T ∗

v, j are from Lemma 6.11.

emark 6.13. By definition, T ∗

v, j ≤ l for j = 1, . . . , K ∗
v (l). So the limit in Lemma 6.12 is

well defined.



D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624 6601

T

w
s
Y

L

a

P
T

S

T

T

c

w

L

a

Proof of Lemma 6.12. Recall that

Xn(an) − Zn(an)eu =

∑
v∈G\{u}

K n
v (an )∑
j=1

Yn
v, j (an − T n

v, j ) (18)

+

∑
v,w∈G\{u}

K n
v,w(an )∑
j=1

Yn
v,w, j (an − T n

v,w, j ).

he ‘double mutation’ term in (18) converges to zero, because

K n
v,w(an) ≤ K n

v,w(τn),

hich converges to zero by Lemma 6.9. As for the ‘single mutation’ term in (18), Lemma 6.11
ays that the K n

v (an) and an − T n
v, j converge to K ∗

v (l) and l − T ∗

v, j , while (12) says that the
n
v, j (·) converge to evYv, j (·). □

emma 6.14. Condition on {W ∗ > 0}.

lim
n→∞

(σn − τn) = 0

lmost surely.

roof. By Lemma 6.10, for large enough n, Zn(τn) = n. So |Xn(τn)| ≥ n, and hence σn ≤ τn .
herefore

lim inf
n→∞

(σn − τn) ≤ 0.

uppose, looking for a contradiction, that

lim inf
n→∞

(σn − τn) = l ∈ [−∞, 0).

ake a subsequence with

lim
k→∞

(σnk − τnk ) = l.

hen, by Lemma 6.12,

|Xn(σnk ) − Zn(σnk )eu |

onverges, and so must be a bounded sequence. However it is also true that, taking k → ∞,

|Xn(σnk ) − Zn(σnk )eu | = nk − Znk (σnk )

= nk

(
1 −

Znk (σnk )
eλnk σnk

eλnk τnk

Znk (τnk )
eλnk (σnk −τnk )

)
∼ nk(1 − eλl),

hich is unbounded. □

emma 6.15. Condition on {W ∗ > 0}.

lim
n→∞

(Xn(σn) − Zn(σn)eu) =

∑
i∈S

∑
v∈Gi

ev

K ∗
v (0)∑

j=1

Yv, j (−T ∗

v, j ),

lmost surely.
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Proof. By Lemma 6.14, (σn) = (an) satisfies the conditions of Lemma 6.11 with l = 0. Then
Lemma 6.12 gives the result. □

Let us look at the limit in Lemma 6.15. For v ∈ Gi , K ∗
v (0) is Poisson distributed

with mean 2λ−1α(u′)θui ,vi
i . Conditional on K ∗

v (0), the times (−T ∗

v, j )
K ∗
v (0)

j=1 , unordered, are i.i.d.
exponentially distributed random variables with mean λ−1. So

K ∗
v (0)∑

j=1

Yv, j (−T ∗

v, j )

has generalised Luria–Delbrück distribution with parameters(
λ, α(v′), β(v′), 2λ−1α(u′)θui ,vi

i

)
.

Therefore the limit of Lemma 6.15 is a vector of independent generalised Luria–Delbrück
distributions:∑

i∈S

∑
v∈Gi

ev

K ∗
v (0)∑

j=1

Yv, j (−T ∗

v, j )
d
=

∑
v∈G\{u}

evXv,

where the Xv are as stated in Theorem 6.1. To complete the proof of Theorem 6.1 we need to
show that conditioning on {W ∗ > 0} can be translated to conditioning on {σn < ∞}, which is
the subject of the next subsection.

6.5. Conditioning on reaching n cells

In order to connect {W ∗ > 0} and {σn < ∞}, the next result is the key. It states that these
events are approximately the same for large n.

Proposition 6.16.

1. limn→∞ P[W ∗ > 0, σn = ∞] = 0, and
2. limn→∞ P[W ∗

= 0, σn < ∞] = 0.

Let us break the proof of Proposition 6.16 into several lemmas; the idea is that the random
variable W n be used as an intermediary.

Lemma 6.17.

lim
n→∞

P[W ∗ > 0,W n
= 0] = 0.

Proof. If W ∗ > 0, then there exists n0, such that for all n ≥ n0

W n >
W ∗

2
.

So

lim
n→∞

1{W∗>0,W n=0} = 0.

herefore, by dominated convergence,

P[W ∗ > 0,W n
= 0] = E1{W∗>0,W n=0} → 0. □



D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624 6603

P

P

S

a

M

B

L

Lemma 6.18.

P[W n > 0, σn = ∞] = 0.

roof. If W n > 0, then limt→∞ Xn(t) = ∞, and so σn < ∞. □

roof of Part 1 of Proposition 6.16.

P[W ∗ > 0, σn = ∞] = P[W ∗ > 0, σn = ∞,W n
= 0]

+P[W ∗ > 0, σn = ∞,W n > 0]

≤ P[W ∗ > 0,W n
= 0]

+P[σn = ∞,W n > 0] → 0

as n → ∞, by Lemmas 6.17 and 6.18. □

The structure for the proof of Part 2 of Proposition 6.16 is much the same as that of Part
1. However the details will require a little extra work.

Lemma 6.19.

lim
n→∞

P[W ∗
= 0,W n > 0] = 0.

