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1. Introduction

A critical branching process (CBP) is a fundamental stochastic process that has
innumerable applications [1]–[5]. Although the adjective ‘critical’ suggests that the CBP
is a peculiar branching process which should require the tuning of parameters, the CBP is
arguably more important than its generic sub-critical and super-critical brethren. Indeed,
the sub-critical branching process quickly leads to extinction while the super-critical
branching process may result in unlimited growth, so whenever we are seeking a framework
for phenomena which are driven by branching and are maintained in a stationary state,
the CBP provides the proper setting.

The simplest branching process involves duplication and death, and is hence called a
birth–death process. Symbolically

A + A

A

OO

// ;
For the critical birth–death process the probabilities of these two events are equal. One
can think of As being cells which either divide or die. Another interpretation is to identify
As with infected individuals who either die or transmit infection to other individuals. The
branching process then becomes a stochastic version of the susceptible–infected–recovered
(SIR) infection process. According to this model [6]–[9], the population consists of
susceptible, infected, and recovered individuals, and the infection spreads by contact
between infected and susceptible members of the community, while infected individuals
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recover (and become immune) or equivalently they are removed from the system. The
branching process also provides the simplest model of biodiversity [10] (see [11] for a
survey of biological literature on macroevolution modeling), with duplication and death
processes corresponding to speciations and extinctions. The CBP is neutral as it assumes
that speciations and extinctions occur with equal probability. In the context of infectious
diseases CBPs naturally arise as a balance between human e↵orts leading to the reduction
of the infection rate [7] and the natural evolution that increases the infection rate of
diseases hovering below the threshold [12].

In numerous applications, it is desirable to generalize the CBP to include more than
one type of elemental building block. In cell biology, we may have two populations of cells,
progenitor A cells that can divide and di↵erentiate into B cells. These two cell populations
can be (on average) in a stationary state (homeostasis) if they evolve according to the
two-type CBP. The simplest two-type CBP is represented by the scheme

A + A B + B

A

OO

// B

OO

// ;

where all steps are equiprobable.
Branching processes can be studied in discrete time when all infected individuals divide

or die synchronously, or in continuous time when each infected individual independently
divides or dies. For a critical process the birth and death probabilities or rates are
equal. Continuous time two-type birth–death branching processes are solvable, namely
the time-dependent sizes of populations of A and B individuals have been analytically
determined [13]. Specializing the results of [13] to the above simplest two-type critical
CBP leads to simplifications, yet the results are still cumbersome. In this paper we
are concerned with di↵erent questions, namely we are interested in time-independent
quantities summarizing the outbreak size distributions.

The rest of this paper is organized as follows. In section 2 we consider the simplest
multiple-type critical branching process and derive, in the infinite-population limit, the
outbreak size distributions. In section 3 we show the universality of the asymptotic
results for the outbreak size distributions, namely that at the epidemic threshold these
distributions have algebraic tails which are determined only by the number of types (but
not the detail of the model). In section 4 we analyze finite populations and obtain finite-size
scaling laws for the sizes of the outbreaks. In section 5 we give a short discussion. Finally,
in an appendix, some of the details of the analysis of a generating function are presented.

2. Critical birth–death process

In this section we consider the infinite-population limit. We shall always assume that the
system begins with a single A, representing an infected individual. In the multi-type case,
an A can turn into B, a B into C, and so on. The probability for each individual to
duplicate or disappear is the same, which makes our process critical. Consequently, all
individuals eventually disappear with probability 1 and the epidemic stops. We want to
determine the outbreak size distribution.
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2.1. Single-type critical birth–death process

Let A
n

be the probability that exactly n individuals catch the infection before the epidemic
is over. We have A

1

= 1

2

. Further, A
2

= 1

2

A2

1

since at the first step a new individual must
get infected and then both must die without spreading infection. Proceeding along these
lines we arrive at the recurrence

A
n

= 1

2

X

i+j=n

A
i

A
j

+ 1

2

�
n,1

(1)

reflecting that the first infection event results in two independent infection processes [2].
A solution to (1) is found by introducing the generating function

A(z) =
X

n�1

A
n

zn (2)

which converts (2) into a quadratic equation 2A = A2 + z whose solution reads

A(z) = 1 �
p

1 � z. (3)

Expanding A(z) in powers of z we find

A
n

=
1p
4⇡

�(n � 1

2

)

�(n + 1)
⇠ 1p

4⇡
n�3/2. (4)

In particular, the probabilities A
n

are given by
1

2

, 1

8

, 1

16

, 5

128

, 7

256

, 21

1024

, 33

2048

, 429

32 768

, 715

65 536

, 2431

262 144

for n = 1, . . . , 10. Note that the above process can also be interpreted as a discrete time
symmetric random walk on the integers, where A

n

corresponds to the probability that the
first return to the origin occurs at time 2n [1].

