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Critical behavior of a lattice prey-predator model
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The critical properties of a simple prey-predator model are revisited. For some values of the control param-
eters, the model exhibits a line of directed percolationlike transitions to a single absorbing state. For other
values of the control parameters one finds a second line of continuous transitions toward an infinite number of
absorbing states, and the corresponding steady-state exponents are mean-field-like. The critical behavior of the
special pointT ~bicritical point!, where the two transition lines meet, belongs to a different universality class.
A particular strategy for preparing the initial states used for the dynamical Monte Carlo method is devised to
correctly describe the physics of the system near the second transition line. Relationships with a forest fire
model with immunization are also discussed.
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I. INTRODUCTION

The study of prey-predator systems has attracted m
attention since the pioneering works of Lotka@1# and Volt-
erra@2#. Working at a mean-field level~homogeneous popu
lations! they showed that, depending on the initial state,
system can evolve toward a simple steady state or a l
cycle, in which the populations oscillate periodically in tim

An important question is the understanding of the r
played by the local environment on the dynamics~spatial
effects! @3#, and, accordingly, many extended prey-preda
models have been studied during the past years@4–9#. Re-
cently, a simple prey-predator model was introduced
some of us@10#. Although governed by only two contro
parameters, this model exhibits a rich phase diagram. A
function of the two control parametersla andlb , which are
the growth rates of the prey and predator, respectively,
different phases are observed: a pure prey phase (P), and a
coexistence phase of prey and predator in which an osc
tory ~O! region and a non-oscillatory~NO! region can be
distinguished. For a system sizeL→`, these three differen
domains meet at a particular point, calledT5(la

T ,lb
T) ~pre-

cise definitions are given below!. It was shown@10# that la
T

50 and lb
T'5.060.3. For la.0, a phase transition line

between the pure prey phase and the coexistence pha
present, and the critical exponents along this line are the o
of directed percolation~DP! @11#. However, it was also ob
served that when the growth rates of the prey arela→0 and
lb.lb

T , the model undergoes a non-DP continuous ph
transition. Since DP is a generic universality class for mod
with absorbing states~unless some special conditions are s
isfied @12#!, the existence of such a transition is certain
surprising. These two lines of different continuous noneq
librium phase transitions meet at the bicritical pointT @13#,
and one can forecast that the critical behavior at this part
1063-651X/2001/64~3!/036118~6!/$20.00 64 0361
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lar point may also belong to an interesting universality cla
The goal of this paper is to study in more detail the pro

erties of these non-DP phase transitions. We performed
tensive steady-state simulations, which confirm the non-
character of the transition in the limitsla→0 andlb>lb

T .
As already shown@10#, in this limit the model exhibits an

oscillatory behavior. However, in addition to this, forla
50 the model has infinitely many absorbing states. Th
two properties are responsible for a rather peculiar beha
of the model, which becomes particularly transparent wh
the model is examined using the dynamical Monte Ca
method. When applied to models with infinitely many a
sorbing states, this dynamical method uses so-called na
absorbing states, which are the most likely states to
reached by the dynamical evolution of the system. We sh
however, that this common but somehow heuristic proced
fails here. Indeed, for the present model, natural absorb
states contain only short-ranged islands of prey on wh
spreading is not critical. To restore the criticality of th
spreading we generated the absorbing states using a q
static approach to the critical point. This example shows th
for some models with infinitely many absorbing states
special approach is needed to examine the dynamical p
erties of the critical point.

The paper is organized as follows. In Sec. II, the mode
defined, and some of its properties are discussed. A thoro
investigation of the critical behavior, using two differe
complementary approaches, is reported. In Sec. III, the c
cal behavior is investigated using steady-state proper
while in Sec. IV one uses a dynamical Monte Carlo meth
It is shown that forla→0 andlb>lb

T the steady-state ex
ponents are indeed mean-field-like, while the dynamical
ponents are nonuniversal, depending continously uponlb .
Nevertheless, a trace of the mean-field character of the t
sition shows up in the scaling relations among dynami
exponents. The critical behavior at pointT is also investi-
©2001 The American Physical Society18-1
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gated, and it turns out that the corresponding exponents
long to an interesting universality class. Finally, physical
guments explaining the above findings are given in Sec.

