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Molecular spiders on a plane
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Synthetic biomolecular spiders with “legs” made of single-stranded segments of DNA can move on a surface
covered by single-stranded segments of DNA called substrates when the substrate DNA is complementary to
the leg DNA. If the motion of a spider does not affect the substrates, the spider behaves asymptotically as a
random walk. We study the diffusion coefficient and the number of visited sites for spiders moving on the square
lattice with a substrate in each lattice site. The spider’s legs hop to nearest-neighbor sites with the constraint
that the distance between any two legs cannot exceed a maximal span. We establish analytic results for bipedal
spiders, and investigate multileg spiders numerically. In experimental realizations legs usually convert substrates
into products (visited sites). The binding of legs to products is weaker, so the hopping rate from the substrates
is smaller. This makes the problem non-Markovian and we investigate it numerically. We demonstrate the
emergence of a counterintuitive behavior—the more spiders are slowed down on unvisited sites, the more motile
they become.
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I. INTRODUCTION

Recent advances in DNA nanofabrication technology (see
[1–4]) have led to the construction of multipedal walking
molecular devices. The first was a bipedal object [3] walking
on a one-dimensional path by DNA set strands with nucleic
acid domains complementary to molecular imprints on the
device legs and the substrate. Since then, several other similar
bipedal DNA walkers have been synthesized (see [4–7] and a
review [8]).

A different molecular design has been implemented
in Refs. [9,10]. The resulting objects, known as molecular
spiders, usually have many legs. Each leg (a short single strand
of DNA) can bind to the substrate through the Watson-Crick
base pair formation. A bound leg can either detach from
the substrate without modifying it, or it can catalyze the
cleavage of the substrate creating two product strands. The
lower product remains bound to the surface, while the upper
product is free to float away in solution. There is a residual
binding of the leg to the remaining product, but it is weaker
than the leg-substrate binding. Utilizing the effect of the
spider’s motion on the molecular tracks it is possible to design
environments where molecular spiders demonstrate some
basic robotic behaviors [10].

When a spider is released on a surface coated with oligonu-
cleotide substrates, it can cleave thousands of substrates before
eventually detaching. The small size of spiders makes experi-
mental observation of their motion very challenging. Atomic
force microscopy imaging and single-molecule fluorescence
studies have been successful to a certain degree [10], yet
neither the details of the spider’s gait nor the individual
paths of spiders have been resolved with sufficient certainty.
Perspectives and challenges of the experimental work are
surveyed in Ref. [11].

A number of modeling studies describing the motion of
molecular spiders have been recently carried out. The motion
of a single spider on a one-dimensional track has been
investigated in Refs. [12,13]. The first article [12] ignores
the difference between the substrate and the product and

makes a number of simplifying assumptions about the gait
of the spiders. There are no limitations on the number of
legs, however. The chief result of Ref. [12] is that the spider
(which is a complicated self-interacting multileg object) can
be replaced by a particle characterized by a single number,
the diffusion coefficient; for the simplest gaits, the diffusion
coefficient was analytically computed. In Ref. [13] we mainly
considered bipedal spiders, but took into account that spiders
affect the substrate (turn it into products). Despite the non-
Markovian nature of the problem, the coarse-grained behavior
turned out to be surprisingly simple, namely, the difference in
residence times on the substrate and the product leads to the
effective bias into the unvisited region.

Recent papers [14–17] utilized more detailed and com-
plicated models mimicking the gait of spiders moving on
one-dimensional tracks, the possibility of the detachment, etc.
These studies numerically confirm the tendency of spiders
to move into the unvisited region leaving behind the trail of
the product. This key feature was observed experimentally
[9,10] and proved theoretically [13] in the realm of simple
models. An interesting new feature noticed in Ref. [16] is
the emergence of a superdiffusive growth of the mean-square
displacement 〈x2(t)〉 ∼ tα with 1 < α < 2, which holds on
a surprisingly long time span; eventually, the superdiffusive
growth crosses over to the diffusive growth. Several rigorous
results concerning the asymptotic behaviors (limit theorems,
transience, recurrence, and rate of escape) of molecular spiders
have been established in Refs. [18,19]. In Refs. [20,21] the
motion of spiders in random environments has been studied.