2.2. The two-type critical birth–death process

In this case the size distribution of the outbreaks of type A is the same as for the single-type
CBP. Consider now the outbreaks of type B. The probability that exactly n individuals of
type B are born before the outbreak is over is denoted by B

n

. These probabilities satisfy

B
n

= 1

2

X

i+j=n

B
i

B
j

+ 1

2

A
n

. (5)

To understand this recurrence it su�ces to consider what happens to the initial A
individual. One possibility is that the initial A turns into a B (this happens with
probability 1/2), and then this B produces n individuals of type B with probability
A

n

. Combining this we get the second term 1

2

A
n

on the right-hand side of equation (5).
Otherwise the initial A produces two As (this happens with probability 1/2), and then
the probability that these two As will produce exactly n individuals of type B is just
the convolution

P
i+j=n

B
i

B
j

. Overall this gives the first term on the right-hand side of
equation (5).

To tackle equation (5) we again proceed by introducing the generating function

B(z) =
X

n�1

B
n

zn (6)
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which converts (6) into a quadratic equation 2B = B2 + A whose solution reads

B(z) = 1 � (1 � z)1/4. (7)

Expanding B(z) in powers of z we find

B
n

=
1

4 �(3

4

)

�(n � 1

4

)

�(n + 1)
⇠ 1

4�(3

4

)
n�5/4. (8)

2.3. The multiple-type critical birth–death process

Generally for a multiple-type CBP we seemingly have

A(p)

n

= 1

2

X

i+j=n

A
(p)

i

A
(p)

j

+ 1

2

A(p�1)

n

. (9)

The corresponding generating functions A(p�1) and A(p) are related via

2A(p) = [A(p)]2 + A(p�1). (10)

We already know that

A(1) ⌘ A = 1 � (1 � z)1/2 A(2) ⌘ B = 1 � (1 � z)1/4.

A general solution to (10) is

A(p) = 1 � (1 � z)1/2

p
(11)

from which

A(p)

n

=
1

2p � (1 � 2�p)

� (n � 2�p)

�(n + 1)
⇠ n�1�2

�p

2p�(1 � 2�p)
. (12)

One can verify equation (11) by induction. It also follows from the more general result of
the following section 2.4.

2.4. Joint outbreak size distribution

The joint outbreak size distribution first becomes relevant for the two-type CBP. In this
setting we want to compute the probability P

m,n

that exactly m individuals of type A and
n individuals of type B are born before the outbreak is over.

The disappearance of an A results in the birth of a B, and therefore P
m,n

⌘ 0 whenever
m > n. To compute P

m,n

= 0 in the interesting m  n range we shall use the important
Abelian property of the model: the composition of the system at the moments of birth of
new Bs is irrelevant, so one can assume that the process starts with m individuals of type
B (and no A individuals). We have P

m,m

= A
m

(A
1

)m where the first term ensures that
exactly m individuals of type A ever exist and the second term gives the probability that
all m individuals of type B eventually disappear without duplication. Further we have
P

m,m+1

= A
m

m(A
1

)m�1A
2

, and generally

P
m,n

= A
m

X

i1+···+im=n

A
i1 · · · A

im . (13)
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Using the generating function

P (x, y) =
X

n�m�1

P
m,n

xmyn

and (13) we get

P (x, y) =
X

m�1

A
m

xm[A(y)]m

= A(xA(y))

= 1 �
q

1 � xA(y)

= 1 �
q

1 � x + x
p

1 � y. (14)

Specializing x or y to unity we recover previous results (3) and (7):

P (x, y = 1) = A(x), P (x = 1, y) = B(y). (15)

This essentially provides another derivation of equation (7).
From the generating function equation (14) we can express the probabilities more

explicitly as

P
m,n

=
(2m � 3)!!

