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Phase transitions and oscillations in a lattice prey-predator model

Tibor Antal and Michel Droz
Département de Physique The´orique, Universite´ de Gene`ve, CH 1211 Gene`ve 4, Switzerland

~Received 29 September 2000; revised manuscript received 8 February 2001; published 20 April 2001!

A coarse grained description of a two-dimensional prey-predator system is given in terms of a simple
three-state lattice model containing two control parameters: the spreading rates of prey and predator. The
properties of the model are investigated by dynamical mean-field approximations and extensive numerical
simulations. It is shown that the stationary state phase diagram is divided into two phases: a pure prey phase
and a coexistence phase of prey and predator in which temporal and spatial oscillations can be present. Besides
the usual directed percolationlike transition, the system exhibits an unexpected, different type of transition to
the prey absorbing phase. The passage from the oscillatory domain to the nonoscillatory domain of the
coexistence phase is described as a crossover phenomena, which persists even in the infinite size limit. The
importance of finite size effects are discussed, and scaling relations between different quantities are estab-
lished. Finally, physical arguments, based on the spatial structure of the model, are given to explain the
underlying mechanism leading to local and global oscillations.
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I. INTRODUCTION

The dynamics of interacting species has attracted a gr
deal of attention, since the pioneering works of Lotka@1# and
Volterra @2#. In their independent studies, they showed t
simple prey-predator models may exhibit limit cycles duri
which the populations of both species have periodic osc
tions in time. However, this behavior depends strongly
the initial state, and is not robust to the addition of mo
general nonlinearities or to the presence of more than
interacting species@3#. In many cases the system reache
simple steady state.

A better understanding of the properties of such osci
tions is clearly desirable, as population cycles are often
served in ecological systems, and the underlying cause
main a long-standing open question@4#. One of the best
documented examples concerns the Canadian lynx pop
tion. This population was monitored for more than 100 ye
~starting in 1820! from different regions of Canada. It wa
observed that the population oscillates with a period of
proximately ten years, and that this synchronization was s
tially extended over areas of several millions of square k
meters@5#. Several attempts were made to explain these fa
~climatic effects, relations with the food-web, influence
the solar cycle! without success. More recently, Blasiuset al.
@4# introduced a deterministic three level vertical food-cha
model. The three coupled nonlinear differential equations
fining the model contain eight free parameters and two
known nonlinear functions. The authors showed that anad
hoc choice of the free parameters and nonlinear functi
explains the experimental data for the Canadian lynx.

In such mean-field type models, it is assumed that
populations evolve homogeneously, which is obviously
oversimplification. An important question consists of und
standing the role played by the local environment on
dynamics@6#. There are many examples in equilibrium a
nonequilibrium statistical physics showing that, in lo
enough dimensions, the local aspects~fluctuations! play a
crucial role and have some dramatic effects on the dynam
1063-651X/2001/63~5!/056119~11!/$20.00 63 0561
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of the system. Accordingly, a great deal of activity has be
devoted in the last few years to the study of extended pr
predator models@7#. The simplest spatial generalizations a
the so called two patch models, where the species follow
conventional prey-predator rules within each patch, and
migrate from one patch to the other@8#.

Other works have found that the introduction of stochas
dynamics plays an important role@9#, as well as the use o
discrete variables, which prevent the population from b
coming vanishingly small. These ingredients are included
so called individual based lattice models, for which ea
lattice site can be empty or occupied by one@10–14# indi-
vidual of a given species or two@15,16# individuals belong-
ing to different species. It was recognized that these mod
give a better description of the oscillatory behavior than
usual Lotka-Volterra~LV ! equations. Indeed, the oscillation
in such finite size lattice models are stable against small
turbations of the prey and predator densities, and they do
depend on the initial state. It was also found~in two-
dimensional systems! that the amplitude of the oscillations o
global quantities decreases with increasing system s
while the oscillations persist on a local level. It was argu
that coherent periodic oscillations are absent in large syst
~although, the authors of Ref.@10# did not discard this pos-
sibility!. In Ref. @15# Lipowski stated that this is only pos
sible in three dimensions. In Ref.@12# Provataet al. empha-
sized that the frequency of the oscillations are stabilized
the lattice structure, and that it depends on the lattice ge
etry. In some papers, the stationary phase diagram was
derived for a given system size@10,16#, and different phases
were observed as functions of the model parameters, suc
an empty phase, a pure prey phase, and an oscillatory re
of coexisting prey and predator. In Ref.@10#, a coexistence
region without oscillations and a domain of the control p
rameter space for which the stationary states depend stro
upon the initial condition, were also found.

However, in all the above works no systematic finite s
studies were performed, allowing one to draw firm conc
sions about the phase diagram of the models as a functio
©2001 The American Physical Society19-1
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their sizes. In particular, the size dependence of the am
tude of the oscillations, as well as a detailed description
the critical behavior near the phase transitions, were not
vestigated. However, it is known@17# that, in ecological
problems, the fact that a system has a finite size is m
relevant than in most of the cases encountered in statis
physics, for which one concentrates on the thermodyna
limit. Another relevant question concerns the generic pr
erties of such models.