II. MODEL

The model used in Ref.@10# is defined as follows. Each
cell of a two-dimensional square lattice~of sizeL3L, with a
periodic boundary condition!, labeled by the indexi, can be,
at timet, in one of the three following states:s i50, 1, and 2.
A cell in state 0, 1, or 2 corresponds, respectively, to a
which is empty, occupied by prey, or simultaneously oc
pied by prey and predators. The transition rates for sitei are
~i! 0→1 at ratela(ni ,11ni ,2)/4, ~ii ! 1→2 at ratelb(ni ,2)/4,
and ~iii ! 2→0 at rate 1, whereni ,s denotes the number o
nearest neighbor sites ofi which are in the states. The first
two processes model the spreading of prey and preda
The third process represents the local depopulation of a
due to overly greedy predators. The rate of the third proc
is chosen to be 1, which sets the time scale; hencet, as well
asla andlb , are dimensionless quantities.

The properties of this model have been investigated b
by mean-field and Monte Carlo methods@10#. The Monte
Carlo result extrapolated to the caseL→` is summarized in
Fig. 1. The transition line between the prey phase and
coexistence phase,lb* (la), belongs to the directed percola
tion universality class@11#, as expected, and terminates at t
point T[(la

T50,lb
T), where theP, O, and NO domains

meet. Forlb.lb
T , the transition between the oscillatory d

main of the coexistence phase and the prey phase takes
at la50. Along this transition line the predator density a
proaches zero as a power lawb}(la)b2, with b2'1, and so
does not belong to the DP class, which is somehow un
pected. The valueb2'1 lead to the conjecture@10# that this
second transition could be mean-field-like. There is a cro
over between theO and NO parts of the coexistence phas

FIG. 1. Phase diagram obtained by extrapolation of the sim
tion results to the caseL→`. The solid line represents the D
transition between the prey phase~P! and the nonoscillatory par
~NO! of the coexistence phase~The d symbols are the simulate
values, while the solid line is just a guide to the eyes!. The h

symbols delimit the crossover between the oscillatory~O! and
nonoscillatory~NO! regimes present in the coexistence phase. T
arrows correspond to the path described in the text, along which
critical exponents have been measured. Paths 2 and 3 end a
point T on the horizontal axis.
03611
e-
-
.

ll
-

rs.
ell
ss

th

e

ace

x-

s-
.

The purpose of the present study is to give a complete
scription of the nature of the transitions near the linela50
for lb>lb

T .
It is worth to mention, that our model is closely related

a model introduced by Drossel and Schwabl@14# to investi-
gate the effect of immunization in an extension of the sim
forest-fire model@15#. That three-state model~0 is an empty
site, 1 is a tree, and 2 is a burning tree! differs from our
model in some details: the growth rate of a tree (s:0→1) is
p, independently of the environment, and a tree is igni
(s:1→2) with rate (12g)Q(n2), (Q is the usual Heaviside
function!. This second process models the immunization
trees against fire. The third process (s:2→0) occurs at rate
1. For nonzero immunity andp.0, Albano@16# showed that
a transition toward a single absorbing state is DP like, wh
for p50 ~at the end point of the DP transition line!, the
transition belongs to the dynamical percolation universa
class, and the absorbing state is not unique.

III. STEADY STATE STUDY OF THE CRITICAL
BEHAVIOR

Extensive Monte Carlo simulations for system sizes up
400034000 have been performed to investigate the beha
of the predator densityb, for la→0 and three different val-
ues oflb , namely,lb54.67, 5.0, and 6.0, following trajec
tories of types 2 and 4 in Fig. 1. The valuela50,lb54.67
corresponds to the best determination of the end poinT,
obtained by the dynamical approach described below. Ow
to the oscillatory behavior near the critical line (la50,lb

.lb
T), the system very easily evolves into an absorbing st

where the predators are extinct; therefore, a careful initiali
tion is needed in the simulations. Usually we did 104 Monte
Carlo steps~MCS’s! to approach the desired value ofla ,
continously decreasing it from an initial value. Then 14

MCS’s were used to reach the stationary state, in which
densities and the fluctuations of prey and predators were
eraged over'23105 MCS’s for eachla or lb point. It is
found thatb}(la)b2 for la→0. In order to see correction
to scaling, we compute the effective exponent

be f f~la~ i !!5
lnb @la~ i !#2 ln b@la~ i 21!#

ln la~ i !2 ln la~ i 21!
. ~1!

wherela( i ) andla( i 21) are two consecutive values of th
control parameterla .