Proof. Let ϵ > 0. If W ∗
= 0, then there exists n0 such that for all n ≥ n0

W n < ϵ.

o

lim
n→∞

1{W∗=0,W n≥ϵ} = 0

lmost surely. Then by dominated convergence,

lim
n→∞

P[W ∗
= 0,W n

≥ ϵ] = 0.

eanwhile for each n,

P[W n
∈ (0, ϵ)] =

λn

αn

(
1 − e−

λn
αn ϵ
)

≤ ϵ

(the distribution of W n is seen in [3,7]). Therefore

lim sup
n→∞

P[W ∗
= 0,W n > 0]

≤ lim sup
n→∞

P[W ∗
= 0,W n

≥ ϵ] + lim sup
n→∞

P[W n
∈ (0, ϵ)]

≤ ϵ.

ut ϵ > 0 was arbitrary, giving the result. □

emma 6.20.

lim
n→∞

P[W n
= 0, σn < ∞] = 0.
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Proof. If the primary population size never reaches n and there are never any mutations, then
the total population size never reaches n. That is, if Zn(τn) = 0, K n

v (·) = 0 and K n
v,w(·) = 0

for all v,w ∈ G\{u}, then

sup
t≥0

|Xn(t)| < n,

which means that σn = ∞. Equivalently,

{σn < ∞} ⊂ {Zn(τn) = n} ∪ {∃v, K n
v (·) ̸= 0} ∪ {∃(v,w), K n

v,w(·) ̸= 0}

= {Zn(τn) = n} ∪ {∃v, K n
v (·) ̸= 0}

∪{∃(v,w), K n
v,w(·) ̸= 0, Zn(τn) = 0},

here the equality relies on the fact that {Zn(τn) = 0} ∪ {Zn(τn) = n} covers the whole
robability space. It follows that

P[W n
= 0, σn < ∞] ≤ P[W n

= 0|Zn(τn) = n]

+

∑
v∈G\{u}

P[K n
v (·) ̸= 0|W n

= 0]

+

∑
v,w∈G\{u}

P[K n
v,w(·) ̸= 0|Zn(τn) = 0]. (19)

e will show that each term of the right hand side of Inequality (19) converges to zero. Firstly,

P[W n
= 0|Zn(τn) = n] =

(
βn

αn

)n

,

hich is the probability that Zn(·), if starting at size n, eventually goes extinct; this clearly
onverges to zero.

Secondly,

E
[

sup
t

K n
v (t)

⏐⏐⏐W n
= 0

]
= E

[
N n
v

(
2pn(u, v)α(u′)

∫
∞

0
Zn(s)ds

) ⏐⏐⏐W n
= 0

]
= E

[
E
[

N n
v

(
2pn(u, v)α(u′)

∫
∞

0
Zn(s)ds

) ⏐⏐⏐Zn(·)
]⏐⏐⏐W n

= 0
]

= E
[

2pn(u, v)α(u′)
∫

∞

0
Zn(s)ds

⏐⏐⏐W n
= 0

]
= 2pn(u, v)α(u′)

∫
∞

0
E[Zn(s)|W n

= 0]ds

= 2pn(u, v)α(u′)
∫

∞

0
e−λnsds

→ 0,

ecause pn(u, v) → 0. Hence

P
[

sup K n
v (t) ̸= 0

⏐⏐⏐W n
= 0

]
→ 0.
t
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Lastly,

P[K n
v,w(·) ̸= 0|Zn(τn) = 0] = P[K n

v,w(τn) ̸= 0|Zn(τn) = 0]

≤
P[K n

v,w(τn) ̸= 0]
P[Zn(τn) = 0]

.

But P[K n
v,w(τn) ̸= 0] converges to zero by Lemma 6.9, while P[Zn(τn) = 0] converges to

P[W ∗
= 0] > 0 by (11). □

Proof of Part 2 of Proposition 6.16. Just as for Part 1,

P[W ∗
= 0, σn < ∞] = P[W ∗

= 0, σn < ∞,W n > 0]

+P[W ∗
= 0, σn < ∞,W n

= 0]

≤ P[W ∗
= 0,W n < 0]

+P[σn < ∞,W n
= 0] → 0

as n → ∞, by Lemmas 6.19 and 6.20. □

Corollary 6.21 (To Proposition 6.16).For any sequence of events (Hn)n∈N,

lim
n→∞

P[Hn, σn < ∞] = lim
n→∞

P[Hn,W ∗ > 0]

if the limit exists.

Proof. Partition the event {Hn ∩ (W ∗ > 0 ∪ σn < ∞)} in two ways to obtain

P[Hn, σn < ∞] + P[Hn,W ∗ > 0, σn = ∞]

= P[Hn,W ∗ > 0] + P[Hn,W ∗
= 0, σn < ∞],

and take n → ∞. □

Finally we are in a position to prove Theorem 6.1.

Proof of Theorem 6.1. For any R ⊂ (N0)G\{u},

lim
n→∞

P
[(

Xµn
v (σn)

)
v∈G\{u}

∈ R, σn < ∞

]
P [σn < ∞]

= lim
n→∞

P
[(

Xµn
v (σn)

)
v∈G\{u}

∈ R,W ∗ > 0
]

P [W ∗ > 0]
(20)

= P[(Xv)v∈G\{u} ∈ R], (21)

where (20) is due to Corollary 6.21 and (21) is due to Lemma 6.15. □
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6.6. Law of large numbers

Proof of Theorem 5.2 (and Theorem 4.3). The expected site frequency spectrum is given by

E

[
|S|

−1
∑
i∈S

δBn,µ
i

{k}

]
= |S|

−1
∑
i∈S

P[Bn,µ
i = k]

= |S|
−1
∑

i∈Ssel

P[Bn,µ
i = k]

+ |S|
−1
∑
j∈J

∑
i∈S( j)

P[Bn,µ
i = k], (22)

or k ∈ N0. The penultimate term of (22) vanishes:

|S|
−1
∑

i∈Ssel

P[Bn,µ
i = k] → 0

ecause |Ssel|/|S| → 0. The last term of (22) can be written as

|S|
−1
∑
j∈J

∑
i∈S( j)

P[Bn,µ
i = k] =

∑
j∈J

|S( j)|
|S|

P[Bn,µ( j) = k],

here P[Bn,µ( j) = k] = P[Bn,µ
i = k] for i ∈ S( j). But

|S( j)|
|S|

→ q( j),

hile Theorem 5.1 implies that

P[Bn,µ( j) = k] → Λ( j){k}.

herefore the expected site frequency spectrum converges:

E

[
|S|

−1
∑
i∈S

δBn,µ
i

{k}

]
→

∑
j∈J

q( j)Λ( j){k}.

he variance is

Var

[
|S|

−1
∑
i∈S

δBn,µ
i

{k}

]
= |S|

−2
∑
i∈S

Var[1
{Bn,µ

i =k}
]

+ |S|
−2
∑
i, j∈S
i ̸= j

Cov[1
{Bn,µ

i =k}
, 1

{Bn,µ
j =k}

]

