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1. Introduction

In recent years, chemists have constructed a number of synthetic molecular systems which
can move on surfaces and tracks (see e.g. [1]–[3] and a comprehensive review [4]). One such
object is a multi-pedal molecular spider whose legs are short single-stranded segments
of DNA [5]. These spiders can move on a surface covered with single-stranded DNA
segments, called substrates. The substrate DNA is complementary to the leg DNA. The
motion proceeds as legs bind to the surface DNA through the Watson–Crick mechanism,
then dissociate, then rebind again, etc. More precisely, a bond on the substrate with an
attached leg is first cleaved [5], and the leg then dissociates from the affected substrate

doi:10.1088/1742-5468/2007/08/P08027 2

http://dx.doi.org/10.1088/1742-5468/2007/08/P08027


J.S
tat.M

ech.
(2007)

P
08027

Molecular spiders in one dimension

(which we shall call product). The leg then re-binds again to the new substrate or to the
product leading to the motion of the spider.

The rate of attachment of a leg of the spider to the substrate and the rate of
detachment from the substrate are different from the corresponding rates involving the
product instead of the substrate. Hence for the proper description of the motion of a single
spider one must keep track of its entire trajectory. This memory requirement makes the
problem non-Markovian4 and generally intractable analytically even in the case of a single
spider. (We shall address this problem in a separate paper [7].) Many interacting spiders
add another level of complexity. Even if the rates were the same for the substrate and the
product, the properties of the spider (e.g., the nature of its gait) represent another major
challenge. Here we separate this latter issue from the rest: we investigate how the structure
of the spider affects its characteristics (velocity and diffusion coefficient). Further, we
consider spiders with idealized gait—the goal is not to mimic complicated (and poorly
known) gait of molecular spiders but to show that spiders’ macroscopic characteristics are
very sensitive to their structure and gait.

We shall mostly focus on a single spider moving on a lattice. We shall also assume
that the rate of attachment greatly exceeds the rate of detachment. In this situation the
relative time when one leg is detached is negligible and hence the possibility that two or
more legs are detached simultaneously can be disregarded. Therefore the present model
posits that spiders remain fully attached and never leave the surface [8]. (This differs
from the actual situation when a few legs may be simultaneously detached.)

The spiders are defined as follows. Legs can hop independently at constant rates if
they do not violate the restrictions below. We mainly consider symmetric spiders where
we set all these rates to one, or biased spiders whose legs can only move to the right
at rate one, but some special gaits are also investigated. The fundamental restriction
on the spider’s motion is the exclusion principle: two legs cannot bind to the same site.
Additional constraints keep the legs close to each other. We mainly consider two types of
spiders with the simplest feasible constraints:

Centipedes (or local spiders). A leg of a centipede can step to nearest neighbor sites
provided that it remains within distance s from the adjacent legs. (This threshold is
assumed to be the same for each pair of adjacent legs.)

Spiders (or global spiders). Legs of these spiders can step to nearest neighbor sites as
long as all legs remain within distance S.

The above properties of the gait guarantee that in one dimension the order of the
legs never changes. The above constraints seem equally natural in one dimension, while
in two dimensions the global constraint appears more reasonable.

We shall also briefly discuss a third type of spider where the nearest neighbor restric-
tion on the hopping is relaxed. For these quick spiders, legs can step anywhere within
distance S from all legs. Quick spiders have been proposed and studied numerically in [9].

The above assumptions about the gait and the disregard of memory effects leave
little hope for quantitative modeling, but simplicity can help to shed light on qualitative
behaviors. Therefore we study in depth a single spider with aforementioned gait moving
on a one-dimensional lattice, and more briefly probe the influence of the gait and many-
spider effects.

4 For Markov processes, the future is determined by the present [6].
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The rest of this paper is organized as follows. In section 2, we analyze bipedal
spiders (i.e., spiders with two legs). This framework provides a useful laboratory to probe
various techniques. Bipedal spiders also closely resemble molecular motors [10] and the
methods developed for studying molecular motors are fruitful for studying individual
spiders [11]–[13]. In section 3 we examine multi-pedal spiders (i.e., spiders with L ≥ 3
legs). We show that the spider with local constraint and s = 2 is isomorphic to a simple
exclusion process (SEP) on a line with L−1 sites and open boundary conditions; an even
simpler isomorphism exists between spiders with global constraint and the SEP on the
ring. These connections allow us to extract some spider characteristics from results about
the SEP. Quick spiders are briefly investigated in section 4. In section 5 we show that the
behavior of many interacting spiders can also be understood, at least in the practically
important situation of low spider density, via the connection with the SEP. Finally we
stress limitations of our analysis and discuss possible extensions in section 6.

2. Bipedal spider

For bipedal spiders, the local and global constraints are equivalent, s ≡ S. For the
simplest mobile bipedal spider, the allowed distance between the legs is one or two lattice
spacing, i.e., s = 2. Two possible configurations are (up to translation)

· · · ◦ • • ◦ · · · and · · · ◦ • ◦ • ◦ · · · (1)

where we denote empty sites by ‘◦’ and filled sites (to which the legs are attached) by ‘•’.
There are obvious back and forth transitions between these configurations:

• • ◦ ⇐⇒ • ◦ • and ◦ • • ⇐⇒ • ◦ •.
For symmetric spiders each leg hops at rate one when possible, hence all the above four
elementary moves happen at rate unity. The diffusion coefficient of this bipedal spider is

D2 = 1
4 . (2)

To put this in perspective, we note that the diffusion coefficient of a random walker which
hops to the right and left with unit rates is D = 1. Thus adding a leg and requiring the
legs to stay within distance two to each other reduces the diffusion coefficient by a factor
4. Note that these s = 2 bipedal spiders have been studied with more general hopping
rates to model the motion of motor proteins in [13].

Generally for symmetric bipedal spiders with arbitrary s, there are s possible
configurations C! labeled by the inter-leg distance, ! = 1, . . . , s. The transitions are

C1 ⇐⇒ C2 ⇐⇒ · · · ⇐⇒ Cs.

The diffusion coefficient Ds of this bipedal spider is

Ds =
1

2

(
1 − 1

s

)
. (3)

The above results apply to symmetric bipedal spiders which hop to the left and right
with equal rates. Molecular motors usually undergo directed motion [10], and one of the
goals of future research is to control spiders to move preferentially in a certain direction.
Here we analyze such directed motion theoretically. For concreteness, we focus on the
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extreme bias when each leg can only hop to right at rate one. For instance, for the
bipedal spider the most compact configuration evolves via • • ◦ =⇒ • ◦ •; the process
◦ • • =⇒ • ◦ • involves hopping to the left and therefore it is forbidden in the biased case.

For biased bipedal spiders the velocity and the diffusion coefficient are given by

Vs = 1 − 1

s
, Ds =

1

3

(
1 − 1

s

) (
1 − 1

2s

)
. (4)

In this section we give a pedestrian derivation of (3). The expressions (4) for velocity
and diffusion coefficient can be derived by utilizing the same technique; instead, we shall
extract them from more general results for lame spiders (section 2.3).