As shown in Fig. 2, forlb55 and 6, the linear extrapo
lation of be f f converges to'1 within statistical errors:

b2~lb55.0!51.01~1!, ~2!

b2~lb56.0!50.96~4!. ~3!

For lb54.67 ~a trajectory of type 2 in Fig. 1! it goes to a
somewhat higher value, and one finds

b2~lb54.67!51.33~4!. ~4!

The measurement of the fluctuations,
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CRITICAL BEHAVIOR OF A LATTICE PREY- . . . PHYSICAL REVIEW E 64 036118
xb5L2^~b2^b&!2&}~la!2g, ~5!

are less precise, and we estimateg520.6(16) atlb54.67,
andg'0 for lb55 and 6.

For lb.lb
T these values are consistent with the previo

prediction@10# b2'1. However, at the bicritical pointT the
value ofb2 is completely different and thus belongs to a ne
universality class.

IV. DYNAMICAL STUDY OF THE CRITICAL BEHAVIOR

A very useful technique to study the critical properties
a system with absorbing states is the so-called dynam
Monte Carlo method@17#. In this approach, the system
prepared in an initial state, which is one of the absorb
states up to one site, which is set to be in the active st
One considers an ensemble of trials starting from the s
initial state. Certain dynamical quantities exhibit a power l
behavior when the system is critical. For example, the s
vival probability behaves as

P~ t !}t2d. ~6!

The deviation from this power law behavior, when the s
tem is off-critical, provides a very precise way to locate t
critical point.

The number of active sitesN(t) behaves as

N~ t !}th ~7!

while, for the mean square spreading from the originR2(t),

R2~ t !}tz, ~8!

where the dynamical exponentz52n' /n i is the ratio of the
critical exponents of spatial (n') and temporal (n i) correla-
tion lengths. Some scaling relations between these expon
can be also derived@18#. The results obtained by the dynam
cal Monte Carlo method are the following.

A. Case oflaÄ0

First we simulated the model on thela50 line, taking, as
an absorbing state, a lattice filled with prey~trajectory of
type 3 in Fig. 1!. Measuring the survival probabilityP(t), we
found thatlb5lb

T'4.67 is the critical point, which sepa

FIG. 2. Predator density critical exponentb2 obtained for sev-
eral values ofla andlb54.67 (s), 5.0 (h), and 6.0 (L).
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rates the absorbing phase (lb,lb
T) and the phase with an

nular growth (lb.lb
T). The measurement of the slope

lb5lb
T ~see Fig. 3! givesd'0.095(5), which is very close

to the value obtained for dynamical percolation, for which,
two dimensions,d50.092 @18#. Moreover, using Eqs.~7!
and ~8! we obtainedh50.60(5) andz51.72(4), which are
also very close to the dynamical percolation values.

Note that the usual order parameter critical exponentb,
defined for dynamical percolation asb}(lb

T2lb)b, differs
from our definition ofb2 in Sec. III. Thus it is not surprising
that these two exponents differ. Also note that the dynam
estimation of the critical end pointlb5lb

T has been used in
the static approach of Sec. III.

B. Case oflaÌ0

The same scheme was used forla.0. The critical points
were located forla50.5 and 1~a trajectory of type 1 in Fig.
1!, and their values agree with the steady state results of
@10#. Measuring the slope at criticality~see Fig. 4! we esti-
mate d'0.45, i.e., a value compatible with DP@18#. The

FIG. 3. The survival probabilityP(t) as a function oft obtained
for la50 and ~from the top! lb54.6, 4.65, 4.67, 4.7, and 4.7
~trajectory of type 3 in Fig. 1!. We used a system sizeL53000, and
up to 105 independent runs were made for each value oflb . The
dotted line corresponds tod50.092.