≤ |S|
−1

+ max
i, j∈S
i ̸= j

Cov[1
{Bn,µ

i =k}
, 1

{Bn,µ
j =k}

].

ecause Ssel and J are finite sets and the random variables are exchangeable over S( j), the
aximum is taken over a finite set. Theorem 5.1 says that the covariances converge to zero. □

. Mutations at positive fractions

In this section we return to the basic Yule process setting, proving results on mutations
resent in a positive fraction of cells. In Section 7.1 we prove Theorem 4.4 and also prove
n upper bound for mutation frequencies. In 7.2 we prove Lemma 3.2 and another result



D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624 6607

p

concerning cell descendant fractions. In 7.3 we determine mutation frequencies under the
infinite sites assumption. In 7.4 we show that the infinite sites assumption can offer an
approximation for mutation frequencies, concluding the proof of Theorem 4.6. In 7.5 we give
details of Remarks 4.7 and 4.8.

7.1. Single site mutation frequencies and an upper bound

Write

B
µ

i = {x ∈ T : V µ

i (x) ̸= ui }

for the cells which are mutated at site i ∈ S, and

B̂
µ

i = {y ∈ T : ∃x ∈ B
µ

i , x ⪯ y}

for their descendants. Recall that Tσn are the cells alive when the total number of cells reaches
n. Note the inequality

B̂n,µ
i := |B̂

µ

i ∩ Tσn | ≥ |B
µ

i ∩ Tσn | = Bn,µ
i . (23)

The goal of this subsection is to prove Theorem 4.4 and the following closely related result,
which will later play a crucial role in the proof of Theorem 4.6.

Proposition 7.1. Let i ∈ S and a ∈ (0, 1). As n → ∞ and nµ → θ ∈ [0,∞),

µ−1P[n−1 B̂n,µ
i > a] → 2(a−1

− 1).

For this subsection we are always talking about a single site i ∈ S; for convenience, let us
drop the subscript i from the notation. To begin the proofs of Theorem 4.4 and Proposition 7.1,
fix µ, and observe that (Br,µ)r∈N is a Markov process on the nonnegative integers with transition
probabilities

P[Br+1,µ
= k|Br,µ

= j]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j
r (µ/3)2, k = j − 1;

j
r 2(µ/3)(1 − µ/3) +

r− j
r (1 − µ)2, k = j;

j
r (1 − µ/3)2

+
r− j

r 2µ(1 − µ), k = j + 1;

r− j
r µ2, k = j + 2.

(24)

Here, j/r is the probability that one of the j mutant cells divides, while µ/3 is the probability
that a mutant’s daughter reverts to the unmutated state. The process (B̂r,µ)r∈N has transition

robabilities

P[B̂r+1,µ
= k|B̂r,µ

= j]

=

⎧⎪⎨⎪⎩
r− j

r (1 − µ)2, k = j;
j
r +

r− j
r 2µ(1 − µ), k = j + 1;

r− j
r µ2, k = j + 2.

(25)

The key idea of the proof will be to condition on the number of cells when the first mutant
(with respect to site i) arises. For this purpose, introduce

ξµ = min{r ∈ N : Br,µ > 0}
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for the total number of cells when the first mutant cell arises. Let

Ξ
µ

j = {Bξ
µ,µ

= j}

be the event that the first cell division to see a mutation gives j mutant cells, for j ∈ {1, 2}.

Lemma 7.2. For r ∈ N,

lim
µ→0

µ−1P[ξµ = r,Ξ µ

j ] =

{
2, j = 1;

0, j = 2.

roof. The probability that the first r − 2 cell divisions give no site i mutations multiplied by
the probability that the (r − 1)th cell division gives exactly one mutant daughter is

P[ξµ = r,Ξ µ

1 ] = (1 − µ)2r−32µ.

imilarly

P[ξµ = r,Ξ µ

2 ] = (1 − µ)2r−4µ2.

ivide by µ and take µ → 0. □

The next result gives conditional mutation frequencies.

emma 7.3. Let a > 0. As n → ∞ and nµ → θ ∈ [0,∞),

P[n−1 Bn,µ > a
⏐⏐ξµ = r,Ξ µ

1 ] → (1 − a)r−1

nd

P[n−1 B̂n,µ > a
⏐⏐ξµ = r,Ξ µ

1 ] → (1 − a)r−1

roof. Calculating from the transition probabilities (24),

E
[
Bs+1,µ

|Bs,µ
= k

]
= k + s−1k(1 − 8µ/3) + 2µ.

o

E
[
(s + 1)−1 Bs+1,µ

|Bs,µ
= k

]
= s−1k + s−1(s + 1)−1

(
2s −

8
3

k
)
µ,

nd hence

s−1k − 2s−1µ ≤ E
[
(s + 1)−1 Bs+1,µ

|Bs,µ
= k

]
≤ s−1k + 2s−1µ. (26)

or the rest of the proof we will condition on the event {ξµ = r,Ξ µ

1 }. That is, we will consider
the processes (Bs,µ)s≥r and (B̂s,µ)s≥r conditioned on Br,µ

= B̂r,µ
= 1. Write

Er,1[·] = E[·|ξµ = r,Ξ µ

1 ]

for the conditional expectation. From (26), for s ≥ r ,

Er,1
[
s−1 Bs,µ]

− 2s−1µ ≤ Er,1
[
(s + 1)−1 Bs+1,µ][
−1 s,µ] −1
≤ Er,1 s B + 2s µ. (27)
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Combining (27) with

Er,1
[
r−1 Br,µ]

= r−1,

we have that, for n ≥ r ,

r−1
− 2µ

n−1∑
s=r

s−1
≤ Er,1

[
n−1 Bn,µ]

≤ r−1
+ 2µ

n−1∑
s=r

s−1.

herefore, as µ → 0 and nµ → θ ,

Er,1
[
n−1 Bn,µ]

→ r−1.

In just the same manner,

Er,1

[
n−1 B̂n,µ

]
→ r−1.