To set the notation and to explain how we compute the diffusion coefficient we begin
with a random walk (which is a one-leg spider). Let Pn(t) be the probability that the
random walker is at site n at time t. This quantity evolves according to

dPn

dt
= Pn−1 + Pn+1 − 2Pn. (5)

One can solve this equation and then use that solution to extract the diffusion coefficient.
In the case of the spiders, however, master equations generalizing (5) are much less
tractable, and therefore a more direct way of computing the diffusion coefficient is
preferable. Here we describe one such approach [6]. It involves two steps. First, one
ought to determine the mean square displacement

〈x2〉 =
∞∑

n=−∞
n2Pn. (6)

Then the basic formula [6]

D = lim
t→∞

〈x2〉
2t

(7)

allows to extract the diffusion coefficient.
For the random walk, the mean square displacement evolves according to

d

dt
〈x2〉 =

∞∑

n=−∞

n2 (Pn−1 + Pn+1 − 2Pn) . (8)

Transforming the first two sums we obtain
∞∑

n=−∞

n2Pn∓1 =
∞∑

n=−∞

(n ± 1)2Pn. (9)

These identities allow us to recast (8) into

d

dt
〈x2〉 =

∞∑

n=−∞

[
(n + 1)2 + (n − 1)2 − 2n2

]
Pn

= 2
∞∑

n=−∞
Pn = 2

where the last equality follows from normalization. Thus 〈x2〉 = 2t. Plugging this into (7)
we recover the diffusion coefficient of the random walker D = 1.

We now turn to the bipedal spider. We shall examine in detail only symmetric
hopping.
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2.1. Bipedal spider with s = 2

For the bipedal spider with s = 2 there are two possible spider configurations. Denote by
Pn(t) and Qn(t) the probabilities that at time t the spider is in respective configurations
(1), namely

Pn = Prob[• •], Qn = Prob[• ◦ •], (10)

with the left leg being at site n. The governing equations for these probabilities are

dPn

dt
= Qn + Qn−1 − 2Pn (11a)

dQn

dt
= Pn+1 + Pn − 2Qn. (11b)

The mean position of the legs or the ‘center of mass’ of the spider in a configuration
corresponding to Pn (resp. Qn) is located at n + 1

2 (resp. n + 1). Thus the mean square
displacement is

〈x2〉 =
∞∑

n=−∞

[(
n + 1

2

)2
Pn + (n + 1)2Qn

]
(12)

and it evolves according to

d

dt
〈x2〉 =

∞∑

n=−∞

(
n +

1

2

)2

(Qn + Qn−1 − 2Pn) +
∞∑

n=−∞

(n + 1)2(Pn+1 + Pn − 2Qn).

Utilizing the same tricks as in (9) we recast the above equation into

d

dt
〈x2〉 =

1

2

∞∑

n=−∞
(Pn + Qn) =

1

2
. (13)

The last identity is implied by normalization and its validity also follows from
equations (11a) and (11b). Integrating (13) yields 〈x2〉 = 1

2 t which in conjunction with (7)
leads to the previously announced result, equation (2).

2.2. General case

In the general case (s ≥ 2) we denote

P !
n = Prob[• ◦ · · ·◦︸ ︷︷ ︸

!−1

•] (14)

the probability to occupy sites n and n + !. These probabilities obey

dP 1
n

dt
= P 2

n−1 + P 2
n − 2P 1

n (15a)

dP !
n

dt
= P !+1

n−1 + P !−1
n+1 + P !+1

n + P !−1
n − 4P !

n (15b)

dP s
n

dt
= P s−1

n+1 + P s−1
n − 2P s

n (15c)
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where equation (15b) apply for 2 ≤ ! ≤ s− 1. The mean square displacement is given by

〈x2〉 =
∞∑

n=−∞

s∑

!=1

(
n +

!

2

)2

P !
n. (16)

Using equations (15a)–(15c) and applying the same tricks as above to simplify the sums,
we obtain

d

dt
〈x2〉 =

s∑

!=1

w! −
1

2
(w1 + ws) (17)

where w! =
∑

n P !
n is the weight of configurations of the type C!. The sum on the right-

hand side of equation (17) is equal to one due to normalization. To determine w1 and ws

one does not need to solve an infinite set of the master equations (15a)–(15c). Instead,
we take equations (15a)–(15c) and sum each of them over all n to yield a closed system
of equations for the weights

dw1

dt
= 2(w2 − w1) (18a)

dw!

dt
= 2(w!−1 + w!+1 − 2w!) (18b)

dws

dt
= 2(ws−1 − ws). (18c)

If initially w1 = · · · = ws = 1/s, then equations (18a)–(18c) show that this remains
valid forever. Even if we start with an arbitrary initial condition, all the weights ws

relax exponentially fast toward the ‘equilibrium’ value 1/s. Thus the right-hand side
of (17) becomes 1− 1/s yielding 〈x2〉 = (1− 1/s) t which in conjunction with (7) leads to
equation (3).

2.3. Heterogeneous spiders

Various spiders can be assembled experimentally [5], including those with distinguishable
legs. Here we analyze the coarse-grained properties of these ‘lame’ spiders.

The bipedal lame spider is characterized by the maximal separation s between the
legs and by the hopping rates α and β of the legs, e.g., the α-leg hops to the right and
left with the same rate α (whenever hopping is possible) in the symmetric case. For the
bipedal spider with s = 2, the diffusion coefficient is given by

D2 =
1

2

αβ

α + β
. (19)

When α = β we recover the already known result telling us that the diffusion coefficient is
four times smaller than the hopping rate. For a very lame spider (α * β), equation (19)
gives D2 = α/2, so the diffusion coefficient is half the hopping rate of the very slow leg.

To derive (19), we first note that the probabilities (10) satisfy

dPn

dt
= βQn + αQn−1 − (α + β)Pn (20a)

dQn

dt
= αPn+1 + βPn − (α + β)Qn. (20b)

doi:10.1088/1742-5468/2007/08/P08027 7
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Here we have assumed that the left leg hops with rate α and the right leg hops with rate
β. (Recall that in one dimension, the order of the legs never changes.)

Using equations (20a) and (20b) we find that the mean square displacement (13)
evolves according to

d

dt
〈x2〉 =

α + β

4
− (α − β)(u − v) (21)

where

u =
∞∑

n=−∞

(
n +

1

2

)
Pn, v =

∞∑

n=−∞
(n + 1)Qn.

From equations (20a) and (20b) we deduce that the quantity u − v obeys

d

dt
(u − v) =

α − β

2
− 2(α + β)(u − v). (22)

Equation (22) shows that u − v quickly approaches to (α − β)/[4(α + β)]. Plugging this
into (21) yields

〈x2〉
t

→ 1

4

[
α + β − (α − β)2

α + β

]
=

αβ

α + β

which leads to the announced result, equation (19).
For the biased bipedal lame spider, the drift velocity is given by a neat formula

V2 =
αβ

α + β
(23)

which resembles to (19). To establish (23) one can use the analog of equations (20a)–(20b),
namely

dPn

dt
= αQn−1 − βPn (24a)

dQn

dt
= βPn − αQn. (24b)

Equations (24a) and (24b) give the weights

w1 ≡
∞∑

n=−∞
Pn =

α

α + β
, w2 ≡

∞∑

n=−∞
Qn =

β

α + β

and relation V = (βw1 + αw2)/2 leads to (23).
Further analysis of equations (24a) and (24b) allows one to determine the diffusion

coefficient

D2 =
1

2
αβ

α2 + β2

(α + β)3
. (25)

We do not give a derivation of this formula since it can be extracted from earlier results
by Fisher and Kolomeisky [11] who in turn used previous findings by Derrida [12].