The goal of this paper is to study a simple prey-preda
model on a two-dimensional lattice, for which some of t
above questions could be answered. Our model is based
coarse-grained description in the sense that a given cell m
els a rather large part of a territory, and thus can con
many preys or predators. Moreover, predators cannot
without prey in a given cell. Those are the main differenc
between our model and that of Satulovsky and Tome´ ~ST!
@10#. Nevertheless, it turns out that the stationary state ph
diagram of the two models are quite different.

Our model is defined in Sec. II. Although governed
only two control parameters, this model exhibits a rich ph
diagram. Two different phases are observed: a pure p
phase~P!, and a coexistence phase of prey and predato
which an oscillatory~O! region and a nonoscillatory~NO!
region can be distinguished. In some limiting cases
model can be mapped onto a well known nonequilibriu
model: thecontact process~CP! @18#. In Sec. III the proper-
ties of our model are analyzed in dynamical one- and tw
point mean-field approximations, and no undamped osc
tory behavior is found. In Sec. IV, extensive Monte Ca
~MC! simulations are performed. It is shown that, as a fu
tion of the values of the control parameters, a usual direc
percolation~DP! transition, as well as an unexpected tran
tion belonging to a different universality class, into a pr
absorbing state are present. The system size dependen
the amplitude of the oscillations is studied, and several s
ing relations between the amplitude of the oscillations a
the correlation length are obtained. In Sec. V an underly
mechanism responsible for the spatial oscillations is p
posed, which leads to a qualitative explanation of the pr
erties of the phase diagram. In particular, we show that
spatially extended aspect of the model plays a crucial rol
the presence of oscillations. Finally, conclusions are dra
in Sec. VI.

II. MODEL

Our system models prey and predator living together i
two-dimensional territory. This territory is divided int
square cells, and each of them can contain several prey
predators. In this coarse-grained description, in which e
cell represents a rather large territory, one can assume
each cell containing some predator will also contain so
prey. Note that similar assumptions have been used in h
parasite models@19#. Here, we consider a three state rep
sentation. Each cell of a two-dimensional square lattice~of
sizeL3L, with periodic boundary condition!, labeled by the
index i, can be, at timet, in one of the three following states
s i50, 1, and 2. A cell in a state 0, 1, or 2 correspon
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respectively, to a cell which is empty, a cell occupied
prey, or a cell occupied simultaneously by prey and pre
tors. The dynamics of the system is defined as a continu
time Markov process. The transition rates for sitei are ~i!
0→1 at ratela(ni ,11ni ,2)/4, ~ii ! 1→2 at ratelb(ni ,2)/4,
and ~iii ! 2→0 at rate 1, whereni ,s denotes the number o
nearest neighbor sites ofi which are in the states. 4 is the
coordination number of this two-dimensional square lattic

The first two processes model the spreading of prey
predators. The two control parametersla andlb characterize
a particular prey-predator system. The reason for conside
the sumni ,11ni ,2 , in the first rule is simply that all the
neighboring cells ofi containing some prey~hences i51 or
2! will contribute to the prey repopulation of celli. The third
process represents the local depopulation of a cell due
overly greedy predators. This can be interpreted as the l
extinction of a species, or as its migration to neighbori
occupied sites. Spontaneous disappearance of a prey
(s i : 1→0), or that of the predators alone (s i : 2→1), is
forbidden. These assumptions are reasonable because th
currence of these processes is improbable. The rate of
third process is chosen to be 1, which sets the time scale
a consequence the timet, as well asla andlb , is a dimen-
sionless quantity.

The above dynamical rules are an extension of the con
process model@18,20# introduced as a description of ep
demic spreading. The CP model is a two-state model,s i
50,1; the states 0 and 1 represent healthy and infected i
viduals, respectively. The CP dynamical rules are~i! 0→1 at
ratel(ni ,1)/4, and~ii ! 1→0 at rate 1. An epidemic survive
for l.lCP* 51.6488(1) @20#, and disappears forl,lCP* .
The transition toward this absorbing state is of second or
and belongs to the DP universality class@20#.

Our model differs from most of the lattice models prev
ously investigated@10–13# in the fact that, on each site, eac
species may be represented by several individuals rather
just one. Our model, when suppressing theni ,2 term in the
first rule, reduces to the ST model, in which the spread
rate of prey is simply proportional to the number of neig
boring prey sites,ni ,1 . Nevertheless, the presence of theni ,2
term in the first rule plays an important role, as we shell s
below. The ST control parameters take the formsc5(1
1la1lb)21 andp5c(lb2la)/2.