Consider the single mutant cell present when the total number of cells is r . Write Dn for the
umber of cells which have descended from this mutant cell when the total number of cells is
≥ r . The process (Dn, n − Dn)n≥r is just Polya’s urn. So

Er,1
[
n−1 Dn]

= r−1.

oreover a well-known result (e.g. [10]) says that, as n → ∞, n−1 Dn converges to a Beta
andom variable. That is, for a ∈ (0, 1),

Pr,1[n−1 Dn > a] → (1 − a)r−1, (28)

which is exactly the limit we wish to show for n−1 Bn,µ and n−1 B̂n,µ. To show that n−1 Dn ,
−1 Bn,µ, and n−1 B̂n,µ share the same limiting distribution, we will show that their differences
onverge to zero. The inequality

Dn
≤ B̂n,µ

ives that

Er,1|n−1 B̂n,µ
− n−1 Dn

| = Er,1n−1 B̂n,µ
− Er,1n−1 Dn

→ 0.

he inequality

Bn,µ
≤ B̂n,µ

ives that

Er,1|n−1 B̂n,µ
− n−1 Bn,µ

| = Er,1n−1 B̂n,µ
− Er,1n−1 Bn,µ

→ 0. □

emma 7.4. Consider (µn)n∈N with nµn → θ ∈ [0,∞). Then

sup
n∈N

P[n−1 Bn,µn > a
⏐⏐ξµn = r,Ξ µn

j ] ≤ sup
n∈N

P[n−1 B̂n,µn > a
⏐⏐ξµn = r,Ξ µn

j ]

≤ cr−2,

here c > 0 does not depend on r, j .
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Proof. The first inequality is immediate. We prove the second. From the transition probabilities
(25),

E
[
(B̂s+1,µn )2

|B̂s,µn = k
]

= k2 (1 + 2s−1
− 4µns−1)

+ k
(
4µn + s−1(1 − 2µn − 2µ2

n)
)

+ 2µn + 2µ2
n

≤ k2(s + 1)2s−2
+ 4nµn + 2µn + 2µ2

n + 1.

o, for s ≤ n,

E
[
(s + 1)−2(B̂s+1,µn )2

|B̂s,µn = k
]

≤ s−2k2
+ s−2c1, (29)

here c1 > 0 is a constant which does not depend on k, n, s. Now let us condition on {ξµn =

,Ξ
µn
j }, again writing Er, j for the conditional expectation. From (29), for s ∈ {r, . . . , n},

Er, j [(s + 1)−2(B̂s+1,µn )2] − Er, j [s−2(B̂s,µn )2] ≤ s−2c1.

his leads to, for s ∈ {r, . . . , n},

Er, j [s−2(B̂s,µn )2] ≤ Er, j [r−2(B̂r,µn )2] + c1

s−1∑
t=r

t−2

= r−2 j2
+ c1

s−1∑
t=r

s−2

≤ c2r−1, (30)

here c2 is a constant which does not depend on j, n, r, s. (In the following, c3, . . . , c6 will
lso be constants.) Calculating third moments from the transition probabilities,

E
[
(B̂s+1,µn )3

|B̂s,µn = k
]

= k3 (1 + 3s−1(1 − 2µn − 4µ2
n)
)

+ k2 (6µn + 3s−1(1 − 2µn − 6µ2
n)
)

+ k
(
6µn + 6µ2

n − s−1(1 + 2µn + 6µ2
n)
)

+ 2µn + 6µ2
n

≤ k3(s + 1)3s−3
+ c3k2s−1

+ c4kn−1.

hen

E
[
(s + 1)−3(B̂s+1,µn )3

|B̂s,µn = k
]

≤ s−3k3
+ c3s−4k2

+ c4s−2n−1.
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Hence

Er, j

[
(s + 1)−3(B̂s+1,µn )3

]
− Er, j

[
s−3(B̂s,µn )3

]
≤ c3s−2Er, j [s−2(B̂s,µn )2] + c4s−2r−1,

which combined with (30) gives that

Er, j [n−3(B̂n,µn )3] = Er, j [r−3(B̂r,µn )3] + c5r−1
n−1∑
s=r

s−2

≤ r−3
+ c6r−2

≤ cr−2.

pply Markov’s inequality to conclude. □

roof of Theorem 4.4 and Proposition 7.1.

µ−1P[n−1 Bn,µ > a]

=

∞∑
r=2

2∑
j=1

µ−1P[ξµ = r,Ξ µ

j ]P[n−1 Bn,µ > a
⏐⏐ξµ = r,Ξ µ

j ]. (31)

emmas 7.2, 7.3, and 7.4, along with the Dominated Convergence Theorem, show that the
imit of (31) is

2
∞∑

r=1

(1 − a)r
= 2(a−1

− 1).

he same argument works for B̂n,µ. □

.2. Cell descendant fractions

Here we are concerned with the Px,t (the fraction of cells alive at time t ≥ 0 which are
descendants of cell x ∈ T).

Aldous [2], in a different language to ours, gives a similar result to Lemma 3.2. Rather than
adapting his result, we now give a distinct proof of Lemma 3.2.

Proof of Lemma 3.2. Write

Dx = {y ∈ T : x ⪯ y}

or the descendants of cell x ∈ T, and write

Dx,t = Dx ∩ Tt

or the descendants of cell x ∈ T which are alive at time t ≥ 0. Observe that

Dx,
∑

y≺x Ay+t =

{
y ∈ T : x ⪯ y,

∑
Az ≤ t <

∑
Az

}
.

x⪯z≺y x⪯z⪯y
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Hence(
|Dx,

∑
y≺x Ay+t |

)
t≥0

s measurable with respect to the sigma-algebra generated by (Ay)y∈Dx , and has the same
distribution as(

|D∅,t |
)

t≥0 = (|Tt |)t≥0 .