It is more difficult to compute the diffusion coefficient for the bipedal lame spider
with maximal span s > 2. The results of [11] do not cover the general case, although a
proper extension of methods [11, 12] may solve the problem. For the symmetric bipedal
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lame spider with maximal span s ≥ 2, we used an approach outlined in appendix A and
obtained

Ds =
αβ

α + β

(
1 − 1

s

)
. (26)

For s = 2, we recover equation (19).
For the biased bipedal lame spider with maximal span s ≥ 2 it is again simple to

determine the drift velocity. Using an analog of (24a) and (24b) one gets the weights and
then the drift velocity is found from the relation

2Vs = βw1 + (α + β)
s−1∑

!=2

w! + αws.

The outcome of this computation is

Vs = αβ
αs−1 − βs−1

αs − βs
. (27)

Specializing to α = β = 1 (the l’Hospital rule allows to resolve an apparent singularity)
one arrives at the expression (4) for the velocity.

Finally, the diffusion coefficient for the biased bipedal spider with arbitrary s is

Ds =
1

2
αβ

αs−1 − βs−1

αs − βs
+

1 + s

αs − βs

αs−1 − βs−1

αs − βs

αs+1βs+1

αs − βs

+
1 − s

αs − βs

αs+1 − βs+1

αs − βs

αsβs

αs − βs
. (28)

This equation is derived in appendix A.
Equation (28) reduces to (25) when s = 2; for s = 3, the diffusion coefficient can be

re-written as

D3 =
1

2
αβ

(α + β)(α2 − αβ + β2)(α2 + 3αβ + β2)

(α2 + αβ + β2)3
.

Also when α = β = 1, equation (28) reduces to the expression (4) for the diffusion
coefficient.

3. Multi-pedal spiders

For the multi-pedal spider, L ≥ 3, we must specify the constraint governing the separations
between the legs.

3.1. Centipedes

Here we consider centipedes or local spiders where the distance between the jth and
(j +1)st legs is at most s. See figure 1 for an illustration of such a centipede. In this case
the total number of configurations is C = sL−1 since each of the (L− 1) spacings between
adjacent legs can have s possible values.

doi:10.1088/1742-5468/2007/08/P08027 9
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Figure 1. Illustration of a centipede, i.e. a spider with local constraint. All legs
step to empty nearest neighbor sites at the same rate with adjacent legs staying
within distance s from each other.

3.1.1. Main results. Consider first spiders with s = 2. The configurations for the bipedal
spider are shown in (1); the four possible configurations for the tripod are

• • • • ◦ • • • • ◦ • • ◦ • ◦ • (29)

and generally there are 2L−1 possible configurations.
Let D(L) be the diffusion coefficient of an L-leg spider. In the case of symmetric

hopping (all rates are one)

D(L) =
1

4(L − 1)
(30)

when s = 2. For L = 2, this of course agrees with our previous result: D(2) = D2 = 1/4.
For the biased multi-pedal spider, the velocity is

V (L) =
1

2

L + 1

2L − 1
. (31)

The biased infinite-leg spider has a finite limiting speed! More precisely, V (∞) = 1/4,
i.e., the infinite-leg spider drifts four times slower than the single-leg spider. The diffusion
coefficient of the biased spider is

D(L) =
3

4

(4L − 3)! [(L − 1)!(L + 1)!]2

[(2L − 1)!]3 (2L + 1)!
. (32)

Note that the diffusion coefficient of the infinite-leg spider vanishes. Asymptotically,

D(L) ∼ 3
√

2π

128
L−1/2 as L → ∞. (33)

The above results (30)–(32) are valid when s = 2. We have not succeeded in comput-
ing V (L) and D(L) for arbitrary L when the maximal separation exceeds two, s > 2.

The velocity and the diffusion coefficient can be computed for centipedes with s > 2
when the number of legs is sufficiently small. The simplest quantity is the velocity of biased
spiders. When s = 3, we computed the velocity V (L) of centipedes with up to seven legs:

V (2) = 2/3

V (3) = 26/45 ≈ 0.5778

V (4) = 2306/4301 ≈ 0.5362

V (5) =
2257 932 864 491 452

4410 656 468 591 479
≈ 0.5119

V (6) ≈ 0.496 047 6429

V (7) ≈ 0.484 825 9795
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(we have not displayed exact expressions for V (6) and V (7) which are the ratios of huge
integers.) Note that for biased spiders with s = 2 one can guess the general expression
(31) from exact results for V (L) for small L; in contrast, no simple expression seems to
exist for the velocity of biased spiders with s > 2.

For symmetrically hopping spiders, we computed the diffusion coefficient when the
number of legs is small. Here are the results for centipedes with s = 3 (the method used
in calculations is described in appendix A)

D(2) = 1/3

D(3) = 22/117 ≈ 0.1880

D(4) = 530/4059 ≈ 0.1306

D(5) =
145 730 406 362 990

1457 669 284 934 841
≈ 0.099 9749

D(6) =
13 157 424 169 190 800 305 558 220 463 956 878 370 565

162 454 344 889 141 072 641 777 603 974 162 004 103 911
≈ 0.080 991 519.

In contrast to the neat formula (30) characterizing the s = 2 case, the above numbers look
intimidating. Factorizing the nominator and denominator of D(6) reveals the presence
of extraordinary huge factors and thereby excludes that it can be described by a formula
like (32), let alone (30). Note that at least the L−1 asymptotic behavior predicted by
equation (30) remains valid for all s; for s = 3, in particular, we have D(L) ∼ AL−1 with
A ≈ 0.423 when L 0 1.

3.1.2. Mapping to the exclusion process for s = 2. The derivations of above results are
complicated since the number of configurations grows exponentially with L. Further, the
transition rates are configuration dependent, e.g., for the four-leg spider configurations

• • • • • ◦ • • • • • ◦ • •

evolve with rates 2, 3, 4 for symmetric hopping. (In contrast, for bipedal spiders the
number of configurations grows linearly with s and the transition rates are simple.) All this
makes the computation of the diffusion coefficient D(L) for arbitrary L very challenging.
The pedestrian calculation is feasible for small L, but even for L = 3, the framework
based on rate equations like (15a)–(15c) is very cumbersome.

Fortunately, spiders with local constraint and s = 2 are related to simple exclusion
processes (SEPs). This allows us to extract some predictions about spiders from previously
known results about SEPs, and to employ the methods developed in the context of SEPs
to situations natural in applications to spiders.

We now demonstrate the remarkable connection between centipedes with s = 2
and SEPs. As an example we show that the biased spider is isomorphic to the
totally asymmetric simple exclusion process (TASEP) with open boundary conditions.
To understand the isomorphism, consider for concreteness the tripod. We can map
configurations (29) onto configurations

00 10 01 11 (34)
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of the exclusion process on two sites with open boundary conditions. Here 0 on jth site
implies that there is no empty site between jth and (j + 1)st legs, while 1 implies that
there is an empty site. A hop to the right of an internal leg in (29) corresponds to a hop
to the left of a particle in (34). Further, the hop of an extreme right leg corresponds to
the addition of a particle to the extreme right position, and the hop of the extreme left
leg corresponds to the removal of a particle from the extreme left position. The same
mapping applies to any L. Thus in this TASEP each site i = 1, . . . , L−1 can be occupied
by a particle, and each particle hops to the left with rate one if this site is empty; further,
a particle is added to site i = L − 1 with rate one if this site is empty, and a particle
is removed from site 1 with rate one if this site is occupied. Thus we have shown that
the s = 2 biased spider that moves to the right is equivalent to the TASEP with open
boundaries in which particles hop from right to left. A similar mapping holds between
the symmetric spider and the symmetric exclusion process.