2m+nn!
s

n,n�m+1

(16)

where the integer s
n,k

for n � k � 1 is given by the recursion

s
n,k

= s
n�1,k

+ (n + k � 3)s
n�1,k�1

(17)

with s
1,1

= 1; otherwise we consider s
n,k

to be zero. The first few values of s
n,k

are as
follows

0

BBBBBBB@

1 0 0 0 0 0

1 1 0 0 0 0

1 3 3 0 0 0

1 6 15 15 0 0

1 10 45 105 105 0

1 15 105 420 945 945

1

CCCCCCCA

. (18)

For example, the above formulae lead to the following probabilities P
m,n

for m, n  6:

0

BBBBBBB@

1

4

1

16

1

32

5

256

7

512

21

2048

0 1

32

1

64

5

512

7

1024

21

4096

0 0 1

128

3

512

9

2048

7

2048

0 0 0 5

2048

5

2048

35

16 384

0 0 0 0 7

8192

35

32 768

0 0 0 0 0 21

65 536

1

CCCCCCCA

. (19)
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One can recognize the first few rows of the matrix P
m,n

. For the first three rows

P
1,n

=
(2n � 2)!

(n � 1)!n!

1

22n

P
2,n

=
(2n � 2)!

(n � 1)!n!

1

22n+1

n � 2

P
3,n

=
(2n � 4)!

(n � 3)!n!

3

22n+1

n � 3.

(20)

These results are straightforwardly verified by induction. One can also identify the
diagonal elements

P
n,n

=
(2n � 2)!

(n � 1)!n!

1

23n�1

. (21)

We have not succeeded, however, in finding an explicit expression for P
m,n

in the general
case.

Consider now the three-type CBP. We again limit ourselves to the simplest three-type
CBP which is represented by the scheme

A + A B + B C + C

A

OO

// B

OO

// C

OO

// ;

where all events occur with probabilities 1

2

. The probability P
m,n,`

that exactly (m, n, `)
individuals of types (A, B, C) are born before the outbreak is over is given by an obvious
generalization of equation (13):

P
m,n,`

= A
m

X

i1+···+im=n

A
i1 · · · A

im

X

j1+···+jn=`

A
j1 · · · A

jn .

Converting this recurrence into an equation for the generating function

P (x, y, z) =
X

`�n�m�1

P
m,n,`

xmynz`

we find

P (x, y, z) = A(xA(yA(z)))

= 1 �
r

1 � x + x

q
1 � y + y

p
1 � z.

Generally for the p-type branching process the generating function

P (z
1

, . . . , z
p

) =
X

mp �···�m1�1

P
m1,...,mpz

m1
1

. . . zmp
p

which encodes the joint distribution P
m1,...,mp can be expressed through the generating

function A of the single-type process as

P (z
1

, . . . , z
p

) = A(z
1

A(z
2

A(· · · A(z
p�1

A(z
p

)) · · ·))). (22)
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Specializing P(z
1

, . . . , z
p

) to z
1

= · · · = z
p�1

= 1, z
p

= z we must reproduce the generating
function A(p)(z). We actually get an identity

A(p)(z) = A(A(· · · A(A(z)) · · ·)). (23)

Using (23) in conjunction with (3) we indeed recover (11).

3. More general processes

Let us first generalize the results of the previous section to non-critical birth–death
processes. For a birth–death branching process we set the recovery rate to unity and
denote by ↵ the infection rate. The process is called sub-critical for ↵ < 1, critical for
↵ = 1, and super-critical for ↵ > 1. While for ↵  1 the outbreak is finite with probability
1; for a super-critical process (↵ > 1) the outbreak never stops with probability 1 � 1/↵.
We can still calculate the outbreak size distribution by conditioning on finite outbreaks.
Let A

n

be the probability that a single individual results in a finite outbreak where exactly
n individuals are infected during the epidemic. We can write the following recursion

A
n

=
↵

1 + ↵

X

i+j=n

A
i

A
j

+
1

1 + ↵
�
n,1

(24)

which, for the generating function, takes the form

(1 + ↵)A = ↵A2 + z (25)

and its solution is given by

A =
1 + ↵ �

p
(1 + ↵)2 � 4↵z

2↵
. (26)