As in our previous work [12,13], throughout this paper
we will assume an idealized gait—the goal is not to mimic
the complicated (and poorly known) gait of molecular spi-
ders, but to qualitatively understand spiders’ macroscopic
characteristics in the realm of simple models [22]. Previous
theoretical analyses [12–17] have been focused on the motion
of molecular spiders on one-dimensional tracks, while the
goal of this work is to study a single spider moving on a
two-dimensional lattice. If not stated otherwise, we tacitly

061927-11539-3755/2012/85(6)/061927(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.061927


TIBOR ANTAL AND P. L. KRAPIVSKY PHYSICAL REVIEW E 85, 061927 (2012)

FIG. 1. (Color online) A molecular spider with four legs moving
on the square lattice. The distances between any two legs should
not exceed a threshold value (the maximal span S). As long as this
constraint is obeyed, each leg can hop to the empty (not occupied
by another leg) nearest-neighboring site. As long as the rate of leg
attachment greatly exceeds the rate of leg detachment, all legs are
attached most of the time, and for relatively short time intervals one
of the legs is detached, as illustrated above.

assume that the rate of attachment greatly exceeds the rate
of detachment. In this case, the relative time when one leg is
detached (this situation is illustrated in Fig. 1) is negligible
and hence the possibility that two or more legs are detached
simultaneously can be disregarded.

The following properties of molecular spiders will always
be assumed: (1) hopping: when a leg detaches, it reattaches to
a neighboring site; (2) exclusion: two legs cannot be attached
to the same site; and (3) constraint: the distance between any
two legs does not exceed a certain maximal span.

The restriction to the nearest-neighbor hopping can be
relaxed (long-distance gaits have been probed in the one-
dimensional setting [12]); the exclusion is of course the funda-
mental feature. The last property is the simplest constraint that
assures the compactness of the spider. For one-dimensional
spiders several types of constraint were considered, and the
diffusion coefficients of these spiders were exactly obtained in
most cases, due to mappings to exclusion processes [12].

The two-dimensional case is particularly important in
current experiments. The actual situation is rather complicated,
e.g., in some experiments there are a few layers of the
substrate and hence a quasi-two-dimensional setting seems
more appropriate; additionally, the substrates do not form a
perfect square lattice. Nevertheless, we shall assume that a
spider with aforementioned simple gait is placed on a square
lattice [23]. We emphasize that the constraint regarding the
separations between the legs roughly describes real molecular
spiders. One realization of the constraint which is convenient
for the numerical implementation defines the distance between
points (x1,y1) and (x2,y2) via max(|x1 − x2|,|y1 − y2|). The
neighborhood in this metric is geometrically a square, and it is
often called the von Neumann neighborhood. For example, the
simplest “von Neumann” spider is the bipedal spider with legs
separated by distance S = 1 at most. There are four possible
configurations: horizontal, vertical, and two diagonal,

◦ ◦
• • ,

• ◦
• ◦ ,

◦ •
• ◦ ,

• ◦
◦ • , (1)

where • represents a leg, and ◦ an empty site. We found that the
diffusion coefficient [24] of this spider is equal to 1/4. Gener-
ally von Neumann spiders are more amenable to analysis, and
we study them as well as more realistic Euclidean spiders.

The rest of this paper is organized as follows. Section II is
devoted to von Neumann spiders. In Sec. III we present main
results for bipedal Euclidean spiders; the detailed derivations

are given in the Appendix. An analysis of molecular spiders
simplifies when the maximal span increases, and in Sec. IV we
describe corresponding asymptotic behaviors. In the following
sections we relax some of the assumptions about the spider
gait, the influence of the spider’s motion on the environment,
etc. In Sec. V we consider the influence of memory. We
model the difference between the product and the substrate
by postulating that the leg spends (on average) more time at
newly visited sites, i.e., on the substrates. This slowdown in
comparison with the motion on the products leads to faster
(covering more unvisited sites) spiders; the reason for this
phenomenon is an effective bias towards unvisited sites. This
behavior has been observed and explained in one dimension
[13], and it continues to hold in two dimensions. In Sec.
VI we investigate what happens when the attachment rate
is finite. We compute the mean time the spider spends on
the surface and show that the probability to remain attached
decays exponentially if the attachment rate greatly exceeds the
detachment rate. We summarize our findings in Sec. VII.