Derrida et al [14] have shown that equation (31) gives the flux in the TASEP; the
isomorphism between the flux and velocity proves that the velocity of the biased spiders is
given by (31). This result was re-derived by other techniques, e.g., by a pure combinatorial
approach [15]. The (much more complicated) derivation of the diffusion coefficient in [16]
gives (32).

3.1.3. Derivation of (30). For the symmetric spider, it should be possible to compute
the diffusion coefficient (30) by using the technique of [16]. This technique (based on
an extension of a matrix technique) is very advanced. The final result (30) looks much
simpler than its biased counterpart (32). Hence we have sought another derivation, and
we have found an intriguingly simple proof of (30) based on the fluctuation–dissipation
formula (see appendix B).

First we recall that the symmetric spider with L legs hopping in both directions with
rates equal to 1 is equivalent to a symmetric exclusion process on L − 1 sites with open
boundary conditions. For this SEP, all rates (i.e. hopping rates in the bulk, entrance and
exit rates at the boundaries) are equal to 1. This Markov process satisfies detailed balance
and is at equilibrium; in particular, the mean current, i.e., the velocity V of the spider,
vanishes identically. The variance of the current corresponds to the diffusion constant of
the spider. This variance can be calculated as follows.

Consider now a symmetric exclusion process of length L − 1 with open boundaries
and arbitrary addition and removal rates at the boundaries. The system is driven out of
equilibrium by particles entering and leaving at the boundaries. In the bulk, each particle
hops with rates 1 to the right and to the left (if the corresponding sites are empty); a
particle enters at site 1 with rate α and leaves this site with rate γ; similarly a particle
enters another boundary site L−1 with rate δ and leaves this site with rate β. Generically,
these unequal rates lead to a current. The mean value of this current is given by (see
e.g. [17])

V =
(β/(β + δ)) − (γ/(α + γ))

L + (1/(α + γ)) + (1/(β + δ)) − 2
. (35)

The equilibrium conditions correspond to α = γ = β = δ = 1 and V = 0. We now choose
the rates on site 1 as follows α = exp(ε/2) and γ = exp(−ε/2) and we keep β = δ = 1 at
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site L − 1. Then, the current is given by

V =
tanh(ε/2)

2L − 3 + (1/cosh(ε/2))
. (36)

The Markov matrix of this process satisfies the generalized detailed balance condition
given by equation (B.2) of appendix B, with y = ±1 if a particle enters at site 1, or
exits from site 1 (y = 0 otherwise). We can then use the fluctuation–dissipation formula
(see (B.4) in appendix B) which tells us that the fluctuation of the current at the first
site is given by

D =
∂V

∂ε

∣∣∣
ε=0

=
1

4(L − 1)
, (37)

in accordance with equation (30).

3.1.4. Mean-field approximation for s ≥ 3. Simple exclusion processes have been thoroughly
investigated (see books and reviews [18]–[21]). Hence one can extract the results about
spiders from already known results about SEP. Unfortunately, for spiders with local
constraint the mapping onto SEP applies only when s = 2. The spider with L legs
and arbitrary s can be mapped onto an exclusion-like process with L − 1 sites and with
open boundaries. In this process the maximal occupancy is limited, namely the number
of particles in each site cannot exceed s − 1. The dynamics is simple: one chooses sites
with rate one and moves a particle to the site on its left; nothing happens if the chosen
site was empty or the site on the left was fully occupied. One also adds particles to site
i = L − 1 and removes from site i = 1, both these processes occur with rate one; the
addition is possible as long as site i = L− 1 is not fully occupied (contains no more than
s − 1 particles). Unfortunately, this neat process has not been solved exactly but it can
be studied by a mean-field analysis.

To simplify the analysis, we consider centipedes with infinitely many legs. We assume
that the distance between adjacent legs cannot exceed s. We further assume that the
spider’s motion is biased, and limit ourselves to a (mean-field) computation of its velocity
V (s).

First we map the spider onto the generalized asymmetric exclusion process with at
most s − 1 particles per site. We then write xj for the density of sites with j particles;
this is just the density of gaps of length j + 1 between adjacent legs of the spider. The
possible values are j = 0, . . . , s − 1. Writing the evolution equation for ẋj and setting
ẋj = 0 we obtain

(xj−1 − xj)(1 − x0) − (xj − xj+1)(1 − xs−1) = 0 (38)

when 1 ≤ j ≤ s − 2. Similarly from ẋ0 = 0 and ẋs−1 = 0 we get

x1(1 − xs−1) − x0(1 − x0) = 0 (39a)

xs−2(1 − x0) − xs−1(1 − xs−1) = 0. (39b)

The obvious normalization requirement is
s−1∑

j=0

xj = 1. (40)
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As a warm up, consider the first non-trivial case s = 3. Due to normalization, it is
sufficient to use (39a) and (39b). Writing x0 ≡ x and x2 ≡ z, we have x1 = 1 − x − z
from (40), and (39a) and (39b) become

(1 − x − z)(1 − z) = x(1 − x) (41a)

(1 − x − z)(1 − x) = z(1 − z). (41b)

These equations are actually identical; solving any of them we arrive at

x = 1 −
z +

√
z(4 − 3z)

2
. (42)

To compute the velocity we return to the original formulation. A leg of the spider
moves with rate 1 if the site ahead is empty and if the leg behind is one or two steps
behind. The former event happens with probability 1 − x, while the latter occurs with
probability 1 − z. Thus the velocity is

V (3) = (1 − x)(1 − z). (43)

Using (42) we get

V = 1
2 (1 − z)

[
z +

√
z(4 − 3z)

]
. (44)

We should select the maximal velocity. The maximum of V (z) given by (44) is reached
at z = 1/3, and it reads

V (3) = 4
9 . (45)

At the state corresponding to the actual (maximal) velocity all densities are equal:
x0 = x1 = x2 = 1/3.

The situation for s > 3 is also simple. Analyzing recurrence (38) one finds that for
all 0 ≤ j ≤ s − 1 the solution is a shifted geometric progression

xj = A + Bλj, λ =
1 − x0

1 − xs−1
. (46)

Plugging (46) into equations (39a) and (39b) one achieves the consistency if either A = 0
or λ = 1. In the latter case the densities are the same, and hence they are all equal to
s−1 due to normalization requirement (40). The straightforward generalization of (43) is

V (s) = (1 − x0)(1 − xs−1) (47)

and therefore

V (s) =

(
1 − 1

s

)2

. (48)

In the complimentary case of A = 0 the analysis is a bit more lengthy. However,
the final result is the same. Here is the proof. Since xj = Bλj, equation (46) gives
λ = (1 − B)/(1 − Bλs−1), which can be re-written as

B =
1 − λ

1 − λs
. (49)
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Further, (47) becomes

V (s) = (1 − B)(1 − Bλs−1). (50)

Using (49) we recast (50) into

V (s)(λ) = λ

(
1 − λs−1

1 − λs

)2

. (51)

The maximum of V (s)(λ) is achieved at λ = 1. Thus the velocity is indeed given by
equation (48).