An interesting aspect of our model is its close relation
the CP model in some limiting cases. In thela→` limit the
proportion of empty cells is negligible, since the empty ce
are reoccupied by prey instantly after they become em
Hence the lattice is completely covered by prey, and thes
52 sites behave as the infected species in the CP mo
That is, when decreasinglb the predator density decreas
continuously and vanishes at the CP critical valuelb* (la

5`)5lCP* .
One can think of thelb→` limit in similar terms. In this

case, the proportion of prey cells (s51) should be negli-
gible due to the high productivity of predators, and thes
52 cells should behave as the infected species in the
among the empty cells. This is indeed the case ifla.lCP* ,
but whenla becomes smaller thanlCP* , the prey density
9-2
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PHASE TRANSITIONS AND OSCILLATIONS IN A . . . PHYSICAL REVIEW E63 056119
again increases instead of becoming zero, as we shall
later.

III. MEAN-FIELD ANALYSIS

Although apparently simple, there is no way to solve t
model defined above analytically. However, analytical so
tions can be obtained by making some approximations.
simplest one is the one-point mean-field approximation
which all spatial fluctuations are neglected. Thus the sys
is characterized by the~dimensionless! densities of prey,a,
and predator,b, sites,

a5
1

L2 (
i

~ds i ,11ds i ,2!, b5
1

L2 (
i

ds i ,2 , ~1!

whose values satisfy the 0<b<a<1 conditions by defini-
tion. In terms of these densities, the mean-field dynam
equations read

da

dt
5laa~12a!2b ~2!

and

db

dt
5lbb~a2b!2b. ~3!

Note that, for theb50 ~and thus thea50) initial condition,
the predator and prey densities remain 0.

Equations~2! and ~3! clearly differ from the usual LV
ones. The main difference lies in the interaction terms sin
although a larger prey density increases the predator gro
rate, the rate of predated preys only depends on the pred
density. This is a simple consequence of the fact that th
are no pure predator sites without preys in this model. Thi
reasonable for a real prey-predator system, as a predato
to consume a certain amount of prey in a given time to s
vive, independently of the number of preys around it. T
(12a) term in the first equation plays the role of a simp
Verhulst factor, which assures an upper limit for the pr
density (a<1), and similarly the (a2b) term in the second
equation does not allow the density of predators to exc
that of the preys.

The stationary states are obtained by setting the left h
sides of Eqs.~2! and~3! to zero. Contrary to the simplest LV
equations, qualitatively different stationary states are
tained varying the parameters,la and lb , as illustrated in
Fig. 1.

For 0<lb<1 and la.0, the stationary state is a pur
prey absorbing state, whereas51 andbs50. Forla50 the
stationary state is also a prey state,bs50; however, the
value ofas depends upon the initial state. In the rest of t
plane (la ,lb), the stationary solutions are

as5
~la21!1A~la21!214la/lb

2la
~4!

and
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1

lb
, ~5!

which describe a coexistence of prey and predators~coexist-
ence phase!.

For lb@1 the a and b densities are approximately th
same,

as5bs1OS 1

lb
D55

12
1

la
1OS 1

lb
D for la.1

OS 1

Alb
D for la51

OS 1

lb
D for la,1,

~6!

and, as a function ofla , they show a mean-field CP beha
ior, as expected from the argument given in Sec. II.

In the la@1 limit ~and forlb.1) the system is ’’full of
prey,’’ namely,

as512
1

la
S 12

1

lb
D1OS 1

la
2D , ~7!

and the predator density reads

bs5S 12
1

la
D S 12

1

lb
D1OS 1

la
2D . ~8!

As expected, itslb dependence agrees with the prediction
the mean-field approximation for the CP model. This a
proximation predicts a second order phase transition al
the wholelb51 line, as in thelb→1 limit a andb approach
linearly the values 1 and 0, respectively:

FIG. 1. Mean-field prediction for the boundary~dashed line!
between the prey~P! and the coexistence phase~O and NO!. The
dotted lines are the boundaries between the pole and node typ
stationary state regions. The MC results in theL→` limit are also
depicted for comparison~see Fig. 3 for details!.
9-3
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TIBOR ANTAL AND MICHEL DROZ PHYSICAL REVIEW E 63 056119
as512
lb21

la11
1O@~lb21!2#,

~9!

bs5la

lb21

la11
1O@~lb21!2#.

The behavior of the densities is rather surprising at
la50 boundary of the coexistence phase. For 0,la!1 and
for lb.1,

as5
1

lb
1laS 1

lb
1

1

lb
2D 1O~la

2!, ~10!

while the stationary solutionas for la50 depends on the
initial state. Thus the mean-field approximation predicts
discontinuity of the prey density along this boundary. Ho
ever, the predator densitybs5as2lb

21 is proportional to
la , and thus continuous forla→0.

Important quantities are the fluctuations of prey a
predator densities~mean square deviations!, which are nor-
malized to become size independent for large systems,

xr5L2^~r2^r&!2&, with r5a or b, ~11!

where^ & means the time average in the stationary state.
la ,lb@1 the majority of the sites are in a state 2, with a fe
holes in it, hence one can suppose that the holes are inde
dent. Consequently, the number of the holes follows a P
son distribution, from which the average hole number equ
to the mean square deviation. There areL2(12a) holes
made of sites in the states i50, andL2(12b) holes made of
sites in the statess i50 or 1; thus

xa'12as and xb'12bs. ~12!