II. VON NEUMANN SPIDERS

A spider is quantified by lattice points ri = (xi,yi) with i =
1, . . . ,L which describe the positions of its legs. We assume
that the spider has maximal span S, so the distance between any
two legs is !S. Each leg, when allowed, hops to neighboring
sites (up, down, left, or right) at rate 1 in each direction. In this
section we use the metric which assigns the distance between
any two legs ri and rj according to the rule

|ri − rj |∞ = max(|xi − xj |,|yi − yj |).
In this metric, the neighborhood around the origin, i.e., the disk
|r|∞ ! S, is the square in Euclidean metric [see the example in
Eq. (1)]; such a neighborhood is often called the von Neumann
neighborhood.

A spider with maximal span S between the legs should
therefore occupy the square with (S + 1)2 lattice sites; after
shifting, this square becomes

{(x,y) : x = 0, . . . ,S; y = 0, . . . ,S}. (2)

This spider can therefore have at most (S + 1)2 legs. Only
spiders with

L ! S(S + 1) (3)

legs are mobile. More precisely, spiders with more legs than the
above upper limit, S(S + 1) < L < (S + 1)2, have a few legs
which can move, but each such spider forever remains within
its surrounding square (2), provided that we ignore multiple
legs being detached simultaneously.

Let us first calculate the total number of possible configura-
tions of the legs. To avoid multiple counting of configurations
which are obtained by translation, we use the convention that
there must be a leg both in the bottom row (y = 0) and in the
leftmost column (x = 0), as in the example in Eq. (1). With
this convention the total number of configurations is

C(L,S) =
(

(S + 1)2

L

)
− 2

(
S(S + 1)

L

)
+

(
S2

L

)
. (4)

To establish (4) let us ignore for a moment the aforementioned
convention restricting the position of one leg. The number
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of such unrestricted configurations of a spider with L legs
inside the m × n rectangular is equal to "(m,n) = ( mn

L ).
To obtain C(L,S) we take the number of configurations
without restriction "(S + 1,S + 1), subtract the number of
configurations without a leg in the bottom row "(S + 1,S) or
in the leftmost column "(S,S + 1), and then add the number
of configurations without a leg in both the bottom row and the
leftmost column "(S,S), since we subtracted it twice. This
leads to Eq. (4).

We are interested in the properties of the center of mass of
the legs

R = 1
L

L∑

j=1

rj . (5)

Due to the symmetry of the hopping rules, the mean position
of the spider does not change 〈R〉 = 0, and we are interested
in the variance 〈R2〉 of the center of mass.

A. Bipedal spiders

Here we show that the bipedal spider with arbitrary maximal
span S has the diffusion coefficient

D = 1
2

(
1 − 1

2S

)
. (6)

The bipedal spider with S = 1 corresponds to the bipedal
spider with # =

√
2 in the Euclidean version, and from Eq. (6)

we indeed recover the already known result D = 1/4.
To derive (6) we start by noticing that bipedal spiders are

“completely symmetric”: In each configuration the spider hops
at the same rate in each direction. For completely symmetric
spiders on the square lattice, a remarkably simple formula

〈R2〉 = ωt

L2
= 4Dt, with D = ω

4L2
(7)

for the mean square of the center of mass, and respectively,
for the diffusion coefficient of the spider, was established
in Ref. [12]. In Eq. (7) we denote by ω the total rate the
spider hops, which is averaged over all stationary states.
In general, for spiders with any number of legs and with
symmetric hopping rates, the transitions between any two
connected configurations occur at the same rates and hence
all configurations have the same stationary probability 1/C.
Therefore the total rate which is averaged over all stationary
states, in short the stationary average rate, is equal to

ω = 1
4C

C∑

j=1

ωj , (8)

where ωj is the total hopping rate from configuration j .
Consequently, (7) can be rewritten as

D = 1
4L2C

C∑

j=1

ωj . (9)

(Note that for the symmetric random walk on the square lattice
L = 1 and ω = 4, hence the diffusion coefficient is one.)