The above elementary analysis is mean-field type, as we have assumed the validity of
the factorization. The answer is trivially exact for s = 1, and it is known to be exact for
s = 2. For s = 3, we calculated velocities exactly for small centipedes, see section 3.1.1.
The limiting L → ∞ value obtained from simulations V (3) ≈ 0.4189 is close to the
predicted mean-field value V (3) = 4/9 ≈ 0.4444. Overall, the assumed factorization is not
exact when s ≥ 3. Note that a model which differs from our model only in the hopping
rules has been solved exactly [22], but there the stationary state is a product measure.

3.1.5. Lame spiders. Finally we investigate lame centipede spiders whose extreme left leg
hops to the right with rate α and the extreme right leg hops to the right with rate β. The
above mean-field analysis shows that the velocity of the extreme left leg is α(1− x0) and
the velocity of the extreme right leg is β(1− xs−1). As long as these velocities exceed the
bulk velocity (48), the actual gap density x0 at the left end and xs−1 at the right end will
be higher than their bulk values, so the spider will move with velocity (48). This occurs
as long as α(1− s−1) and β(1− s−1) exceed (1− s−1)2, i.e. α, β ≥ 1− s−1. When at least
one of the rates is smaller than the threshold value, different behaviors emerge. Overall,
the speed of the infinite-leg spider exhibits an amusing dependence on the rates α and β:

V (s) =






(1 − s−1)2 for α, β ≥ 1 − s−1

Ws(α) for α ≤ β, α < 1 − s−1

Ws(β) for β ≤ α, β < 1 − s−1.

(52)

Thus if at least one of the two extreme legs has the intrinsic speed less than 1 − s−1, the
speed of the entire spider is solely determined by the slowest leg.

To determine Ws(β) we note that velocity on the right boundary is

V = β(1 − xs−1) = β(1 − Bλs−1) = β
1 − λs−1

1 − λs
(53)

where in the last step we have used (49). Equating the velocity given by equation (53)
with the velocity in the bulk given by equation (51) we find

β = λ
1 − λs−1

1 − λs
. (54)

Thus the velocity is given by (53) or (51), where parameters are connected via (54).
Explicit results can be obtained for s up to s = 5. For s = 2 we recover the celebrated

result

W2(β) = β(1 − β). (55)
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Figure 2. Illustration of a spider with global constraint. The legs can step
independently to nearest neighbor empty sites within a distance S from each
other.

For s = 3 the final expression is still compact

W3(β) = β(1 − β)
1 +

√
1 + 4b

2
(56)

with b = β/(1 − β). For s = 4 the result is quite cumbersome

W4(β) =
β2

λ
, λ =

1

6
∆ − 4

3
∆−1 − 1

3
(57)

where we have used the shorthand notation

∆ =
{

28 + 108b + 12
√

9 + 42b + 81b2
}1/3

.

3.2. Global constraint

For spiders with L legs and maximal span S between any two legs (see figure 2), the global
constraint rule limits the maximal distance between the extreme legs and the exclusion
condition implies that S ≥ L−1. A spider with maximal distance S = L−1 is immobile,
so we shall tacitly assume that S ≥ L. It is also useful to keep in mind that for a
spider satisfying the local constraint rule the maximal span is (L − 1)s if the maximal
distance between the adjacent legs is s; for the bipedal spider S ≡ s. A spider with global
constraint is equivalent to the exclusion process on a ring, where each leg is interpreted
as a particle and the total number of sites is equal to S + 1. For such a process with
periodic boundary conditions, a key property of the stationary state, which holds both in
symmetric and biased cases, is that all configurations have equal weight [19].

3.2.1. Configurations. To count the total number of configurations, we set, as usual, the
origin at the position of the extreme left leg, see e.g., (29); this allows us to avoid multiple
counting of configurations which differ merely by translation. We then note that the other
L − 1 legs can occupy sites 1, . . . , S. Thus the total number of configurations is

C(L, S) =

(
S

L − 1

)
. (58)

In the stationary state, the weight of a configuration is thus given by w = 1/C.
Let us now calculate the total number N (L, S) of •◦ pairs in all configurations. Each

configuration begins with a string
• ◦ · · ·◦︸ ︷︷ ︸

a

• (59)
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where a = 0, 1, . . . , S − L + 1. Disregarding the part up to the second leg maps
configurations of the type (59) with fixed a to configurations of the spider with L − 1
legs and maximal span S − a. The total number of •◦ pairs in these latter configurations
is N (L − 1, S − a). Configurations of the type (59) have of course an additional •◦ pair
at the beginning (when a > 0). Therefore

N (L, S) =
S−L+1∑

a=0

N (L − 1, S − a) +
S−L+1∑

a=1

C(L − 1, S − a).

The latter sum is simplified by using (58) and the identity
r∑

p=q

(
p

q

)
=

(
r + 1

q + 1

)
.

Thus we arrive at the recurrence

N (L, S) =
S−L+1∑

a=0

N (L − 1, S − a) +

(
S − 1

L − 2

)
. (60)

The solution (found by a generating function technique or verified by mathematical
induction) reads

N (L, S) = L

(
S − 1

L − 1

)
. (61)

Since all configurations have equal weight in the stationary state, the velocity of the
biased spider can be expressed by the total number N of •◦ pairs as

V = L−1 N
C

, (62)

using the general expression (C.1). This then leads to

V = 1 − L − 1

S
. (63)

(Note that the velocity is zero in the unbiased case.) It is more involved to calculate the
diffusion coefficient, which we obtain below separately for the unbiased and for the biased
case.

3.2.2. Symmetric hopping. An important property of symmetric global spiders in the
stationary state is that for any configuration, the total hopping rate to the right is equal
to the total hopping rate to the left. For arbitrary such spiders (we call them completely
symmetric spiders), the diffusion coefficient is equal to L−2 times the hopping rate to the
right averaged over all configurations, see equation (C.4). As all stationary weights are
equal for global spiders, this hopping rate is equal to N /C, and therefore

D = L−2 N
C

. (64)

This equation can also be obtained by applying the fluctuation–dissipation relation,
which is valid because the dynamics of the symmetric spider satisfies detailed balance
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(in other words, the symmetric spider is a system in thermodynamic equilibrium). Using
equations (58) and (61) we recast (64) to

D =
1

L

[
1 − L − 1

S

]
. (65)

For the bipedal spider there is no difference between local and global constraints. Using
L = 2 and S = s we find that equation (65) indeed turns into equation (3). The calculation
of D presented here is self-contained; we notice that the expression (65) can also be found
as a special case of a general formula derived in [23] for the diffusion constant of a partially
asymmetric exclusion process.