It follows that

lim
t→∞

e−t
|Dx,

∑
y≺x Ay+t | =: Wx

almost surely, where Wx ∼Exp(1); moreover if x, y ∈ T are such that Dx ∩ Dy = ∅, then Wx
nd Wy are independent. In particular, Wx0 and Wx1 are independent. Now,

lim
t→∞

|Dx0,t |

|Dx,t |
= lim

t→∞

|Dx0,t |

1 + |Dx0,t | + |Dx1,t |
=

Wx0

Wx0 + Wx1
=: Ux0

almost surely, and Ux0+Ux1 = 1. A standard calculation shows that Ux0 is uniformly distributed
n (0, 1): for u ∈ (0, 1),

P[Ux0 < u] =

∫
∞

0

∫
∞

z(1−u)/u
e−ye−zdydz = u.

t remains to show independence of the Ux0. Another standard calculation shows that

Ux0 =
Wx0

Wx0 + Wx1

s independent of

Wx0 + Wx1 :

or (u, v) ∈ (0, 1) × (0,∞),

P[Ux0 < u,Wx0 + Wx1 < v] =

∫ uv

0

∫ v−z

z(1−u)/u
e−ye−zdydz

= u(1 − (1 + v)e−v)
= P[Ux0 < u]P[Wx0 + Wx1 < v].

ow fix l ∈ N. Because Ux0 and Wx0 + Wx1 are measurable with respect to the sigma-algebra
enerated by (Ay)y∈Dx \{x}, we have that[

(Ux0)|x |=l , (Wx0 + Wx1)|x |=l , (Ax )|x |≤l
]

(32)

orms an independent family of random variables.
Finally we complete the proof by induction. Suppose that (Ux0)x∈T:|x |<l is an independent

family. Observing that for any x ∈ T,

Wx = e−Ax (Wx0 + Wx1),

we have that (Ux0)x∈T:|x |<l is measurable with respect to the sigma-algebra generated by

[(Wx0 + Wx1)|x |=l , (Ax )|x |≤l].

Then, thanks to the independence of (32), (Ux0)x∈T:|x |≤l forms an independent family. □

Next comes a technical result whose value will become apparent in the next subsection.
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Lemma 7.5. Let ϵ ∈ (0, 1). The set

{x ∈ T\{∅} : ∃t ≥ 0, Px,t > ϵ}

is almost surely finite.

Proof. For t ≥ 0, let Ft be the sigma-algebra generated by (Ts)s∈[0,t]. For t ≥ s ≥ 0,
onditional on Fs ,

(
Py,t

)
y∈Ts

is exchangeable. So for y ∈ T,

E[1{y∈Ts } Py,t |Fs] =
1{y∈Ts }

|Ts |
.

Now let x ∈ T\{∅}. We have

Px,t ≥ 1{|Dx,s |>0} Px,t =

∑
y∈Dx,s

Py,t

and hence

E[Px,t |Fs] ≥ Px,s .

That is, (Px,t )t≥0 is a submartingale with respect to (Ft )t≥0. Then by Doob’s inequality,

P[∃t ≥ 0, Px,t > ϵ] = P[sup
t≥0

Px,t > ϵ] ≤ ϵ−2E[(Px )2].

ut Px is simply a product of |x | independent Uniform(0, 1) random variables, where |x | ∈ N
s the generation of x (that is, x ∈ {0, 1}

|x |). So E[(Px )2] = 3−|x |. Hence

P[∃t ≥ 0, Px,t > ϵ] = P[sup
t≥0

Px,t > ϵ] ≤ ϵ−23−|x |.

ow ∑
x∈T\{∅}

P[∃t ≥ 0, Px,t > ϵ] ≤

∑
l∈N

ϵ−2(2/3)l < ∞,

o the Borel–Cantelli lemma concludes the proof. □

.3. Mutation frequencies under the infinite sites assumption

Enumerate the elements of T,

T = (xk)k∈N,

n such a way that

x j ≺ xk H⇒ j < k. (33)

et us give an example of such an enumeration: map (x(r ))l
r=1 ∈ {0, 1}

l
⊂ T to 2l

+∑l
r=1 2l−r x(r ).
Assuming a mutation rate µ, write

φ
µ

i = min{x ∈ T : V µ

i (x) ̸= ui }

for the first cell (with respect to the enumeration) which sees a mutation at site i ∈ S.

Remark 7.6. φµi has geometric distribution:

P[φµi = xk] = µ(1 − µ)k−1.
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In this subsection we are concerned with Pφµi ,σn
, which is the fraction of cells alive at time

σn (when n total cells are reached) which are descendants of cell φµi . Phrased another way,
Pφµi ,σn

is the fraction of cells alive at time σn which are mutated at site i under the infinite
sites assumption.

Next we give an infinite-sites analog of Theorem 4.6.

Proposition 7.7. As n → ∞, µ → 0, and |S|µ → η ∈ [0,∞),∑
i∈S

δPφn
i ,σn

→

∑
x∈T\{∅}

MxδPx

in distribution, with respect to the vague topology on the space of measures on (0, 1].

The proof of Proposition 7.7 will require us to count the number of sites which see their
first mutation at cell x ∈ T\{∅} (with respect to the enumeration); write

Mµ,S
x = |{i ∈ S : φ

µ

i = x}|.

Lemma 7.8. As µ → 0 and |S|µ → η ∈ [0,∞),

(Mµ,S
x )x∈T\{∅} → (Mx )x∈T\{∅}

in distribution, where the Mx are i.i.d. Poisson(η) random variables.

Proof. The initial cell is x1 = ∅. The number of sites which mutate in cell x2, Mµ,S
x2 ,

is binomially distributed with parameters S and µ. This converges to a Poisson(η) random
variable. Now, for induction, suppose that

lim
n→∞

(
Mµ,S

x j

)k

j=2
=
(
Mx j

)k
j=2

in distribution, where the Mx are i.i.d. Poisson(η) random variables. Then

P
[(

Mµ,S
x j

)k+1

j=2
= (m j )k+1

j=2

]
= P

[
Mµ,S

xk+1
= mk+1

⏐⏐⏐⏐ (Mµ,S
x j

)k

j=2
= (m j )k

j=2

]
×P

[(
Mµ,S

x j

)k

j=2
= (m j )k

j=2

]
. (34)

Due to the property (33) of the enumeration, Mµ,S
xk+1 conditioned on the event

(
Mµ,S

x j

)k

j=2
=

(m j )k
j=2 is just a binomial random variable with parameters |S| −

∑k
j=2 m j and µ. Therefore

(34) converges as required. □

Proof of Proposition 7.7. Fix a sequence of sets of sites (Sn)n∈N and a sequence of mutation
rates (µn)n∈N with µn|Sn| → η. Apply Skorokhod’s Representation Theorem to Lemma 7.8 to
obtain random variables (Mn

x )x∈T\{∅},n∈N and (M ′
x )x∈T\{∅} which satisfy

1. (Mn
x )x∈T\{∅}

d
= (Mµn ,Sn

x )x∈T\{∅} for each n ∈ N;
2. (M ′

x )x∈T\{∅}

d
= (Mx )x∈T\{∅}; and

n ′
3. limn→∞(Mx )x∈T\{∅} = (Mx )x∈T\{∅} almost surely.
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Put the Mn

x ,M ′
x on the same probability space as the Px,t , Px so that the Mn

x ,M ′
x are

ndependent of the Px,t , Px . Then∑
i∈S

δP
φ
µ
i ,σn

=

∑
x∈T\{∅}

Mµn ,Sn
x δPx,σn

d
=

∑
x∈T\{∅}

Mn
x δPx,σn .