Let us first calculate the average hoping rate to a given
arbitrary direction, say to the right. Notice that in most
configurations both legs can jump to the right, but in some,

only one of them. It is easier to enumerate the number of these
later configurations, which is where one leg is blocked and
cannot hop to the right. There is only one configuration where
the two legs are next to each other in the same row ••, due
to the convention that a leg is needed both in the bottom row
and the leftmost column. In this configuration only the right
leg can hop to the right. There are S + 1 configurations where
one leg is in the bottom left corner (0,0), and the other is at
maximal distance x = S, hence only the left leg can hop to the
right.

There are further S configurations where the right leg cannot
hop: one leg is in the bottom right corner (S,0), and the other leg
is in the leftmost column, and in row y = 1, . . . ,S. Hence all
together there are 1 + (S + 1) + S = 2(S + 1) configurations
where only one leg can hop to the right, and C − 2(S + 1)
where both can. Now using the fact that the average rate is the
same for all four directions, Eq. (8) leads to

ω = 2(S + 1) + 2[C − 2(S + 1)]
C

= 2 − 1
S

, (10)

where we have taken into account that the number of
configurations for bipedal spiders is C = 2S(S + 1), as follows
from Eq. (4). Substituting (10) into Eq. (7) we arrive at the
diffusion coefficient (6).

B. Multipedal spiders

It is much more challenging to compute the diffusion
coefficient for multileg spiders. The chief reason is that spiders
with more than two legs are not completely symmetric and
hence one cannot use (7). To show the lack of symmetry it
suffices to provide a configuration where the left and right
hopping rates of the spider are different. Consider for example
a tripod with two legs being in the same column and the third
leg being at the maximal distance S in the x direction from
both of the other legs, as illustrated here:

• ←− S −→ •
• . (11)

This spider can hop to the right at rate two and to the left at
rate one. (More precisely, both legs on the left can hop to the
right, but not to the left; the leg on the right can hop to the
left, but not to the right.) Similar configurations can be easily
constructed for any spiders with L " 3 legs.

The matrix method described in Ref. [12] can be gener-
alized to arbitrary dimension and in principle it allows one
to analytically determine the diffusion coefficient for any
spiders with sufficiently small number of legs. However, even
in the simplest examples the exact calculations are rather
cumbersome. For instance, even for the simplest S = 2 tripod
on the square lattice the number of configurations is equal to
48 [see Eq. (4)], so the computation of D leads to the necessity
to diagonalize a 48 × 48 matrix; obtaining this matrix is very
laborious.

We performed simulations for the simplest spiders to
measure their diffusion coefficients. This quantity is relatively
easy to measure by probing the asymptotic of the mean-square
displacement. It turns out that the correction to the true
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TABLE I. Simulation results for the diffusion coefficients D for
spiders with L legs and constraint S. For the random walk (L = 1)
the diffusion coefficient is D = 1; for bipedal spiders (L = 2) we
have exact results given by Eq. (6).

S = 1 S = 2 S = 3

L = 1 1 1 1
L = 2 0.25 0.375 0.417
L = 3 0.191 0.241
L = 4 0.0972 0.152
L = 5 0.0464 0.104

asymptotic decays is rather small, namely,

〈R2〉 ≈ 4Dt

(
1 + a

t

)
(12)

for multipedal spiders. (Similar corrections were observed in
one dimension.) Note that there are no corrections at all for
continuous time random walks (the monopedal spiders). The
measured values of D are summarized in Table I.