3.2.3. Biased hopping. While the velocity (63) is easily computable, the diffusion
coefficient was calculated in [24] using a matrix ansatz (see [19] and [23] for a more
general formula). The result is

D(L, S) =
1

2(2S − 2L + 1)

(
2S − 1

2L − 1

)(
S

L − 1

)−2

. (66)

For a given number of legs, the diffusion coefficient of the most clumsy spider is

D(L, L) =
1

2L2
(67)

while the diffusion coefficient of the most agile spider is

D(L,∞) =
22L−2

L

(
2L

L

)−1

. (68)

When L 0 1, the diffusion coefficient (68) scales as

D(L,∞) ∼ 1

4

√
π

L
. (69)

More generally, the diffusion coefficient D(L, S) also decreases as (π/16L)1/2 when
1 * L * S1/2.

3.3. Heterogeneous spiders

Each leg of a heterogeneous (lame) spider may have its own hopping rate. The bipedal
lame spider was studied in section 2.3. One can find explicit expressions for the velocity
and the diffusion coefficient of the lame tripod and perhaps for the lame spider with four
legs; the general solution for an arbitrary L is unknown.

Lame spiders are tractable if only one or two legs have different hopping rates. Below
we consider lame spiders whose extreme legs are affected. For concreteness, we focus on
spiders with local constraint and s = 2. The analogy with the TASEP with open boundary
conditions still applies, the only modification is that the particle is removed from site 1
with rate α and the particle is added to site L− 1 with rate β. The flux in such a system
was found in [25]; this gives us

VL(α, β) =
CL−2(α, β)

CL−1(α, β)
(70)
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where we used the shorthand notation

CN(α, β) =
N∑

p=1

p(2N − 1 − p)!

N !(N − p)!

α−p−1 − β−p−1

α−1 − β−1
.

Plugging C0 = 1 and C1 = α−1 + β−1 into (70) we recover the expression (23) for the
velocity of the bipedal lame spider; the velocity of the lame tripod is

V3(α, β) =
α−1 + β−1

α−2 + α−1β−1 + β−2 + α−1 + β−1
.

The speed of the infinite-leg spider exhibits an amusing dependence on the rates α and
β:

V∞ =






1/4 for α ≥ 1/2, β ≥ 1/2

α(1 − α) for α ≤ β, α < 1/2

β(1 − β) for β ≤ α, β < 1/2.

(71)

Thus if both rates exceed 1/2, the speed attains a universal (independent of the rates)
maximal value V∞ = 1/4. On the other hand, if at least one of the two extreme legs has
the intrinsic speed less than 1/2, the speed of the entire spider is solely determined by the
slowest leg.

A general explicit expression for the diffusion coefficient is unknown. There are two
special cases, however, in which the diffusion coefficient was explicitly calculated [16]. One
is the homogeneous spider (α = β = 1) when D(L) is given by equation (32); another
particular case corresponds to α + β = 1 when the diffusion coefficient is

DL =
1

2
V∞

{
1 −

L−2∑

k=0

2(2k)!

k!(k + 1)!
V k+1
∞

}
(72)

with V∞ given by equation (71); since (72) is valid on the line α + β = 1, we have
V∞ = α(1 − α) = β(1 − β). As a consistency check one can verify that equations (72)
and (25) do agree: setting L = 2 in the former and α + β = 1 in the latter we indeed
obtain the same result.

The behavior of DL for the spider with many legs is again amusing. For the infinite-leg
spider, equation (72) yields

D∞ = 1
2αβ|α − β| when α + β = 1. (73)

Thus on the line α + β = 1, the diffusion coefficient vanishes only when α = β = 1/2.
The behavior of the diffusion coefficient for the infinite-leg spider is particularly neat,

and it had actually been understood (in the context of the TASEP) for arbitrary α and
β. Derrida et al [16] found that

D∞

V∞
=






0 for α ≥ 1/2, β ≥ 1/2

(1 − 2α)/2 for α < β, α < 1/2

(1 − 2β)/2 for β < α, β < 1/2

(1 − 2β)/3 for α = β < 1/2.

(74)

The discontinuity on the symmetry line α = β < 1/2 is especially striking.
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4. Quick spiders

In the previous sections we have considered the simplest possible gaits when the spider’s
legs can step only to the neighboring sites. In this section we briefly explore the behavior
of quick spiders. These spiders (introduced in [9]) differ from previously discussed spiders,
namely the legs of a quick spider can jump over several lattice sites at once. The only
requirement is to stay within distance S from the other legs. Hence quick spiders can be
in the same states as the corresponding global spiders, but more transitions are possible
between the states of the quick ones.

The simplest quick spider has two legs always next to each other (L = 2, S = 1).
Although such a global spider cannot move, a quick spider can put one leg ahead of the
other and can walk this way. Its motion is completely equivalent to a simple random
walk, hence its diffusion coefficient is D = 1. This is generally true for quick spiders with
L legs and maximal distance S = L − 1

D(L, S = L − 1) = 1. (75)

We also computed the diffusion coefficient of bipedal quick spiders with arbitrary S.
We found

D(2, S) =
S(S + 1)(2S + 1)

6
. (76)

This expression can be derived using the general formula (C.4). For the bipedal spider
we can label various configuration by the distance 1 ≤ ! ≤ S between the legs

· · · ◦ • ◦ · · ·◦︸ ︷︷ ︸
!−1

• ◦ · · · . (77)

Take the left leg. It can jump to the left up to distance S − !; the corresponding
displacements of the center of mass are ∆x = −i/2 with 1 ≤ i ≤ S − !. The left leg
can also jump to the right. The displacements are ∆x = i/2 with 1 ≤ i ≤ !− 1, and once
it overtakes the right leg, ∆x = (! + i)/2 with 1 ≤ i ≤ S. Taking also into account that
all weights are equal, w! = 1/S, and recalling that jumping of the right leg will give the
same contribution, we recast (C.4) into

D =
1

4S

S∑

!=1

[
S−!∑

i=1

i2 +
!−1∑

i=1

i2 +
S∑

i=1

(! + i)2

]
. (78)

Computing the sum yields the announced result (76).

5. Interacting spiders

In experiments [5], thousands of spiders are released, yet their density is usually small.
Naively, one can anticipate that spiders are essentially non-interacting. This is correct
in the earlier stage, t < t∗, but eventually spiders ‘realize’ the presence of other spiders,
and their behavior undergoes a drastic change from diffusive to a sub-diffusive one. This
intermediate stage proceeds up to time t∗ when spiders explore the entire system and then
the diffusive behavior is restored, albeit with a smaller diffusion coefficient D. Here we
compute D and estimate the crossover times t∗ and t∗.
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Let N spiders be placed on the ring of size S. We assume that the spider density
n = N/S is low, n * 1; equivalently the typical distance (n−1 lattice spacings) between
neighboring spiders is large.

Imagine that we know the diffusion coefficient D of an individual spider (e.g., for the
bipedal spider with s = 3 we found D = 1/3 when each leg hops symmetrically with rates
equal to one). Each spider covers around

√
Dt lattice sites, and equating

√
Dt∗ = n−1 we

arrive at the estimate of the lower crossover time

t∗ =
1

Dn2
. (79)

The behavior is sub-diffusive in the intermediate time range, t∗ * t * t∗. It
is characterized by the (λt)1/4 growth of the covered line [26]; this so-called single-file
diffusion has numerous applications [27, 28]. The amplitude λ is found by matching
(Dt∗)1/2 = (λt∗)1/4 which in conjunction with (79) yield λ = D/n2.