Let I1, . . . , Ik ⊂ (0, 1] be closed intervals. Then(∑
i∈S

δP
φ
µ
i ,σn

(I j )

)k

j=1

d
=

⎛⎝ ∑
x∈T\{∅}

Mn
x δPx,σn (I j )

⎞⎠k

j=1

. (35)

Lemma 3.2 says that Px,σn converges to Px ; and Px does not lie on the boundaries of the I j
with probability one, so the summands of (35) converge pointwise. Meanwhile Lemma 7.5 says
that the sum is over a finite subset of T\{∅}. □

Lemma 7.9. Let a ∈ (0, 1). As n → ∞, µ → 0, and |S|µ → η ∈ [0,∞),

E

[∑
i∈S

δPφn
i ,σn

(a, 1)

]
→ 2η(a−1

− 1).

Proof. First,

lim infE

[∑
i∈S

δPφn
i ,σn

(a, 1)

]
≥ E

[
lim

∑
i∈S

δPφn
i ,σn

(a, 1)

]

= E

⎡⎣ ∑
x∈T\{∅}

MxδPx (a, 1)

⎤⎦
= 2η(a−1

− 1),

by Fatou’s lemma, Proposition 7.7, and Remark 4.7. Second,

E

[∑
i∈S

δPφn
i ,σn

(a, 1)

]
≤ E

[∑
i∈S

δn−1 B̂n,µ
i

(a, 1)

]
→ 2η(a−1

− 1),

by the inequality Pφn
i ,σn ≤ n−1 B̂n,µ

i and then Proposition 7.1. □

7.4. The infinite sites assumption approximation

Lemma 7.10. Let a ∈ (0, 1). As n → ∞, nµ → θ ∈ [0,∞), and |S|µ → η ∈ [0,∞),

E

⏐⏐⏐⏐⏐∑
i∈S

δPφn
i ,σn

(a, 1) −

∑
i∈S

δn−1 Bn,µ
i

(a, 1)

⏐⏐⏐⏐⏐ → 0.

Proof. The inequalities

n−1 Bn,µ
≤ n−1 B̂n,µ

≥ P µ ,
i i φi ,σn
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imply that∑
i∈S

δn−1 Bn,µ
i

(a, 1) ≤

∑
i∈S

δn−1 B̂n,µ
i

(a, 1) ≥

∑
i∈S

δP
φ
µ
i ,σn

(a, 1).

ence

E

⏐⏐⏐⏐⏐∑
i∈S

δPφn
i ,σn

(a, 1) −

∑
i∈S

δn−1 Bn,µ
i

(a, 1)

⏐⏐⏐⏐⏐
≤ E

⏐⏐⏐⏐⏐∑
i∈S

δn−1 B̂n,µ
i

(a, 1) −

∑
i∈S

δPφn
i ,σn

(a, 1)

⏐⏐⏐⏐⏐
+E

⏐⏐⏐⏐⏐∑
i∈S

δn−1 B̂n,µ
i

(a, 1) −

∑
i∈S

δn−1 Bn,µ
i

(a, 1)

⏐⏐⏐⏐⏐
= 2E

∑
i∈S

δn−1 B̂n,µ
i

(a, 1) − E
∑
i∈S

δPφn
i ,σn

(a, 1) − E
∑
i∈S

δn−1 Bn,µ
i

(a, 1),

hich converges to zero thanks to Corollary 4.5, Proposition 7.1, and Lemma 7.9. □

roof of Theorem 4.6. Let I1, . . . , Ik ⊂ (0, 1] be closed intervals. Writing ∥·∥ for the l1-norm
n Rk ,

E

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
(∑

i∈S

δn−1 Bn,µ
i

(I j )

)k

j=1

−

(∑
i∈S

δP
φ
µ
i ,σn

(I j )

)k

j=1

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

=

k∑
j=1

E

⏐⏐⏐⏐⏐∑
i∈S

δn−1 Bn,µ
i

(I j ) −

∑
i∈S

δP
φ
µ
i ,σn

(I j )

⏐⏐⏐⏐⏐
→ 0,

ue to Lemma 7.10. Therefore(∑
i∈S

δn−1 Bn,µ
i

(I j )

)k

j=1

nd (∑
i∈S

δP
φ
µ
i ,σn

(I j )

)k

j=1

hare the same limiting distribution, if it exists. This limiting distribution, by Proposition 7.7,
s ⎛⎝ ∑

x∈T\{∅}

MxδPx (I j )

⎞⎠k

j=1

s required. □



D. Cheek and T. Antal / Stochastic Processes and their Applications 130 (2020) 6580–6624 6617

S

A

8

g
a
H
o

7.5. Mean and variance of the site frequency spectrum

Finally, let us check Remarks 4.7 and 4.8. Note that

− log(Px ) = −

∑
y⪯x

log(Uy)

is a sum of i.i.d. mean-1 exponentially distributed random variables, which is just a gamma
random variable with parameters |x | and 1. Then

P[Px > a] = P[− log(Px ) < − log(a)]

=

∫
− log(a)

0

s |x |−1e−s

(|x | − 1)!
ds.

o

E

[∑
x

MxδPx (a, 1)

]
= η

∑
x

P[Px > a]

= η
∑

x

∫
− log(a)

0

s|x |−1e−s

(|x | − 1)!
ds

= η

∫
− log(a)

0

∑
l∈N

2l sl−1e−s

(l − 1)!
ds

= 2η
∫

− log(a)

0
esds

= 2η(a−1
− 1).

s for the variance of the site frequency spectrum,

Var

[∑
x

MxδPx (a, 1)

]
= Var

[
E

[∑
x

MxδPx (a, 1)
⏐⏐(Px )

]]

+E

[
Var

[∑
x

MxδPx (a, 1)
⏐⏐(Px )

]]

≥ E

[
Var

[∑
x

MxδPx (a, 1)
⏐⏐(Px )

]]

= E

[∑
x

δPx (a, 1)Var [Mx ]

]

= ηE

[∑
x

δPx (a, 1)

]
.