The probability of a finite outbreak is of course

A(z = 1) =

(
1 for ↵  1

1/↵ for ↵ � 1
(27)

and the average outbreak size in case of a finite outbreak is

hni =
X

nA
n

= A 0(z = 1) =
1

|1 � ↵| . (28)

By expanding A in powers of z, we obtain the probability of a finite outbreak of size
n

A
n

=
1 + ↵

4↵
p

⇡


4↵

(1 + ↵)2

�
n �(n � 1

2

)

�(n + 1)
. (29)

Asymptotically, for large n we have a power-law decay

A
n

⇠ 1 + ↵

4↵
p

⇡
e�n/⇠n�3/2 (30)

with an exponential cuto↵ around

⇠ = [2 log(1 + ↵) � log 4↵]�1. (31)
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The cuto↵ diverges as ↵ ! 1, and for the critical process ↵ = 1 we find a pure power-law
decay (4).

More generally, consider a branching process where each individual is replaced by
k individuals at a rate ↵

k

. Equivalently, we can consider a discrete time branching
process, where at every time step each individual is independently replaced by k
individuals with probability p

k

= ↵
k

/
P

↵
n

. In this case the governing equation for the
outbreak distribution (which is essentially the backward Kolmogorov equation) is a simple
generalization of equation (25), namely

A
X

k�0

↵
k

=
X

k�1

↵
k

Ak + ↵
0

z. (32)

An explicit solution becomes less accessible for larger number of possible o↵spring, but
for example the critical process with three o↵spring (↵

0

= 2/3, ↵
3

= 1/3; other rates are
zero) with a single initial individual is still tractable

A = 2 sin
arcsin z

3
. (33)

Note that in this case it is impossible to find a cluster with even number of individuals:
A

2n

⌘ 0. The first few nonzero values of A
n

are

A
1

= 2

3

, A
3

= 8

81

, A
5

= 32

729

, A
7

= 512

19 683

, A
9

= 28 160

1594 323

.

From the behavior of A(z) around z = 1 we find that for large odd n the asymptotic is

A
n

⇠ 1p
6⇡

n�3/2. (34)

The exponent is again equal to 3/2. Using (32) one can show that this exponent is universal
for any (single-type) branching process. We state this for the equivalent discrete time
version where the probability of a individual having k o↵spring is p

k

= ↵
k

/
P

n

↵
n

for
k = 0, 1, 2, . . ..

Consider a discrete time branching process with a single initial individual and an
o↵spring probability function p

k

. Suppose that the process is critical,
P

kp
k

= 1, and has
finite variance �2 =

P
k2p

k

� 1 < 1. Then asymptotically 1 � A ⇠
p

c(1 � z) for z ! 1,
and

A
n

⇠
r

c

4⇡
n�3/2 (35)

for n ! 1, with c = 2p
0

/�2.
To prove this assertion we recall that A(z) is analytic for |z| < 1 and A(1) = 1. We

write A(z) = 1 � B(z), where lim
z!1

B(z) = 0, and plug this expression into (32). Using
the conditions for the zeroth and first moments of p

k

, we find

1 � B =
X

k�0

p
k

(1 � B)k � p
0

(1 � z)

= 1 � B +
B2�2

2
+ O(B3) � p

0

(1 � z)
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which gives the leading asymptotic behavior

B =
q

c(1 � z) + O(1 � z) (36)

with c = 2p
0

/�2. Expanding
p

1 � z, or equivalently using a Tauberian theorem [1], we
arrive at the asymptotic (35) for A

n

, which completes the proof.
The asymptotic behavior of multi-type processes now follows from recursion (23):

1 � A(p)(z) = 1 � A(A(p�1)(z)) ⇠ c1/2[1 � A(p�1)(z)]1/2

⇠ c1/2c1/4[1 � A(p�2)(z)]1/4 ⇠ · · ·
⇠ c1�2

�p
(1 � z)2

�p
.

