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Critical behavior of a lattice prey-predator model
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The critical properties of a simple prey-predator model are revisited. For some values of the control param-
eters, the model exhibits a line of directed percolationlike transitions to a single absorbing state. For other
values of the control parameters one finds a second line of continuous transitions toward an infinite number of
absorbing states, and the corresponding steady-state exponents are mean-field-like. The critical behavior of the
special poinfT (bicritical poind), where the two transition lines meet, belongs to a different universality class.

A particular strategy for preparing the initial states used for the dynamical Monte Carlo method is devised to
correctly describe the physics of the system near the second transition line. Relationships with a forest fire
model with immunization are also discussed.
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[. INTRODUCTION lar point may also belong to an interesting universality class.
The goal of this paper is to study in more detail the prop-
The study of prey-predator systems has attracted muchrties of these non-DP phase transitions. We performed ex-
attention since the pioneering works of Lotkd and Volt-  tensive steady-state simulations, which confirm the non-DP
erra[2]. Working at a mean-field levéhomogeneous popu- character of the transition in the limits,—0 and\, =\ .
lations they showed that, depending on the initial state, the As already showifi10], in this limit the model exhibits an
system can evolve toward a simple steady state or a limioscillatory behavior. However, in addition to this, far,
cycle, in which the populations oscillate periodically in time. =0 the model has infinitely many absorbing states. These
An important question is the understanding of the roletwo properties are responsible for a rather peculiar behavior
played by the local environment on the dynamispatial  ©of the mod(_al, which_ becom_es particularly transparent when
effecty [3], and, accordingly, many extended prey-predatothe model is examined using the dynamical Monte Carlo
models have been studied during the past yg4ss]. Re- method. When applied to models with infinitely many ab-
cently, a simple prey-predator model was introduced bysorblng_ states, this dy_namlcal method uses so-called natural
some of us[10]. Although governed by only two control absorbing states, WhI.Ch are thg most likely states to be
parameters, this model exhibits a rich phase diagram. As ached by the (_jynam|cal evolution of the SVSt.e’T‘- We show,
function of the two control parametexs, and\, , which are owever, that this common but somehow heuristic procedl_Jre
. fails here. Indeed, for the present model, natural absorbing
the growth rates of the prey and predator, respectively, twg : , :
States contain only short-ranged islands of prey on which
.. spreading is not critical. To restore the criticality of the
) ) ) as'preading we generated the absorbing states using a quasi-
tory (O) region and a non-oscillatoryNO) region can be  giatic approach to the critical point. This example shows that,
distinguished. For a system size-c, these thTreerlfferent for some models with infinitely many absorbing states, a
domains meet at a particular point, calléer(\,,Ap) (Pre-  special approach is needed to examine the dynamical prop-
cise definitions are given belowit was shown 10] that)\; erties of the critical point.
=0 and\}~5.0+0.3. For\,>0, a phase transition line The paper is organized as follows. In Sec. II, the model is
between the pure prey phase and the coexistence phasedisfined, and some of its properties are discussed. A thorough
present, and the critical exponents along this line are the ondsvestigation of the critical behavior, using two different
of directed percolatioDP) [11]. However, it was also ob- complementary approaches, is reported. In Sec. lll, the criti-
served that when the growth rates of the preydaye-0 and  cal behavior is investigated using steady-state properties
A\p>\p, the model undergoes a non-DP continuous phaswhile in Sec. IV one uses a dynamical Monte Carlo method.
transition. Since DP is a generic universality class for modeldt is shown that forn ,—0 and)\bz)\g the steady-state ex-
with absorbing state@inless some special conditions are sat-ponents are indeed mean-field-like, while the dynamical ex-
isfied [12]), the existence of such a transition is certainly ponents are nonuniversal, depending continously upgn
surprising. These two lines of different continuous nonequi-Nevertheless, a trace of the mean-field character of the tran-
librium phase transitions meet at the bicritical poinf13], sition shows up in the scaling relations among dynamical
and one can forecast that the critical behavior at this particuexponents. The critical behavior at poifitis also investi-
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The purpose of the present study is to give a complete de-
scription of the nature of the transitions near the ling=0
for A\p=\p.
It is worth to mention, that our model is closely related to
a model introduced by Drossel and Schwgbd] to investi-
| gate the effect of immunization in an extension of the simple
J- N forest-fire mode[15]. That three-state mod€D is an empty
oﬁ site, 1 is a tree, and 2 is a burning tregiffers from our
0 . = /;© model in some details: the growth rate of a tree@—1) is
0 2 4T 6 8 p, independently of the environment, and a tree is ignited
A (0:1—2) with rate (1-g)®(n,), (O is the usual Heaviside
function). This second process models the immunization of
trees against fire. The third process.2—0) occurs at rate
1. For nonzero immunity anp>0, Albano[16] showed that