. Infinite sites assumption violations

The infinite sites assumption (ISA) is a popular modelling assumption, stating that each
enetic site can mutate at most once during the population’s evolution. There are influential
nd insightful analyses of tumour evolution which rely on the ISA, for example [4,8,26,27].
owever, recent statistical analysis of single cell sequencing data shows “widespread violations
f the ISA in human cancers” [20]. Thus it is unclear to what extent [4,8,26,27]’s analyses can
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be trusted. Our studied model of DNA sequence evolution does not use the ISA and invites a
theoretical assessment of the ISA’s validity.

Let us check the prevalence of ISA violations. For simplicity, consider the most basic version
of the model, which was introduced in Section 2. Building upon notation of Section 3.2, write

T(n) = {x ∈ T : ∃y ∈ Tσn , x ≺ y}

or the set of ancestors of those cells alive at time σn (when the total number of cells reaches
). Write

Xn,µ
i =

⏐⏐{(x, x j) : x ∈ T(n), j ∈ {0, 1}, V µ

i (x) ̸= V µ

i (x j)}
⏐⏐

for the number of times that site i mutates up to time σn . Observe that Xn,µ
i is binomially

distributed with parameters 2n − 2 and µ. Site i is said to violate the ISA if Xn,µ
i ≥ 2, which

occurs with probability

p(n, µ) = P[Xn,µ
i ≥ 2]

= 1 − (1 − µ)2n−2
− (2n − 2)µ(1 − µ)2n−3.

hen the number of sites to violate the ISA,⏐⏐{i ∈ S : Xn,µ
i ≥ 2}

⏐⏐ ,
s binomially distributed with parameters |S| and p(n, µ). If parameter values are indeed in the
egion of n = 109 and µ = 10−9, then the expected proportion of sites to violate the ISA is
n the region of 0.5. This means that the expected number of sites to violate the ISA may be
n the billions. Even if very conservative parameter estimates were plugged in, the number of
iolations is still massive. In fact violations are even more common if one considers cell death.
uppose that cells divide at rate α and die at rate β. Then to go from a population of 1 cell to
cells requires approximately nα/(α − β) cell divisions, where the factor α/(α − β) may be

s large as 100 [4].
Despite the apparent prevalence of ISA violations, our results suggest that their impact

n mutation frequencies is negligible at the scale of population fractions. Importantly, bulk
equencing data is only sensitive on the scale of population fractions. Our theoretical work
tands in support of the data-driven works [4,8,20,26,27].

Note however that our model only considers point mutations; it does not, for example,
onsider deletions of genomic regions, which are thought to be a significant cause of ISA
iolations [20].

. Estimating mutation rates

In this section we wish to give the reader a light flavour of mutation frequency data and its
elationship to the model. We estimate mutation rates in a lung adenocarcinoma.

.1. Diploid perspective

Before presenting data, an additional ingredient needs to be considered: ploidy. Normal
uman cells are diploid. That is, chromosomes come in pairs. Therefore a particular mutation
ay be present zero, one, or two times in a single cell. It should be said that the story is

ar more complex in tumours, with chromosomal instability and aneuploidy coming into play.
ven so, many tumour samples display an average ploidy not so far from two (for example

ee Figure (1a) of [28]). We imagine an idealised diploid world.
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Fig. 3. A histogram of mutation frequencies from a lung adenocarcinoma.

To illustrate the diploid structure, label the genetic sites as

S = {1, 2} × {1, . . . , L},

for some L ∈ N. The first coordinate of a site (i, j) ∈ S states on which chromosome of a
pair the site lies, and the second coordinate refers to the site’s position on the chromosome.
Mutations at sites (1, j) and (2, j) are typically not distinguished in data. In the original model
set up, mutations were defined as differences to the initial cell’s genome. Let us slightly improve
that definition. Now a genome v ∈ G is said to be mutated at site (i, j) ∈ S if vi, j ̸= r j , where
(r j )L

j=1 is some reference. Then data is simplistically stated in the model’s language as

F j =
1

2n

2∑
i=1

Bn,µ
i, j (36)

or j = 1, . . . , L . That is, the total number of mutations at position j divided by the total
umber of chromosomes which contain position j .

.2. A lung adenocarcinoma

The mutation frequency data of a lung adenocarcinoma was made available in [29] (499017,
able S2). The data is plotted in Figs. 3 and 4. This is just one tumour to illustrate our results.
broader picture of data is seen in [4,26]. They analysed hundreds of tumours. Around 1/3 of

he tumours were said to have a power-law distribution for mutation frequencies, resembling
he one we consider.

Our method to estimate mutation rates is, to a large extent, inspired by [4,26]. Their attention
s restricted to a subset of mutations. They ignore mutations at frequency less than 0.1, saying
hat their detection is too unreliable. They ignore mutations above frequency 0.25, in order to
eglect mutations present in the initial cell (which are relatively few). We do the same.