The final behavior is again diffusive. In the long time regime, t 0 t∗, we may
interpret each spider as an effective particle hopping to the right or left with rates D.
The interaction between spiders is essentially equivalent to exclusion interaction between
particles, and hence the system reduces to the SEP. We can therefore use (65) where we
should replace L by N , and we must also multiply the result by D since spiders effectively
hop with rates D rather than one. The term in the brackets in equation (65) reduces to
1 − n; we can replace it by one since n * 1. Therefore equation (65) becomes

D = N−1D. (80)

Thus exclusion interaction greatly reduces the diffusion coefficient. This strong
cooperative effect emerges even when the density is arbitrarily small, the only requirement
is that there are many spiders, N 0 1.

The upper crossover time t∗ is found by equating (Dt∗)1/2 = (λt∗)1/4. We arrive at

t∗ =
S2

D
= N2t∗. (81)

Thus the analogy with SEP essentially solves the problem in the practically important
limit when the spider concentration is low. Neither memory nor the gait play any role, one
must merely use the diffusion coefficient D corresponding to the actual gait and computed
under the assumption that the lattice sites are in the product state. One should remember,
of course, that the SEP regime is achieved when t > t∗; at much earlier times t > t∗, the
spiders mostly hop on the product, and therefore the assumption of full attachment can
become problematic.

6. Discussion

A single spider is a self-interacting object. There are two sources of interaction between
the legs: (i) exclusion (no more than one leg per site), and (ii) legs cannot be too far
apart. Is it possible to represent a spider as an effective single particle? The answer is
yes—at least in simple situations, one can treat a spider as a diffusing particle. It is far
from trivial, of course, to compute the diffusion coefficient of this particle. Fortunately,
natural models of spiders are related to simple exclusion processes. In the course of this
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work we had the advantage of utilizing some beautiful results and powerful techniques
developed in the studies of simple exclusion processes.

Our models certainly do not take into account all the details of an experimental
situation [5]. For instance, we assumed that the re-attachment of a leg is very quick,
so the process is controlled by detachment. Hence spiders remain fully attached and
never leave the surface. This assumption is important as our analysis has relied on the
permanent presence of spiders on the surface. Relaxing this assumption does not make
the problem intractable—indeed in recent analyzes of molecular motors the complete
detachment (unbinding) from cytoskeletal filaments is allowed, see e.g. [29]–[33]. Further,
our analysis of the many-spider situation in section 5 treats the low density case; the
analogy with SEP allowed us to handle the problem but the assumed permanent presence
of the spiders is particularly questionable in this case.

Perhaps the most serious limitation of our analysis is the disregard of memory—in
experimental realizations [5] spiders often affect the environment which in turn affect their
motion. The non-Markovian nature of this problem calls for a set of new techniques even
in the case of a single spider. In one dimension, the influence of memory can be probed
analytically for a single bipedal spider [7], and the replacement of a self-interacting spider
by an effective particle remains valid, though this effective particle becomes an excited
random walk which distinguishes visited and unvisited sites.

To compare theoretical predictions with current experiments [5], one must analyze
spiders on a two-dimensional lattice. This problem appears very challenging in the general
case when the number of legs is arbitrary. We have found that bipedal spiders are tractable
(when memory is ignored) [35]. Further, the method described in appendix A can be
generalized to two dimensions, and we believe that the diffusion coefficients of tripods
with small span can be computed exactly using Maple or Mathematica.

Finally we note that the SEP and its generalizations occur in various biological
problems ranging from motion of molecular motors [13], [29]–[33] to protein synthesis [34],
[36]–[38]. Some models of protein synthesis resemble complicated models of spiders.
Another intriguing connection is between spiders and cooperative cargo transport by
several molecular motors [39].
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Appendix A. Master equation and fluctuations

In this appendix, we explain the general formalism, inspired by [19], that allows one to
calculate velocities and diffusion constants, and we use this method to derive equation (28).

A spider can be viewed as a homogeneous Markov process with a finite number
of internal states. The dynamics of the spider is encoded in a Markov matrix M ,
where the non-diagonal matrix element M(C, C ′) represents the rate of evolution from
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a configuration C ′ to a different configuration C. The quantity −M(C, C) is the rate of
exit from configuration C. The master equation for Pt(C), the probability of being in
configuration C at time t, is then given by

d

dt
Pt(C) =

∑

C′

M(C, C ′)Pt(C
′). (A.1)

We now define Yt as the absolute position of the spider’s leftmost leg, knowing that at
time t = 0, Yt = 0. Between t and t+dt, Yt varies by the discrete amount +1, 0 or −1 that
depends on the configuration C ′ at t and on the configuration C at t + dt. The Markov
matrix M can then be decomposed in three parts corresponding to the three possible
evolutions of Yt:

M(C, C ′) = M0(C, C ′) + M1(C, C ′) + M−1(C, C ′). (A.2)

For example, M1(C, C ′) represents the transition rate from a configuration C ′ to C with
the leftmost leg moving one step forward (this matrix element vanishes otherwise); M−1

corresponds to transitions for which the leftmost leg moves one step backwards; M0

encodes transitions in which the leftmost leg stays still. We call Pt(C, Y ) the joint
probability of being at time t in the configuration C and having Yt = Y . A master
equation, analogous to equation (A.1), can be written for Pt(C, Y ) as follows

d

dt
Pt(C, Y ) =

∑

C′,y

My(C, C ′)Pt(C
′, Y − y) (A.3)

where y = 0,±1. In terms of the generating function Ft(C), defined as

Ft(C) =
∞∑

Y =−∞

eλY Pt(C, Y ), (A.4)

the master equation (A.3) takes the simpler form

d

dt
Ft(C) =

∑

C′

M(λ; C, C ′)Ft(C
′), (A.5)

where M(λ; C, C ′), which governs the evolution of Ft(C), is given by

M(λ) = M0 + eλM1 + e−λM−1. (A.6)

We emphasize that M(λ), is not a Markov matrix for λ 1= 0 (the sum of the elements in
a given column does not vanish).

In the long time limit, t → ∞, the behavior of Ft(C) is dominated by the largest
eigenvalue µ(λ) of the matrix M(λ). We thus have, when t → ∞,

〈 eλYt 〉 =
∑

C

Ft(C) ∼ eµ(λ)t. (A.7)

This result can be restated more precisely as follows:

lim
t→∞

1

t
log〈 eλYt 〉 = µ(λ). (A.8)
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The function µ(λ) contains the complete information about the cumulants of Yt in the
long time limit. For example, the velocity V and the diffusion coefficient D of the spider
are given by

V = lim
t→∞

〈Yt〉
t

=
dµ(λ)

dλ

∣∣∣
λ=0

= µ′(0), (A.9)

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

2t
=

µ′′(0)

2
. (A.10)

One therefore needs to calculate the function µ(λ). For simple problems such as the
bipedal spider with s = 2, µ(λ) can be determined explicitly (because M(λ) is a 2 by 2
matrix). In general, the most efficient technique is to perform a perturbative calculation
of µ(λ) in the vicinity of λ = 0 (recall that µ(λ) vanishes at λ = 0). This perturbative
approach is very similar to the one used in Quantum Mechanics, the major difference
being that M(λ) which plays the role of the Hamiltonian is not, in general, a symmetric
matrix and its right eigenvectors are different from its left eigenvectors. By definition, we
have

M(λ)|µ(λ)〉 = µ(λ)|µ(λ)〉,
〈µ(λ)|M(λ) = µ(λ)〈µ(λ)|.