NO

—

FIG. 1. Phase diagram obtained by extrapolation of the simula
tion results to the cask—. The solid line represents the DP

transition between the prey pha&® and the nonoscillatory part - . . . . .
(NO) of the coexistence phag@he ® symbols are the simulated a transition toward a single absorbing state is DP like, while

values, while the solid line is just a guide to the eyekhe [ for p.=.0 (at the end point of the bP trans[tlon Imahe .
symbols delimit the crossover between the oscillaté®) and transition belongs to t_he dynamlcal pergolanon universality
nonoscillatory(NO) regimes present in the coexistence phase. Th&1ass, and the absorbing state is not unique.

arrows correspond to the path described in the text, along which the

critical exponents have been measured. Paths 2 and 3 end at the |ll. STEADY STATE STUDY OF THE CRITICAL

point T on the horizontal axis. BEHAVIOR

Extensive Monte Carlo simulations for system sizes up to
00x 4000 have been performed to investigate the behavior
of the predator densitlp, for A,—0 and three different val-
ues of\,, namely,\y,=4.67, 5.0, and 6.0, following trajec-
tories of types 2 and 4 in Fig. 1. The valng=0\,=4.67
1. MODEL corresponds to the best determination of the end p®jnt
obtained by the dynamical approach described below. Owing
The model used in Refl10] is defined as follows. Each o the oscillatory behavior near the critical lin& =0\,
cell of a two-dimensional square latti¢ef sizeL XL, witha > \Ty the system very easily evolves into an absorbing state,
periodic boundary conditionlabeled by the indek can be, \yhere the predators are extinct; therefore, a careful initializa-
at timet, in one of the three following states; =0, 1,and 2. on js needed in the simulations. Usually we did* 2Monte
A cell in state 0, 1, or 2 corresponds, respectively, to a celi g steps(MCS’s) to approach the desired value ®f,
which is empty, occupied by prey, or simultaneously ocCU-continously decreasing it from an initial value. Then*10
pied by prey and predators. The transition rates forisif®  \1cs's were used to reach the stationary state, in which the
(i) 0—1 at rate,(n;,1+n; 2)/4, (ii) 1—2 at ratehp(n; 2)/4,  gensities and the fluctuations of prey and predators were av-

and (i) 2—0 at rate 1, where; , denotes the number of g aged over-2x 10° MCS's for eachh, or A, point. It is
nearest neighbor sites ofvhich are in the state. The first  5,nd thatba: (N ,)#2 for \,—0. In order to see corrections

two processes model the spreading of prey and predatorg, scaling, we compute the effective exponent
The third process represents the local depopulation of a cell
due to overly greedy predators. The rate of the third process _ INb [N a(i)]—INb[Ag(i—1)]
is chosen to be 1, which sets the time scale; hénas well Beif(Na(i))= o) =i —1)
as\, and\,, are dimensionless quantities. a a
The properties of this model have been investigated bOthhere)\
by mean-field and Monte Carlo methofis0]. The Monte
Carlo result extrapolated to the cdse»o is summarized in
Fig. 1. The transition line between the prey phase and thFat
coexistence phasay (\,), belongs to the directed percola-

gated, and it turns out that the corresponding exponents b%-o
long to an interesting universality class. Finally, physical ar-
guments explaining the above findings are given in Sec. V.

@

a(i) and\,(i—1) are two consecutive values of the
control parametex, .