FIG. 4. The survival probabilityP(t) as a function oft obtained
for la50 andlb54.67~trajectory of type 3 in Fig. 1!, la50.5 and
lb53.175, andla51, lb52.451 ~trajectory of type 1 in Fig. 1!.
Corresponding values ofla are also shown in the figure. Forla

.0 we used the system sizeL51000, and up to 105 independent
runs were made for each curve. The dotted lines have a slope
responding to the exponentd of the dynamical and the directe
percolation.
8-3
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ANTAL, DROZ, LIPOWSKI, AND ÓDOR PHYSICAL REVIEW E64 036118
fact, that, forla.0, the phase transition belongs to the D
universality class was already confirmed using the static
culations@10#.

In Sec. II we already noted the similarity of the prese
model with a forest-fire model with immunization. Resu
presented in this section provide further arguments supp
ing such an analogy. Indeed, dynamical exponents meas
by Albano for the forest fire model are also close to t
dynamical percolation~without growth of tree! and the di-
rected percolation~with growth of tree! @16#.

C. Inhomogeneous absorbing states

Static simulations suggest that the model becomes cri
on the linelb.lb

T andla50. Moreover, let us note that fo
la50 there are infinitely many absorbing states: indeed,
configuration without predators is an absorbing state. I
well known that the dynamical Monte Carlo method can a
be applied to models with infinitely many absorbing stat
However, as we will see below, the applicability of th
method to the criticality on this line requires serious reco
siderations.

First, let us recall that the dynamical Monte Carlo meth
for models with infinitely many absorbing states usually u
the so-called natural absorbing states, i.e., states which
reached by the model’s dynamics. Numerical evidence s
gests that for such states the dynamical critical point co
cides with the static one. Moreover, the dynamical expone
d andh, measured on such states, take universal values

Following this prescription, we generated natural abso
ing states forla50 andlb.lb

T , and then used such state
to perform dynamical simulations. An initial configuratio
was chosen randomly, with equal probabilities for a site
ing empty, occupied by prey, or occupied simultaneously
prey and predator. Fixingla(50) andlb , we then allowed
the system to evolve until an absorbing configuration w
reached~i.e., all predators die out!. Our results, presented i
Fig. 5, show, however, that the spreading of activity is n
critical ~i.e., power law!, but rather exponential. But we ca
argue that this is not surprising. Indeed, a random ini

FIG. 5. The survival probabilityP(t) as a function oft obtained
for la50, and forlb56 ~solid line! and 8~dotted line!. Absorbing
states were obtained using continuous cooling, with the coo
rates~from the top! r 50.0001, 0.0001, 0.001, 0.01, and̀. For the
slowest cooling we used a system sizeL51000. For each cooling
rate we generated 103 absorbing states, and for each absorbing s
we generated from 102–105 independent runs.
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configuration ~with a probability of prey equal to 1/3! is
below the percolation threshold with respect to the clust
of prey, and contains only finite clusters of them@19#. On
such clusters activity certainly last only for a finite time~for
la50 prey do not grow!, and the exponential decay ofP(t),
seen in Fig. 5, is an expected feature.

Clearly, the lack of criticality inP(t) is due to the finite-
ness of prey clusters in the natural absorbing states. In p
ciple, we can cure this effect, starting from random init
configurations containing a larger fraction of prey. For su
ciently large concentrations the system will be above
percolation threshold, and the activity will spread forev
Probably, for a certain concentration of prey, we can tune
system to have a power-law decay forP(t). Such a proce-
dure, however, is somehow artificial, and the criticality
spreading will not be related with the static criticality of th
system.

The question arises here of whether it is possible to g
erate absorbing states having the following properties: fi
to be generated more ‘‘naturally,’’ and, second, to exhibi
critical spreading related to the steady state critical prop
ties. In the following we suggest a procedure which imita
a quasistatic approach to the critical point on the linela
50. In our approach we gradually reducela with time, ac-
cording to the formula

la~ t !5la
0 exp~2rt !, ~9!