If at all stages there are di↵erent critical branching processes, then simply

1 � A(p)(z) ⇠ c
1/2

1

c
1/4

2

· · · c1/2

p

p

(1 � z)2

�p
(37)

where all c
j

are defined analogously. This corresponds to the asymptotic behavior for the
probabilities

A
n

/ n�1�2

�p
. (38)

4. Finite-size e↵ects

Epidemic outbreaks obviously involve finite populations. In other applications of branching
processes the finiteness also plays a crucial role. Finite-size e↵ects are especially
pronounced for critical branching processes [14]–[16]. Therefore it is important to
understand how the basic characteristics such as the average outbreak size [15, 16] vary
with population size N .

In a standard SIR model individuals of a population of size N are either susceptible
to the infection (S), infected (I), or recovered (R; who cannot get infected again). In a
multistage model infected individuals can be at di↵erent stages of infection, and for all
(except the last) stages recovery means passing to the next stage. The recovery rates are
equal to 1 as in the infinite-population limit. The infection rate, however, is only initially
equal to unity (as the process is critical), and it decreases with time since only susceptible
individuals can get infected, and their number decreases. More precisely, the infection
rate at any time is the ratio of the total number of susceptible individuals to the total
population size.

The average size hni =
P

n�1

nA
n

of the epidemic outbreak diverges in an infinite
system due to the power-law tail (4) of the probability distribution A

n

. Setting the upper
bound at the population size N one estimates the average size of the epidemic outbreak

hni
naive

/
NX

n=1

n�1/2 /
p

N. (39)

This heuristic argument is actually based on the tacit assumption that a finite fraction
of the population (as reflected by the upper limit in the sum in (39)) may get infected.
It turns out that the actual average outbreak size is much smaller because the epidemic
outbreak weakens as more individuals become infected. Let M be the maximal outbreak
size. The same estimate as in (39) now gives hni /

p
M . On the other side, the e↵ective
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infection rate is equal to (N � M)/N = 1 � M/N , and the average size of an outbreak
in such a sub-critical branching process is N/M (see (28)). These two estimates should
match,

p
M / N/M , from which M / N2/3 thereby amending the naive estimate (39) to

a self-consistent estimate [16]

hni / 3
p

N. (40)

The scaling law (40) gives the correct asymptotic behavior. This interesting result was
established by Martin-Löf [15]; several more recent studies [16]–[20] confirm (40) and
analyze other finite-size e↵ects.

Consider now the two-type CBP in the context of epidemic processes. We can think
about As as individuals carrying light infection which can be transmitted to susceptible
individuals and evolve into deadly infection. The latter can be also be transmitted to
susceptible individuals or it can cause death. We need to find the scaling behavior of the
maximal outbreak sizes M

A

and M
B

. Having established M
A

and M
B

, one can use the
power-law tails (4) and (8) to deduce the average outbreak sizes

hn
A

i /
p

M
A

, hn
B

i / M
3/4

B

. (41)

We again obtain an estimate
p

M
A

/ N/M
B

. A naive conjecture is that the maximal
outbreak sizes are comparable. In this situation

M
A

/ M
B

/ N2/3 hn
A

i / 3
p

N, hn
B

i /
p

N. (42)

We know, however, that di↵erent types follow di↵erent scaling laws, specifically
A

n

/ n�3/2 and B
n

/ n�5/4, and hence it seems much more plausible that M
A

⌧ M
B

. In
this case we use

p
M

A

/ N

M
B

,
p

M
A

N

M
B

/ M
3/4

B

. (43)

The second relation in (43) is understood by noting that (28) with ↵ = 1 � M
B

/N gives
N/M

B

for the average size of the outbreak caused by a single B, so in the case when the
number of the seed individuals of type B is equal to

p
M

A

, we get
p

M
A

N/M
B

for the
average size of the outbreak. From (43) we obtain the scaling of the maximal outbreak
sizes

M
A

/ N6/11, M
B

/ N8/11 (44)

which is combined with equation (41) to yield the average sizes

hn
A

i / N3/11, hn
B

i / N6/11. (45)

For the three-type CBP the analog of equation (43) reads

N

M
C

/ M
1/2

A

M
1/2

A

N

M
C

/ M
3/4

B

M
3/4

B

N

M
C

/ M
7/8

C

from which the maximal outbreak sizes scale as

M
A

/ N14/31, M
B

/ N56/63, M
C

/ N24/31 (46)

and the average outbreak sizes are given by

hn
A

i / N7/31, hn
B

i / N14/31, hn
C

i / N21/31. (47)
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Figure 1. Mean outbreak sizes arising in simulations for a two-type CBP in finite
populations from an average over 105 runs. The slopes of the lines are given by
(45).