These mean-field predictions are in good agreement with
simulations in a region~the nonoscillatory part! of the coex-
istence phase~see Fig. 9!.

The stability of the stationary state can be analyzed
linear stability. One has to investigate the eigenvalues,e1,2,
of the Jacobian matrix related to the mean-field equations~2!
and ~3! at the stationary densities

S ]aȧ ]bȧ

]aḃ ]bḃD U
s

5S la~122as! 21

lbas21 12lbasD . ~13!

It turns out that the real parts of the eigenvalues are
ways negative, assuring the stability of the solutions. T
mean-field approximation does not predict limit cycle
which would correspond to having an eigenvaluee with a
zero real part. However, in some part of the coexiste
phase the imaginary part is nonzero, so the stationary s
tion is approached in spirals~poles!, instead of straight lines
~nodes! ~see Figs. 1 and 2!, as also observed in the ST mod
@10#. Note that an unexpected node region appears forlb
.10. One can consider the presence of poles as an indica
of the appearance of oscillations beyond the mean-field
proximation. Note that, in this pole case, the damped os
05611
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lations are strong along thelb axes~i.e., for la!1). The
strength of them can be characterized by the ratio of
imaginary and real parts of the eigenvalues, which hav
singularity in thela→0 limit. Using Eq.~10!, we obtain

UIm~e!

Re~e!
U54la

21/2Alb
22lb1O~la

1/2! ~14!

for la!1 andlb.1. In this limit one can also derive a
expression for the frequencyv of the damped oscillations:

v5uIm~e!u52la
1/2A12

1

lb
1O~la

3/2!. ~15!

Thus the mean-field approximation predicts two distin
phases: the pure prey phase and the coexistence phase.
gives some indications of the possible presence of osc
tions in some parts of the coexistence phase. The bound
of the two phases are described by two lines:lb51 and
la50. Several quantities show a power-law behavior clo
to these boundaries, likeb and 12a at thelb51 boundary,
and b and v and the strength of the damped oscillations
the la50 boundary. Thus, in the mean-field approximatio
the transitions are of second order, and the predator densb
seems to be a good candidate for the order parameter. It
to zero at the phase boundaries asb;(lb21)b andb;la

b ,
respectively, with a mean-field exponentb51.

We also performed a pair approximation, in which t
nearest neighbor correlations were also considered as pa
eters. It turns out that the results differ only quantitative
from that of the one-point approximation. Contrary to R
@10#, our system does not show a limit cycle behavior on
pair approximation level either.

IV. MONTE CARLO SIMULATIONS

On general grounds, one expects that fluctuations
play an important role in low dimensions. Our model is su
posed to describe a two-dimensional world and, accordin
we have performed extensive Monte Carlo simulations

FIG. 2. Pole type approach for the stationary solution in
mean-field approximation forla51 andlb52, starting the system
from different initial conditions. Note that the 0<b<a<1 condi-
tions are always satisfied.
9-4
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systems of sizesL3L, L varying between 100 and 1000
Concerning the boundaries of the system, one may think
open boundary conditions are the natural choice in view
biological interpretation. In this case, however, one has
introduce new dynamical rules at the boundaries which co
plicate the model. As it is known from the study of man
problems in statistical mechanics, boundaries have impor
effects when they allow for a permanent current to flo
through the system. We do not want to model such a c
and, accordingly, we think that the periodic boundary con
tions, which we use in the simulations, lead to a corr
qualitative behavior. Note that similar boundary conditio
have been used in the majority of previous works as w
which makes the comparison between the results easier

Although our model is formulated as a continuous-tim
process, an equivalent~at least for not very short times! dis-
crete time formulation is more suitable for numerical sim
lations. In one elementary time step one lattice site is cho
randomly, and its state evolves according to the rules defi
is Sec. II using rescaled rates~all less than 1! as transition
probabilities. One MC step is defined as the time nee
such that all the sites are, on the average, visited once. In
paper we always use the original time units defined by
model, which can be obtained simply by rescaling the ti
measured in MC steps.

For sufficiently large system, the stationary state does
depend on the initial conditions. Usually we filled up th
lattice completely with prey as an initial state, and put a f
predators into it. To obtain the stationary phase diagram
the stationary values of the quantities of interest, from 105 to
106 MC steps were performed for systems of linear sizeL
51000 to 200 respectively.

The corresponding phase diagram, obtained for differ
system sizes, is depicted in Fig. 3. Two different phases
present as a function of the two control parametersla and
lb : a pure prey phase~P!, a prey and predator coexistenc
phase with an oscillatory~O! region and a nonoscillatory
~NO! region. In the oscillatory region, oscillations with
well defined frequency were observed in the prey and pre
tor densities~see Fig. 4!. A completely empty state would
also be absorbing; however, during the simulations the s
tem never reached such a state. A qualitative argumen
this is simply that even one surviving prey can fill up t
system with prey in the absence of predators. As Fig
shows, the locations of the different regions of the ph
space differ essentially from those obtained for the
model.