As shown in Fig. 2, foin,=5 and 6, the linear extrapo-
ion of B¢ converges to=1 within statistical errors:

tion universality clas§l1], as expected, and terminates at the Bo(Ap=5.0=1.01(1) )
point T=(\.=0\}), where theP, O, and NO domains
meet. For\,>\{, the transition between the oscillatory do- Bo(Np=6.0)=0.964). 3

main of the coexistence phase and the prey phase takes place

at A\ ,=0. Along this transition line the predator density ap- For \,,=4.67 (a trajectory of type 2 in Fig. )lit goes to a
proaches zero as a power liw (\,)?2, with 8,~1, and S0 somewhat higher value, and one finds
does not belong to the DP class, which is somehow unex-

pected. The valu@,~1 lead to the conjecturfel0] that this Bo(\p=4.67=1.334). (4)
second transition could be mean-field-like. There is a cross-
over between th® and NO parts of the coexistence phase.The measurement of the fluctuations,
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FIG. 3. The survival probability?(t) as a function of obtained
for A;,=0 and (from the top \,=4.6, 4.65, 4.67, 4.7, and 4.75
(trajectory of type 3 in Fig. 1 We used a system size= 3000, and
up to 1@ independent runs were made for each value pf The

FIG. 2. Predator density critical exponeB} obtained for sev-
eral values o, and\,=4.67 (O), 5.0 (), and 6.0 (©).

Xb™= L2<(b_<b>)2>°‘()\a)7 7, ©) dotted line corresponds t&=0.092.
are less precise, and we estimate —0.6(16) at\,=4.67, . T . i
and y~0 for \,=5 and 6. rates the absorbing phasky&\) and the phase with an

.
For \p>\, these values are consistent with the previousnm_ar TgrOWthF?‘bN\t?)' Tgﬁ Omoegas;remﬁpthqf the sI(I)pe at

prediction[10] 8,~1. However, at the bicritical point the )‘b_h)‘b (Tee b'g'_;B%:\?est ' 'E(I ), w 'f s v;ary chc_)sr(]e .

value of B, is completely different and thus belongs to a new!© the value obtained for dynamical percolation, for which, in

. ; two dimensions,5=0.092[18]. Moreover, using Eqs(7)
universality class. ' '
y and(8) we obtainedn=0.60(5) andz=1.724), which are
IV. DYNAMICAL STUDY OF THE CRITICAL BEHAVIOR also very close to the dynamical percolation values.

Note that the usual order parameter critical expon@nt
A very useful technique to study the critical properties ofdefined for dynamical percolation m()\g—)\b)ﬁ, differs

a system with absorbing states is the so-called dynamicdtom our definition of3, in Sec. Ill. Thus it is not surprising
Monte Carlo method17]. In this approach, the system is that these two exponents differ. Also note that the dynamical
prepared in an initial state, which is one of the absorbingestimation of the critical end point,=\/ has been used in
states up to one site, which is set to be in the active statehe static approach of Sec. Ill.
One considers an ensemble of trials starting from the same
initial state. Certain dynamical quantities exhibit a power law

> al Ytle B. Case ofA,>0
behavior when the system is critical. For example, the sur-

vival probability behaves as The same scheme was used Xgr>0. The critical points
were located foh ,=0.5 and 1(a trajectory of type 1 in Fig.
P(t)oct ™. (6) 1), and their values agree with the steady state results of Ref.

[10]. Measuring the slope at criticalitisee Fig. 4 we esti-
The deviation from this power law behavior, when the sys-mate 5~0.45, i.e., a value compatible with DR28]. The
tem is off-critical, provides a very precise way to locate the

critical point. 0
The number of active sitel(t) behaves as

N(t)oct?” (7) 05 |

log[P(D)]

while, for the mean square spreading from the origfit),

R(t)ot?, (8) 1

where the dynamical exponent2v, /v is the ratio of the
critical exponents of spatialk{ ) and temporal ¢|) correla- -L3
tion lengths. Some scaling relations between these exponents

can be also derive[d 8]. The results obtained by the dynami- log,o(t)
cal Monte Carlo method are the following. FIG. 4. The survival probability(t) as a function ot obtained
for A\,=0 and\,=4.67 (trajectory of type 3 in Fig. , A,=0.5 and
A. Case ofA,=0 Np,=3.175, and\,=1, A,=2.451(trajectory of type 1 in Fig. L