(A.11)

Using equations (A.6), (A.9), and (A.10), we can write the following perturbative
expansions in the vicinity of λ = 0,

M(λ) = M + λ(M1 − M−1) +
λ2(M1 + M−1)

2
· · ·

µ(λ) = V λ + Dλ2 + · · ·
|µ(λ)〉 = |0〉 + λ|1〉 + λ2|2〉 + · · · ,
〈µ(λ)| = 〈0| + λ〈1| + λ2〈2| + · · ·

where M is the original Markov matrix of the system, |0〉 is the stationary state and
〈0| = (1, 1, . . . , 1) is the left ground state of M . We now substitute these perturbative
expansions in (A.11) and identify the terms with the same power of λ. Using the left
eigenvector 〈µ(λ)|, we obtain

〈0|M = 0, (A.12)

〈1|M = V 〈0|− 〈0|(M1 − M−1), (A.13)

〈2|M = D〈0|− 1
2〈0|(M1 + M−1) + V 〈1|− 〈1|(M1 − M−1). (A.14)

Multiplying these equations by the right ground state |0〉 of M , and using the fact that
M |0〉 = 0 and 〈0|0〉 = 1, the following formulae for V and D are derived as solvability
conditions for equations (A.12)–(A.14):

V = 〈0|M1 − M−1|0〉, (A.15)

D = 〈1|M1 − M−1|0〉 + 1
2〈0|M1 + M−1|0〉 − V 〈1|0〉. (A.16)
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We observe that in order to calculate V we only need to know the ground state of M .
However, the calculation of D requires the knowledge of 〈1|, obtained by solving the linear
equation (A.13). We remark that similar expressions can be obtained starting from the
expansion of right eigenvector |µ(λ)〉.

We now specialize this framework to the case of the heterogeneous bipedal lame spider
with s internal states. The Markov matrix is then an s × s matrix M = M0 + M1 since
M−1 vanishes identically. The matrix M0 is given by

M0 =





−α 0
α −(α + β)

β −(α + β)
. . . . . .

β −(α + β)
0 β −α





and the matrix M1 is

M1 = α





0 1 0
0 1

0 1
. . . . . .

0 1
0 0




.

The stationary state of M is |0〉 = (p0, p1, . . . , ps−1) with

pk =
α − β

αs − βs
αs−k−1βk for k = 0, . . . , s − 1. (A.17)

This expression, together with (A.15), leads to the formula (27) for the spider velocity.
In order to derive the expression of the diffusion coefficient, we need to solve

equation (A.13). One can verify that the solution of this equation is given by 〈1| =
(q0, q1, . . . , qs−1) where

qk = (k + 1)
V − α

β − α
+

αβ − αV

(β − α)2

(
1 −

(
α

β

)k)
(A.18)

for k = 0, . . . , s − 1. Inserting equations (A.17) and (A.18) into the general
expression (A.16) leads to the formula (28).

We also used the above method to determine the velocity and the diffusion coefficient
for centipedes with s = 3. The results (section 3.1.1) were obtained by explicitly
constructing the matrices M0, M1, and M−1, and performing exact computations using
Maple. These computations are feasible when the number of legs is sufficiently small.
(The total number of configurations is 3L−1 for centipedes with s = 3, and hence the
order of matrices M0, M1, M−1 quickly grows with L.)

Appendix B. Generalized detailed balance relation

For the symmetric spider, the three matrices M0, M1 and M−1, introduced in (A.2) to take
into account the total displacement of the spider, satisfy the following detailed balance
relation

My(C, C ′)P eq(C ′) = M−y(C
′, C)P eq(C) (B.1)
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where the equilibrium measure is denoted by P eq and y = 0,±1. Equation (B.1)
implies that the velocity of the spider vanishes. Consider now a spider driven out of
equilibrium with a non-vanishing mean velocity. Suppose however, that for the model
under consideration there exists a real number ε such that the following generalized
detailed balance relation is satisfied

My(C, C′)P eq(C′) = M−y(C′, C)P eq(C) exp(εy). (B.2)

Here again, P eq is the equilibrium measure corresponding to the symmetric spider. From
relation (B.2) it is a matter of elementary algebra to prove that the spectra of M(λ) and
of M(−ε − λ) are identical. Therefore

µ(λ) = µ(−ε − λ). (B.3)

This relation, which is a special case of the general fluctuation theorem valid for systems far
from equilibrium [40]–[42], was derived for stochastic systems by Lebowitz and Spohn [43].
Close to equilibrium, when ε * 1, we can expand equation (B.3) for small λ and ε. We
find at lowest order when ε → 0,

µ′′(0) =
2µ′(0)

ε
i.e., D = lim

ε→0

V

ε
=

∂V

∂ε

∣∣∣
ε=0

, (B.4)

which is nothing but the classical fluctuation–dissipation relation between diffusion and
mobility.

Appendix C. Simple formulae for completely symmetric spiders

Here we derive a very simple formula for the diffusion coefficient for a special class of
spiders which hop symmetrically from all configurations. This formula is then used to
obtain the diffusion coefficient (65) of global spiders, and shall be also used for two-
dimensional bipedal spiders in future studies [35].

Instead of M1 and M−1 we shall use M+ and M− which indicate the right and left
hops of any leg, not only the leftmost one. All formulas of appendix A remain true with
an extra 1/L factor for the velocity, and a 1/L2 factor for the diffusion coefficient.

In the stationary state the spider can be found with probability pn = 〈n|0〉 in
each configuration 〈n|. From a configuration 〈n| the spider (all legs) hops at total rate
rn = 〈0|M+|n〉 to the right, and ln = 〈0|M−|n〉 to the left. Using (A.15), the velocity of
any general spider can be written as

V =
r − l

L
(C.1)

where

r =
∑

n

pnrn = 〈0|M+|0〉

l =
∑

n

pnln = 〈0|M−|0〉
(C.2)

are the average rates to hop to the right or to the left in the stationary state.
Now it is convenient to use the expression

L2D = 〈0|M+ − M−|1〉 + 1
2〈0|M+ + M−|0〉 − V 〈1|0〉 (C.3)
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for the diffusion coefficient, which is analog of (A.16), but obtained from the perturbative
expansion of the right eigenvector |µ(λ)〉. For completely symmetric spiders, where the
spider hops symmetrically rn = ln in all configurations 〈n|, the velocity is obviously zero,
V = 0, hence the third term on the right-hand side of (C.3) vanishes. So does the first
term, since

〈0|M+ − M−|1〉 =
∑

n

〈0|M+ − M−|n〉〈n|1〉

=
∑

n

(rn − ln)〈n|1〉 = 0.

The only non-zero second term in (C.3) can be recast using the definitions in (C.2), and
hence the diffusion coefficient (C.3) simplifies to

D =
r + l

2L2
(C.4)

for completely symmetric spiders. Note that while symmetric global spiders are completely
symmetric, local spiders are not; for example in the configuration • • ◦ • of an L = 3,
s = 2 local spider, the hopping rates are rconf = 1, but lconf = 2.
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[21] Schütz G M, 2001 Phase Transitions and Critical Phenomena vol 19, ed C Domb and J L Lebowitz

(San Diego, CA: Academic)
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