The phase boundaries of the prey phase~see Fig. 3! were
obtained in the following way. Simulations were started
parameter values for which the coexistence is maintai
practically forever~up to the maximal number of MC step
investigated!, and we decreased one of the parameter va
by Dl. If the predators were still alive after a given timeDt,
we decreased the parameter further. The extinction of
predators defined the phase boundary.Dl was chosen to be
in the range 0.005 to 0.04, withDt533104 MC steps. The
result was very similar, withDt5104 and 53104 MC steps.
The definition of the boundary between the oscillatory a
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the nonoscillatory region of the coexistence phase will
described later.

In Fig. 3, the boundary of the prey phase is displayed
different system sizes (L5100, . . .,1000). Apparently, in
the la.lb regime the size dependence is negligible, b
relevant forla,lb . Note that this strong size dependen
of the boundary coincides with the presence of oscillatio

Decreasinglb at any fixed value ofla , a second order
phase transition takes place between the coexistence an
prey absorbing phases along a transition linelb* (la). As for
the mean-field case, the predator density is considered t
the order parameter. Aslb→lb* (la), the order parameterb
and 12a go to zero as

FIG. 3. Stationary state phase diagram as obtained by sim
tions. The squares (h) indicate the transition to the prey absorbin
state~P! for different system sizes (L5100, 200, 500, and 1000!,
and the arrows point to thelCP* value. In all figures larger symbols
correspond to larger systems. The boundary between the oscilla
~O! and the nonoscillatory~NO! regions of the coexistence phase
determined based on Fourier analysis (s) and on the crossover in
xa (d). For the DP type transition between P and NO, the fit
values oflb* (la) (3) and the approximation described in Sec.
~solid line! are also depicted.

FIG. 4. Typical behavior of the prey,a, and the predator,b (b
<a), densities in the oscillatory region of the stationary state (la

50.8, lb5100, andL51000).
9-5
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b;12a;@lb2lb* ~la!#b1. ~16!

As seen in Fig. 3, the values oflb* (la) obtained by fitting
the data with Eq.~16! are in very good agreement with th
phase boundary obtained previously for large systems.
ting the data leads tob1'0.58(1) ~with satisfactory preci-
sion for la.0.3; see Fig. 6!.

In the same limit the fluctuations of the predator dens
also follow a power-law behavior,xb;@lb2lb* (la)#g1.
The exponent has been determined to a good precisio
g1'0.35(3) for several values ofla between 1 and 50. The
same behavior has been obtained~only for la51 and 3! for
the prey fluctuationsxa , with the exponentg1'0.35(5).
The critical behavior turns out to be the same when the tr
sition line is crossed while decreasingla at fixed values of

FIG. 5. The same as in Fig. 3, but as a function of the variab
used in the ST model. The triangle represents the available pa
the phase space. The location of the oscillatory~O! and nonoscilla-
tory ~NO! regions are quite different from that of the ST model.

FIG. 6. Prey~open symbols! and predator~filled symbols! den-
sities close to the second order phase transition line between
prey phase and the nonoscillatory region of the coexistence ph
la50.5 (L), 5 (s), and 100 (h), while the system sizes ar
L5200 and 500. The slope of the dashed lines is the DP crit
exponentb'0.583.
05611
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lb . The two exponents,b1 and g1, are compatible with
those obtained for DP in 211 dimensions@20#. Thus we
conclude that this absorbing state phase transition belong
the DP universality class, as expected on general grou
@21#. Note that a DP type phase transition in similar latti
prey-predator systems was already observed@16,22,23#.

Let us now consider the limitL→`. In this case, the
phase diagram is rather simple, as can be seen in Fig.
second order transition linelb* (la) separates the prey ab
sorbing phase from the nonoscillatory coexistence pha
This line ends up at a particular point@la50,lb

T'5.0(3)#,
where P, O, and NO domains meet. MC simulations sugg
that the transition lines between the O and P domains
served for finite size systems collapse to the linela50, lb

.lb
T in the infinite size limit. This means that for this rang

of lb , and for any arbitrarily smallla , the coexistence of
the species is possible providing that the system is la
enough.

For lb.lb
T , when la→0, the prey densitya goes to a

value smaller than 1 depending onlb ~see Fig. 7!. This dif-
fers from the DP transition case, where the prey density c
verges to 1. Moreover, according to the results depicted
Fig. 8, the predator density approaches zero as a power
a;la

b2 with b2'1. Surprisingly, this situation is drasticall
different from the DP case, and the valueb2'1 leads us to
conjecture that this second transition could be mean-fie
like. A complete analysis of the critical properties of th
model near this transition line and the end point (la50, lb

5lb
T) is a difficult task presently under investigation.