Figure 2. Mean outbreak sizes arising in simulations for a three-type CBP in
finite populations from an average over 105 runs. The slopes of the lines are given
by (47).

The predictions (45) and (47) for the average outbreak sizes in the two- and three-type
CBPs are in good agreement with simulations (see figures 1 and 2).
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Generally for the p-type CBP one finds that the maximal and average outbreak sizes
scale as

M
q

/ N�pq/(1�2

�q
), hn

q

i / N�pq (48)

where q = 1, 2, . . . , p labels the types of individuals and

�
p

=
p�1(1 � 2�p)

1 + p�1(1 � 2�p)
.

The outbreaks of individuals of type p (those which die rather than di↵erentiate) are the
largest:

M
p

/ N1/[1+p

�1
(1�2

�p
)] hn

p

i / N (1�2

�p
)/[1+p

�1
(1�2

�p
)].

5. Discussion

We investigated the multistage SIR infection process at the epidemic threshold. In an
infinitely large population, we computed the outbreak size distributions and showed that
these distributions have universal algebraic tails. Combining these infinite-population
results and heuristic arguments we established scaling laws for finite populations.
Specifically, we showed that the maximal and average outbreak sizes scale as powers
of the population size. For instance, for the three-type critical branching process six non-
trivial exponents (see equations (46) and (47)) describe the maximal and average outbreak
sizes of the three types. We numerically verified the scaling laws and found an excellent
agreement.

A number of extensions are worth pursuing, especially those which would increase our
understanding of the finite-size scaling. Many of these extensions are easy to formulate,
yet very challenging to analyze. For instance, one would like to prove the validity of the
chief scaling results (48). Even more demanding would be to determine the probabilities
A

n

(N), B
n

(N), etc. For the two-type CBP, for instance, the ratios of the probabilities
A

n

(N), B
n

(N) to their infinite-population values A
n

(1), B
n

(1), given by equations (4)
and (8), are expected to exhibit scaling behaviors

A
n

(N)

A
n

(1)
= F

⇣ n

N6/11

⌘
,

B
n

(N)

B
n

(1)
= G

⇣ n

N8/11

⌘
. (49)

The scaled sizes in equation (49) are fixed by the scaling laws (44) for the maximal
outbreak sizes.

It would be also interesting to determine the duration, both average and maximal, of
the outbreaks; for the classical critical SIR process, this problem has been investigated
in [14, 16, 20].

Finally, we stress that in this paper we limited ourselves to stochastic processes without
any spatial structure. Needless to say, in applications the spatial or network structure of
the infected domain play an important role [21]–[27]. The generalizations to such settings
form an interesting avenue for future research.
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Appendix. Derivation of two-type probabilities

We have obtained the explicit expression (16) by di↵erentiating the generating function

P
m,n

=
1

m!n!
@m

x

@n

y

P |
x=y=0

. (A.1)

Here we provide some details. First, we di↵erentiate the generating function (14) with
respect to x to obtain

@m

x

P =
(2m � 3)!!

2m

(1 �
p

1 � y)m

[1 � x(1 �
p

1 � y)]m�1/2

. (A.2)

We can set x = 0 on the right-hand side of equation (A.2) since it would not a↵ect P
m,n

defined by equation (A.1). Hence we should di↵erentiate @m

x

P |
x=0

= ((2m � 3)!!/2m)(1 �p
1 � y)m with respect to y only. At each time we di↵erentiate (1 �

p
1 � y)m, the number

of terms grow by one until n = m, at which point the m terms are proportional to
(1 �

p
1 � y)l with l = 0, . . . ,m � 1. Di↵erentiating further would not increase the number

of terms. Therefore

@n

y

(1 �
p

1 � y)m =
nX

k=max(1,n�m+1)

s
n,k

m! (1 �
p

1 � y)m�n�1+k

2n(m � n � 1 + k)! (1 � y)(n+k�1)/2

.

This can be proved by induction and by using the recursion formula (17) for s
n,k

. Setting
y = 0 in the sum on the right-hand side, we are left with only one term (the smallest k
term). Accounting for all factors in (A.1) we arrive at the announced result (16).
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