wherela
051, andr is the ‘‘cooling’’ rate.@We expect that the

detailed time dependence in Eq.~9! is not relevant as long a
it is a slow process.# We stop cooling when an absorbin
state is reached. When the cooling is slow, the system
enough time to build large clusters of prey. Our simulatio
for lb56 suggest~see Fig. 5! that, in the limit r→0, such
absorbing states are critical, withd50.59(10)~along trajec-
tories of type 5 in Fig. 1!. Measuring the number of activ
sitesN(t), and using Eq.~7!, we estimateh50.34(10) ~see
Fig. 6!. The departure of the curves from a straight line o
served for large values of time is related to the finiteness
the cooling rate. Moreover, we measured the avera
squared distanceR2(t), and, using Eq.~8!, obtained z
52.0(1) ~see Fig. 7!. Actually, we expect that the correc
value of this exponent isz52. Indeed, in Eq.~8! one aver-

g

e

FIG. 6. The number of active sitesN(t) as a function oft ob-
tained forla50 andlb56 and 8. Absorbing states were obtaine
using continuous cooling, with a cooling rater 50.0001. Straight
dotted lines have slopes corresponding toh50.67 and 0.35.
8-4
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CRITICAL BEHAVIOR OF A LATTICE PREY- . . . PHYSICAL REVIEW E 64 036118
ages only over surviving runs; thus the long-time contrib
tions toR2(t) come from rare events, when the activity ha
pened to be placed on a large island of prey. Sincelb.lb

T ,
the activity on such islands spreads in a deterministic w
~annular growth!, which leads toz52.

The same procedure forlb58 yields d50.35(10), h
50.67(10), andz52.0(1) ~relatively large errors of estima
tions of critical exponents are due to several, difficult to
timate, factors, such as finite timet, finite cooling rater, and
statistical fluctuations!. Such results confirm thatz52, and
suggest that exponentsd and h might change continuously
with lb . The nonuniversality of these exponents is a we
known property of some other models belonging to the
rected percolation universality class@20#. Note, however,
that the situation is different in our case, because the non
versality is related to the value oflb rather than to the choice
of the initial state. Such a control parameter dependence
already observed in other models@21#. Note that nonuniver-
sal behavior is not present along the DP line, since the
responding absorbing state is unique. Let us finally note
d1h seems to be close to unity, which is an exact me
field result (dMF51,hMF50). This is the only dynamica
trace of the mean-field nature of the transition observed
the steady state. Let us emphasize, however, that the crit
ity of spreading appears only if we prepare the absorb
states using a method which mimics the quasi-steady-s
evolution of the model.

FIG. 7. The squared distance of active sitesR2(t) as a function
of t obtained forla50, lb56, and 8. Absorbing states were o
tained using continuous cooling with the cooling rater 50.0001.
The straight dotted line has a slope corresponding toz52.
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V. CONCLUSIONS

The detailed investigation of the critical properties of
simple prey-predator model introduced in Ref.@10# showed
the presence of three different types of nonequilibrium ph
transitions between active and absorbing states. First, the
istence of a typical DP-like transition line was confirmed
lb* (la) for la.0. Second, a mean-field-like transition wa
observed forla→0, lb.lb

T . The mean-field character o
this transition can be explained in terms of oscillatio
present in the model. Indeed, as described in Ref.@10#, when
la→0, the system is subject to large density oscillatio
These oscillations generate an important local mixing of
possible states, leading to a mean-field-like behavior. T
criticality along thela50 line was confirmed with a dy-
namical approach using specially prepared inhomogene
initial states. Some dynamical trace of the mean-field nat
of this transition was also observed. Third, at the bicritic
point T, where the two different critical lines meet, we foun
a dynamical percolation type transition moving along t
la50 line, while, when approaching the pointT from finite
la values, we observed an interesting type of critic
behavior.

The measured exponents corresponding to thela50 line
are summarized in Table I. The best numerical estimates
the critical exponents of the two-dimensional dynamical p
colation are given for comparison:d50.092,h50.586, and
z51.771@18#.
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TABLE I. Critical exponents aroundla50.

Exponent lb54.67 5.0 6.0 8.0

b2 1.33~4! 1.01~1! 0.96~4!

g -0.65~10! -0.1~1! -0.05~5!

d 0.095~5! 0.59~10! 0.35~10!

h 0.60~5! 0.34~10! 0.67~10!

z 1.72~4! 2.0~1! 2.0~1!
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