For lb.lb
T the fluctuations of the two densitiesxa andxb

behave similarly. For a givenlb , there is a clear crossover a
la

O(lb) from a mean-field-like behavior to a regime whe
the correlations are more important. Forla.la

O(lb) the be-
havior ofxa andxb agrees with that predicted by mean-fie
theory, reflecting the fact that in this range ofla the domi-
nant behavior comes from the noise. Oscillations were
served in the overall densities in a region correspond

s
of

he
se.

al

FIG. 7. Prey densitya as a function ofla for different values of
lb53 (,), 4 ~pentagon!, 4.5 (L), 5 (s), 10 (n), and
100 (h), and system sizesL5200, 500, and 1000. The dashed lin
is the density given by the CP.
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crudely tola,la
O(lb) ~see Fig. 3!. Thus the crossover poin

la
O(lb) is taken as the definition of the border between

oscillatory and nonoscillatory regions.
After a proper normalization, the relative fluctuations c

lapse on a single curve forla,la
O(lb) ~see Fig. 9!. That is,

xb

b2
'K1~lb!

xa

~12a!2
, ~17!

where the numerical factorK1(lb) depends only onlb .
However, the precision of the simulation was not go
enough to obtain the functional form ofK1(lb) @neither of
the forthcomingKi(lb) for i 52, 3, and 4#. Nevertheless, Eq
~17! gives another size independent criterion to distingu

FIG. 8. Predator densityb as a function ofla for different
values oflb53 (3), 5 (s), 10 (n), 20 (L), 50 (,), and
100 (h), and system sizesL5200, 500, 1000, and 2000 only fo
lb55. Thela→0 behavior is close to a power law with an exp
nent 1~solid line!, while the dashed line is the density given by t
CP.

FIG. 9. Normalized~dimensionless! fluctuations of the prey
~open symbols! and predator ~filled symbols! densities,
K1(lb)xa /(12a)2 and xb /b2, which collapse in the oscillatory
region. The parameters arelb55 (s), 10 (n), 20 (L),
50 (,), and 100 (h), and system sizesL5200, 500, and 1000
The dashed lines correspond to mean-field solutions~12!.
05611
e
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between the oscillatory and nonoscillatory regions, as
relative fluctuations of prey and predator densities are p
portional only in the oscillatory region.

The simulations showed thatxr (r5a or b) is size inde-
pendent, as expected from its definition@Eq. ~11#. As a con-
sequence, the deviation from the average density,s
5Axr/L @10#, is smaller for larger systems and evident
scales with 1/L. Certainly, this deviation increases with th
intensity of oscillations. The above finite size behavior is
agreement with the results of earlier simulations, wh
claimed that the oscillations in the global densities disapp
with increasing system size@11#. Our simulations predict
more pronounced oscillations for smallerla and largerlb .

The oscillations also have to show up in the correlat
functions

Ca~ i ,t!5^~12ds j (t),0
!~12ds j 1 i (t1t),0!&,

~18!
Cb~ i ,t!5^ds j (t),2

ds j 1 i (t1t),2&,

where j 1 i labels a lattice site a distance ofi lattice spacing
from the sitej. Cr (r5a or b) depends only oni andt due
to the homogeneity of the system in space and time. Fot
50 the correlation functionCr( i ), obtained numerically,
could be fitted by an exponentialCr( i );exp(2i/jr). In the
oscillatory region the correlation lengths of preys and pre
tors differ only through a lb dependent factor,ja
'K2(lb)jb , and they turned out to be proportional to th
fluctuations of the prey density,ja'A2xa. This means that a
more correlated system displays stronger oscillations.
reason for this is simply that the dynamics of the differe
sites show some synchronization within a correlation leng
which results in larger oscillations~see Sec. V for more de
tails!.

In order to determine the characteristic frequen
vr(la ,lb), and the amplitude,Ar(la ,lb) (r5a or b), of
the oscillations, we measured the Fourier spectrum of
time dependent densities:

Sr~v!5 lim
T→`

1

TU(t51

T

r~ t !exp~ ivt !U2

. ~19!

The presence of oscillations is reflected as a peak at non
frequency in the Fourier spectrum. Extracting this peak fr
a background noise enables us to defineAr and vr as the
zeroth and first momenta of this distribution. This analy
clearly shows that the frequency of the oscillations is ind
pendent of the system size~see Fig. 10!, and is the same for
prey and predators. Moreover, for a wide range of the
rameters in the oscillatory phase the frequency,v5va
5vb , is well approximated byla/2. This linear behavior
differs from the mean-field prediction.

In the oscillatory region the oscillations are present
arbitrarily large systems; however, their amplitude decrea
with increasing system size, as 1/L2. At this point it is im-
portant to emphasize that this fact does not imply that o
small oscillations are present in large systems. Indeed, f
large system the amplitude of the oscillations can be m
9-7
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larger by decreasingla . On the other hand, when increasin
la the amplitude goes to zero as a power law, which ma
it difficult to define a phase boundary for the oscillations
this way. However, there is a simple scaling relation betw
the amplitude and the correlation length for the prey in
oscillatory region,

ja
2'2xa'L2Aa , ~20!

as can be observed in Fig. 11. The analogous expressio
the predators is slightly more complicated,

jb
2S b

12aD 2

K3~lb!'xb'K4~la!L2Ab , ~21!