) ] ) ) Corresponding values of, are also shown in the figure. Far,
First we simulated the model on thg=0 line, taking, 8 ~( we used the system site=1000, and up to F0independent
an absorbing state, a lattice filled with préyajectory of  ryns were made for each curve. The dotted lines have a slope cor-

type 3 in Fig. ). Measuring the survival probability(t), we  responding to the exponemd of the dynamical and the directed
found that)\bz)\g~4.67 is the critical point, which sepa- percolation.
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FIG. 5. The survival probabilitfP(t) as a function of obtained FIG. 6. The number of active sit@é(t) as a function oft ob-

for A ,=0, and for\,=6 (solid line) and 8(dotted ling. Absorbing  tained forx,=0 and\,=6 and 8. Absorbing states were obtained

states were obtained using continuous cooling, with the cooling!Sing continuous cooling, with a cooling rate=0.0001. Straight

rates(from the top r=0.0001, 0.0001, 0.001, 0.01, amd For the  dotted lines have slopes correspondingste 0.67 and 0.35.

slowest cooling we used a system slze 1000. For each cooling

rate we generated 3@bsorbing states, and for each absorbing stat€configuration (with a probability of prey equal to 1)3is

we generated from £6-1(° independent runs. below the percolation threshold with respect to the clusters
of prey, and contains only finite clusters of th¢d®]. On

fact, that, forn,>0, the phase transition belongs to the DPsuch clusters activity certainly last only for a finite tirffer

universality class was already confirmed using the static calk,=0 prey do not grow and the exponential decay B{t),

culations[10]. seen in Fig. 5, is an expected feature.

In Sec. Il we already noted the similarity of the present Clearly, the lack of criticality inP(t) is due to the finite-
model with a forest-fire model with immunization. Results ness of prey clusters in the natural absorbing states. In prin-
presented in this section provide further arguments supportiple, we can cure this effect, starting from random initial
ing such an analogy. Indeed, dynamical exponents measurednfigurations containing a larger fraction of prey. For suffi-
by Albano for the forest fire model are also close to theciently large concentrations the system will be above the
dynamical percolatiofwithout growth of tre¢ and the di- percolation threshold, and the activity will spread forever.

rected percolatiorwith growth of tree [16]. Probably, for a certain concentration of prey, we can tune the
system to have a power-law decay #8(t). Such a proce-
C. Inhomogeneous absorbing states dure, however, is somehow atrtificial, and the criticality of
preading will not be related with the static criticality of the

Static simulations suggest that the model becomes critic ystem.

. T _
on the lineh, >\, and\,=0. Moreover, let us note that for “ e g estion arises here of whether it is possible to gen-
A\a=0 there are infinitely many absorbing states: indeed, angrate absorbing states having the following properties: first,
configuration without pred_ators is an absorbing state. It isg pe generated more “naturally,” and, second, to exhibit a
well known that the dynamical Monte Carlo method can alsqyitical spreading related to the steady state critical proper-
be applied to models with infinitely many absorbing statesgies | the following we suggest a procedure which imitates

However, as we will see below, the applicability of this 5 gyasistatic approach to the critical point on the ling
method to the criticality on this line requires serious recon-_q |4 our approach we gradually redusg with time, ac-

siderations. _ cording to the formula
First, let us recall that the dynamical Monte Carlo method
for models with infinitely many absorbing states usually uses Ag(D)= xg exp(—rt), 9

the so-called natural absorbing states, i.e., states which are
reached by the model’'s dynamics. Numerical evidence sugA/here)\gzl, andr is the “cooling” rate.[We expect that the
gests that for such states the dynamical critical point coindetailed time dependence in Ef) is not relevant as long as
cides with the static one. Moreover, the dynamical exponentg is a slow proces$.We stop cooling when an absorbing
6 and », measured on such states, take universal values. state is reached. When the cooling is slow, the system has
Following this prescription, we generated natural absorbenough time to build large clusters of prey. Our simulations
ing states foi,,=0 and\,>\/, and then used such states for A\,=6 suggesisee Fig. 5 that, in the limitr —0, such
to perform dynamical simulations. An initial configuration absorbing states are critical, with=0.59(10) (along trajec-
was chosen randomly, with equal probabilities for a site betories of type 5 in Fig. 1 Measuring the number of active
ing empty, occupied by prey, or occupied simultaneously bysitesN(t), and using Eq(7), we estimatep=0.34(10)(see
prey and predator. Fixing,(=0) and\,, we then allowed Fig. 6). The departure of the curves from a straight line ob-
the system to evolve until an absorbing configuration wasserved for large values of time is related to the finiteness of
reachedi.e., all predators die outOur results, presented in the cooling rate. Moreover, we measured the averaged
Fig. 5, show, however, that the spreading of activity is notsquared distancéR?(t), and, using Eq.(8), obtained z
critical (i.e., power law, but rather exponential. But we can =2.0(1) (see Fig. 7. Actually, we expect that the correct
argue that this is not surprising. Indeed, a random initialvalue of this exponent ig=2. Indeed, in Eq(8) one aver-
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5 . . . - - . TABLE |. Critical exponents arountl ,=0.
41 Exponent  \,=4.67 5.0 6.0 8.0
< 3T B, 1.334) 1.011) 0.964)
T‘% 2t v -0.6510) -0.1(2) -0.055)
(=)
1r S 0.0955) 0.5910) 0.3510)
ol n 0.605) 0.3410) 0.6710
z 1.724) 2.01) 2.001)