Write
M(a, b) = |{ j ∈ {1, . . . , L} : F j ∈ (a, b)}|
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Fig. 4. The number of mutations (of the lung adenocarcinoma) whose frequency is in the interval (0.1, x), for
x ∈ (0.1, 0.25).

or the number of mutations with frequency in (a, b) ⊂ (0.1, 0.25). Then, adapting
orollary 4.5 to (36), the expected number of mutations with frequency in (a, b) is

EM(a, b) ≈ µ|S|(a−1
− b−1). (37)

nder different models, [4,26] derive the same approximation (37). They estimate the mutation
ate µ by applying a linear regression to (37). We simplify matters even further. Our estimator
or µ is

µ̂ =
M(0.1, 0.25)

6|S|
, (38)

which (37) says is asymptotically unbiased. Now let us calculate µ̂ for the data example. The
data shows mutations on the exome, which has rough size |S| = 3 × 108 [4]. And the number
of mutations in the specified frequency range is M(0.1, 0.25) = 112. This gives

µ̂ = 6.2 × 10−8.

ext let us consider mutation rate heterogeneity. Write µχ for the rate that nucleotide χ ∈ N

utates. Partition the genetic sites:

S = SA ∪ SC ∪ SG ∪ ST ,

where

Sχ = {i ∈ S : ui = χ}

s the set of sites which are represented by nucleotide χ in the initial cell. Just as before,

µ̂χ =
Mχ (0.1, 0.25)

6|Sχ |

s an unbiased estimator for µχ . The data gives

(µ̂ , µ̂ , µ̂ , µ̂ ) = (0.7, 12.8, 15.0, 1.5) × 10−8.
A C G T
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This method could easily be extended to offer more details, for example to estimate the rate
at which nucleotide A mutates to C or to estimate mutation rates on different chromosomes.

The just presented statistical analysis is of course simple and brief. We recommend [8]
for a far more comprehensive statistical analysis of mutation frequency data. However their
infinite-sites framework does not consider mutation rate heterogeneity.
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Appendix

A heuristic ‘proof’ of Conjecture 5.3 is given.
First we argue that, in the conjecture’s limit, selection is unimportant. Write

Gsel = {v ∈ G : ∃i ∈ Ssel, vi ̸= ui }

for the set of genomes which are mutated at a selective site. Write

Qµ

sel(t) =

∑
v∈Gsel

Xµ
v (t)∑

v∈G Xµ
v (t)

or the proportion of cells at time t ≥ 0 whose genomes are mutated at a selective site. Then,
ccording to Theorem 6.1,(

Qµ

sel(σ
µ
n )|σµn < ∞

)
→ 0

n probability. Therefore we neglect selection.
Cells divide and die at rates α(u′) and β(u′), which we now abbreviate to α and β. Some cells

ave an ultimately surviving lineage of descendants. Other cells eventually have no surviving
escendants. Name these cells immortal and mortal respectively. In a supercritical birth-death
ranching process, it is well-known (eg. [10]) that the immortal cells grow as a Yule process and
he mortal cells grow as a subcritical branching process. An immortal cell divides to produce
wo immortal cells at rate α − β, or it divides to produce one immortal and one mortal cell at
ate 2β. A mortal cell divides at rate β to produce two mortal cells, or it dies at rate α. Because
he process is conditioned to reach a large population size, let us assume that the initial cell is
mmortal.

The notation of Section 3.2, T = ∪
∞

l=0{0, 1}
l and its partial ordering ≺, will be used to

epresent the immortal cells. Let (A ) be i.i.d. Exp(α−β) random variables, which represent
x x∈T
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P

c

the times for immortal cells to divide to produce two immortal cells. The immortal cells at time
t ≥ 0 are

Tt =

{
x ∈ T :

∑
y≺x

Ay ≤ t <
∑
y⪯x

Ay

}
.

The immortal descendants of x ∈ T are

DI
x = {y ∈ T : x ⪯ y}.

The number of immortal descendants of cell x at time t is

D I
x,t = |DI

x ∩ Tt |.

Let
(
(Rx (t))t≥0

)
x∈T

be i.i.d. Poisson processes with rate 2β. Write Rx,r = min{t ≥ 0 : Rx (t) =

} for r = 1, . . . , Rx (Ax ). Then the seeding times of mortal cells are

Sx,r =

∑
y≺x

Ay + Rx,r .

ach seeding event initiates a subpopulation of mortal cells; let (Yx,r (t))t≥0 be i.i.d. birth-death
ranching processes with birth and death rates β and α. Then the number of mortal descendants
f x at time t is

DM
x,t =

∑
y∈Dx

Ry (Ay )∑
r=1

1{t−Sy,r ≥0}Yy,r
(
t − Sy,r

)
.

he number of descendants of x at time t is

Dx,t = D I
x,t + DM

x,t .

he next result shows the long-term proportion of a cell’s descendants which are immortal.
he result is a basic consequence of classic branching process theory [3], and was mentioned

n its specific form by [10].

emma A.1. There is c ∈ (0,∞) with

lim
t→∞

D I
x,t

Dx,t
= c

almost surely.

We use Lemma A.1 to see the number of descendants of a cell as a proportion of the total
population.

Lemma A.2. For x ∈ T\{∅},

lim
t→∞

Dx,t

D∅,t
= Px

lmost surely, where the Px are as in Lemma 3.2.

roof. By Lemmas 3.2 and A.1,

Dx,t

D∅,t
=

Dx,t

D I
x,t

D I
x,t

D I
∅,t

D I
∅,t

D∅,t

onverges to the required limit. □
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Let us look at mutations. In the proof of Theorem 4.6 it was shown that the number of
ew mutations to arise at a cell’s birth is approximately Poisson. Here, with heterogeneous
utation rates, the number of new mutations to arise at a cell’s birth is approximately Poisson
ith mean

η :=

∑
j∈J

∑
ψ∈N\{u( j)}

ηu( j),ψ ( j).

ach x ∈ T\{∅} witnesses 1 + Rx (Ax ) cell divisions, while ∅ witnesses R∅(A∅) cell divisions
(one less because there is not a cell division associated to the initiation of ∅). So the number
of new mutations to arise at x is{∑Rx (Ax )

r=0 Mx,r , x ̸= ∅;∑Rx (Ax )
r=1 Mx,r , x = ∅;

where the Mx,r are i.i.d. Poisson random variables with mean η. In the proof of Theorem 4.6
it was also shown that a mutation which arises in cell x will have approximate frequency Px .
Here, thanks to Lemma A.2, the situation appears identical. It only remains to discuss mutations
arising in mortal cells. Any subpopulation of cells which descended from a mortal cell must
eventually die out. Hence mutations arising in mortal cells are negligible when compared to
the infinite total population size.
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