FIG. 10. Dimensionless frequency of the oscillations as a fu
tion of la and for lb54 ~pentagon!, 5 (s), 10 (n), 20 (L),
and 100 (h) and for system sizesL5200, 500, and 1000. For a
wide range of the parameters the data are close tola/2 ~dashed
line!.

FIG. 11. Test of the relation between several~dimensionless!
characteristics of the prey population@see Eq.~20!#, namely, the
correlation lengthja (n,,), the fluctuations of the prey density
xa,(h,L), and the amplitude of the oscillations,Aa (s, pentagon!
for lb55 and 100, respectively. The sizes of the system arL
5200, 500, and 1000.
05611
s

n
e

for

whereK3(lb) and K4(la) are numerical factors not give
here.

Another quantity which characterizes the oscillations
the time dependent local correlationsCr(t)5Cr( i 50,t). A
similar investigation was made in Ref.@12# with time depen-
dent correlations of the average local densities. In the os
latory regionCr(t) displays damped, size independent osc
lations. More precisely, the time correlations are s
independent for anyL.Lc(la ,lb), while for anyL,Lc the
system evolves toward the prey absorbing state. Clearly,
critical system size is proportional to the correlation leng
Lc;j. The size independence ofC(t) is a simple conse-
quence of the fact that areas which are farther thanj apart
are uncorrelated. The investigation of the time depend
correlations, however, provides a rather ambiguous way
define the boundary of the oscillatory region. Indeed, one
observe local oscillations everywhere in the coexiste
phase simply because, due to the cyclic dominance natur
the model, each site has to evolve in a loop (s50→1→2
→0 . . . ). Thus, according to the value of the damping fa
tor, it is somehow arbitrary to decide whether a state is
cillatory or not.

It is worth noting that, at some particular values oflb
(lb510 or 20! and for smallla values (la,0.2 or 0.4,
respectively!, where the correlation length is comparable
the system size (L;500), the system can evolve to a strip
like state. In this state three stripes of sizeL, made of preda-
tor, prey, and empty cells, drift through the system. Ho
ever, for givenla and lb values, this behavior disappea
when increasing the size of the system. The comparison
the MC results with the mean-field prediction shows that
latter gives a qualitatively correct description of the pha
diagram~see Fig. 1!, as well as of the discontinuity in the
prey density,a, along thela50 boundary.

V. DISCUSSION

A qualitative understanding of the phase diagram is p
sible. If the birth rates are much larger than the death r
(la@1 andlb@1), the system is full of prey and predato
(a'b'1), while for small values oflb the system evidently
reaches the pure prey absorbing state. As already discu
in Sec. II, in thela→` the system is full of prey (a→1),
and the predators behave like the infected species in the
model. It means that they could survive only forlb.lCP* ,
where a DP like second order transition occurs. This is
agreement with the mean-field results and with the simu
tion for la5100 ~see Fig. 6!.

One can also derive an approximate formula for the po
tion of the phase boundary between the nonoscillatory ph
and the prey phaselb* (la). For la@1, the system is almos
full of prey (a'1) and, in some sense, the dynamics of t
predators is close to that of the CP model. The predators
at rate 1 and spread at ratelb , but they cannot enter into th
empty sites. One can introduce an effectivel̃b and describe
the process as a CP model, namely, the predators can
any neighboring site at this rate. As the number of em
sites is proportional to leading order to 1/la , the effective

-
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parameter should bel̃b5lb2c/la , wherec is a fitting pa-

rameter. As this CP model displays a phase transition al̃b

5lCP* , in terms of the original parameter the transition o
curs atlb* (la)5lCP* 1c/la . This conjecture is in excellen
agreement with the simulation data forla.0.5 with c
51.28(3) ~see Figs. 1 and 3!.

For lb@1, new prey sites are usually immediately occ
pied by predators. However, with a small but finite probab
ity, a predator site can disappear before the predators sp
to the newborn prey site, and in this way, a prey site can
left alone to grow~similarly to the Eden model@24#!. This
rare event is negligible when the predator density is la
enough and a prey island cannot grow for long periods
time. Practically this is the case forla.lCP* . In this case,
the number of prey sites is negligibly small, and the preda
sites behave as infected species in the CP model. One
see, in Figs. 7 and 8, that forlb5100 the two densities (a
'b) are equal to that of the CP model ifla.lCP* . How-
ever, in the vicinity oflCP* the densities are low, which
allows an isolated prey island to grow for a long time.
la,lCP* the predator islands are shrinking, and, ifla andL
are not too small, they can survive until a growing pr
island reaches one of them. At this moment, the preda
invade very quickly the prey territory and increase th
population size~see Fig. 12!. These new predator sites sta
to die out, leaving a few prey sites alone, and the wh
procedure starts again. This mechanism insures the sur
of the predators much below the CP critical density, a
results in oscillations in the population sizes.