0 0.5 1 15 2 2.5 3 35
log;o(t)

V. CONCLUSIONS
FIG. 7. The squared distance of active siR¥t) as a function
of t obtained forA,=0, \,=6, and 8. Absorbing states were ob-
tained using continuous cooling with the cooling rate 0.0001.
The straight dotted line has a slope corresponding=@.

The detailed investigation of the critical properties of a
simple prey-predator model introduced in Rgf0] showed
the presence of three different types of nonequilibrium phase
transitions between active and absorbing states. First, the ex-
o ) . istence of a typical DP-like transition line was confirmed at
ages onl)zl over surviving runs; thus the Iong-t|me'c'ontr|bu—)\;()\a) for A,>0. Second, a mean-field-like transition was
tions toR“(t) come from rare ev_ents, when the aCthItyThap'observed forn,—0, )\b>)\g. The mean-field character of
pened to be placed on a large island of prey. SKge Ay,  this transition can be explained in terms of oscillations
the activity on such islands spreads in a deterministic wayyresent in the model. Indeed, as described in Ref, when
(annular growth, which leads tae=2. \,—0, the system is subject to large density oscillations.

The same procedure fax,=8 yields §=0.35(10), »  These oscillations generate an important local mixing of the
=0.67(10), andz=2.0(1) (relatively large errors of estima- possible states, leading to a mean-field-like behavior. The
tions of critical exponents are due to several, difficult to es<criticality along thex,=0 line was confirmed with a dy-
timate, factors, such as finite tingfinite cooling rater, and  namical approach using specially prepared inhomogeneous
statistical fluctuations Such results confirm that=2, and initial states. Some dynamical trace of the mean-field nature
suggest that exponengsand » might change continuously of this transition was also observed. Third, at the bicritical
with \,,. The nonuniversality of these exponents is a well-Point T, where the two different critical lines meet, we found
known property of some other models belonging to the di-2 dynamical percolation type transition moving along the
rected percolation universality clag0]. Note, however, Ma=0 line, while, when approaching the poifitrom finite
that the situation is different in our case, because the nonunjta Values, we observed an interesting type of critical
versality is related to the value af, rather than to the choice P€havior.

of the initial state. Such a control parameter dependence was | '€ measured exponents corresponding tavjre0 line
already observed in other modéRl]. Note that nonuniver- 3¢ summarized in Table I. The best numerical estimates for

sal behavior is not present along the DP line, since the cort-he c_r|t|cal exponents of the tv_vo-d[nensmnal_dynamlcal per-

. . X . ' olation are given for compariso@=0.092, »=0.586, and
responding absorbing state is unique. Let us finally note tha?_

. =t z=1.771[18].

5+ n seems to be close to unity, which is an exact mean-
field result Gyr=1,7vg=0). This is the only dynamical This work was partially supported by the Swiss National
trace of the mean-field nature of the transition observed ifFoundation, the Hungarian Academy of Sciend&rant
the steady state. Let us emphasize, however, that the criticaDTKA T-25286, T-029792 and Grant Bolyai BO/00142/99
ity of spreading appears only if we prepare the absorbing@nd by the Polish State Committee for Scientific Reseésch

states using a method which mimics the quasi-steady-staf03B 032 20 The simulations were performed partially on

evolution of the model. the SZTAKI parallel computing cluster.
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