For lb.lb
T , but not too large, the qualitative picture

slightly different. As one can observe in Fig. 13, groups
predators are wandering through the system toward p

FIG. 12. Typical stationary state configuration of prey~grey!
and predators~black! on a 2003200 lattice atla50.9 and lb

5100. The white parts represent the empty sites. The picture sh
the beginning of the invasion of the pure prey territory by predato
which were screened by empty sites before.
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dense areas. If two fronts of predators meet they usually s
moving, and the local population of predators starts
shrink. The oscillations are maintained in a somewhat sim
way than for thelb@1 case: these predators can only s
vive if the prey become dense around them. This is m
probable for larger values ofla , and it is also clear that the
predators have a better chance to survive in larger syste

According to the above statements, the key point in
underlying mechanism of oscillations is the existence
blocked predator islands which are located and trapped
sparse prey areas. Indeed, blocked predators in sparse
areas result in growing prey populations; however, the res
ing dense prey population allows predators to move and
date again. This mechanism drives back the system to
beginning of the loop. Clearly, predators can only be trapp
in sparse prey areas ifla is smaller than or of the order o
the death rate, 1. This explains the location of the oscillat
region. Note that the above argument is based on the sp
nature of the system, suggesting that a spatially exten
character is fundamental for the existence of such pr
predator type of oscillations.

This mechanism also provides a qualitative understand
of the key properties of the system. The trapped preda
can invade the prey area only when the prey are de
enough again, which takes a time proportional to 1/la , and
leads tov;la . According to simulations the correlatio
length j increases with decreasingla . Indeed, asla de-
creases, the trapped predators have to wait longer to esc
hence fewer groups of predators survive. This increases
distance between the groups, resulting in larger prey isla
whose average size is proportional toja .

When the correlation length is of the order of the syst
size, there are islands of prey of typical sizeL, extruding the
predators out of the system. Hence the conditionja;L char-
acterizes the phase boundary between the oscillatory

ws
,

FIG. 13. The same as Fig. 12, but forla50.2 andlb55. Note
that the predators invade only the fully dense prey areas in b
figures.
9-9
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TIBOR ANTAL AND MICHEL DROZ PHYSICAL REVIEW E 63 056119
prey phases. On the other hand, a correlation length of o
1 (ja;1), means that the noise dominates the system. T
ja;1 characterizes the boundary between the oscilla
and nonoscillatory regions of the coexistence phase.

As shown by the study of the time dependent correlatio
domains separated by a distance larger thanja oscillate
asynchronously around a constant value with the same
quency,v(la ,lb). According to this picture, one can deriv
a more quantitative description for the oscillatory region. L
us assume that, for 1!ja!L, the global densities of eac
species can be written as the sum of local coarse-gra
densities at a typical length scaleja . Moreover, we assume
that all these local densities oscillate with the same
quency but a different phasea l . In general, the amplitude o
the local oscillations should depend on the parametersla
andlb . However, as one can observe in Figs. 12 and 13,
predators can only enter an almost fully dense prey area,
the predator fronts leave an almost empty field behind th
Hence, as suggested by the numerical simulations, ev
where in the oscillatory region, the local amplitude for t
prey density can be considered as a constant,d. Thus

a~ t !5as1dS j

L D 2

(
l 51

(L/j)2

sin~vt1a l !. ~22!

Supposing that thea l values change much more slowly tha
v, a(t) shows a simple sine behavior for long periods
time ~see Fig. 4!. Thus, fora(t), one can derive the value o
the density fluctuationsxa , and the amplitude of these osci
lations,Aa , using Eqs.~11! and ~19!, and take the averag
over all the possiblea l configuration taken from a flat dis
tribution. This procedure reproduces the result of Eq.~20! up
to a multiplicative factor in front of the correlation length.

VI. CONCLUSIONS

We have studied a two-dimensional prey-predator mo
~sizeL3L), which exhibits a rich stationary state phase d
,

-
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gram. Particular attention has been paid to the study of fi
size effects, and we were able to draw clear cut conclusi
concerning the behavior of the model both for finiteL as well
as for the limitL→`.

Three kinds of stationary states can be reached accor
to the values of the control parameters: a pure prey state,
two coexisting prey-predator ones, with and without oscil
tions. Two different kinds of second order transitions we
found. Besides the usual DP transition we found a surp
ingly different type of transition to the prey absorbing pha
The study of the global density fluctuations allowed us
characterize the crossover between the oscillatory
nonoscillatory domains of the coexistence phase. The
tinction between these two domains remains valid in the
finite size limit. In the oscillatory regime, scaling relation
were established between several physical quantities.

A qualitative explanation for the existence of such an
cillatory regime is given, pointing out the crucial role of th
spatial extension of the system. Indeed, the frequency of
oscillations is determined locally due to the dynamics rela
to blocked predator islands in sparse prey areas. Region
linear sizeja oscillate with the same frequency but wit
different phases. This explains the decreasing amplitude
oscillations with increasing system size. On the other ha
slowly changing phases result in periodic oscillations of
overall prey density for long periods of time. Moreover, f
suitable choices of the control parameters one can have
chronized oscillations with finite amplitude across arbitra
large systems. Thus we think that our simple model co
offer a qualitative explanation to the lynx population pro
lem described in Sec. I.
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