To detect the motion of a single spider is still experimentally
impossible, while various techniques allow one to count the
total number of visited sites [9]. Since numerous spiders
are usually released [9], dividing the actually observed total
number of visited sites by the number of spiders makes the
mean number of sites visited by a spider accessible. In the
limit when the density of spiders is very low, the same result
will emerge if we take a single spider and average the number
of different visited sites over many realizations.

For a symmetric random walk which hops at rate one in
each direction (so its diffusion coefficient is D = 1), the mean
number of different sites visited by the random walk scales
as [25,26]

〈N〉 = At

ln Bt
+ O

[
t

(ln t)3

]
(13)

in the large time limit. The amplitudes are A = 4π and
B = 32 exp(CE − 1) = 20.97 . . . where CE = 0.577 215 . . .
denotes Euler’s constant. (In Ref. [25], the random walk with
diffusion coefficient D = 1/4 has been analyzed; to recast the
prediction of [25] to our setting, where D = 1, we rescaled
time by a factor 4.)

We simulated the motion of different spiders and we
obtained the same asymptotic behavior (13), with A and B
depending on the number of legs L, and the constraint S. We
are mainly interested in the leading order behavior A, however,
fitting also the next correction B is unavoidable in order to get
an estimate for A, due to the large subleading corrections. The
results for the coefficient A are summarized in Table II.

One can see from Tables I and II that, according to sim-
ulations, D(L,S) and A(L,S) are monotonically decreasing
functions of L, and monotonically increasing functions of
S for multipedal spiders. The simplest conjecture is that
asymptotically the spider is indistinguishable from the random
walk on the square lattice. Mathematically, this would imply
that A = 4πD. Simulation results for the diffusion coefficient
show that A is slightly different than that.

TABLE II. Simulation results for the amplitude A in the asymp-
totic law for the number of visited sites 〈N〉 = At/ ln t . Spiders have
L legs and constraint S. For the random walk L = 1 and the amplitude
is A = 4π .

S = 1 S = 2 S = 3

L = 1 12.57 12.57 12.57
L = 2 3.21 4.83 5.35
L = 3 2.38 3.20
L = 4 1.30 2.08
L = 5 0.627 1.44

III. EUCLIDEAN SPIDERS

In this section we consider the more realistic Euclidean
spiders. Thus we use the standard Euclidean metric to measure
the distance between the legs:

|ri − rj | =
√

(xi − xj )2 + (yi − yj )2.

The simplest Euclidean spider is bipedal with legs separated
by maximal distance # =

√
2. This spider is identical to the

simplest L = 2, S = 1 von Neumann spider; it is characterized
by four configurations (1), and it has diffusion coefficient
D = 1/4.

For the bipedal spider with maximal separation # = 2,
there are six different configurations—four configurations (1)
and two additional configurations, the horizontal configuration
• ◦ • and its vertical cousin. The computation of the diffusion
coefficient gives D = 1/4 [see Eq. (A1) in the Appendix], so
this spider has the same diffusion coefficient as the previous
one. This surprising result is a coincidence rather than a
rule. We computed diffusion coefficients for bipedal spiders
with many other maximal distances. For # =

√
5, four new

configurations (with legs separated by the move of a knight in
chess) appear. Next, change occurs for # = 2

√
2 when two

new “long” diagonal configurations arise. Then for # = 3,
the horizontal configuration • ◦ ◦ • and analogous vertical
configuration become possible. Varying # up to

√
50, the total

number of distinct allowed configurations C and the diffusion
coefficient exhibit the behaviors summarized in Table III.

The diffusion coefficient tends to increase with #, yet its
behavior is somewhat erratic and it can occasionally decrease
( 5

14 < 3
8 , 19

48 < 9
22 , 17

40 < 29
68 , 49

112 < 4
9 , 33

74 < 65
144 , etc.). The last

column reveals remarkable hidden regularities—the quantity
(1/2 − D)|C| is always half-integer with equilibrium patches
of increasing length punctuated by upward jumps by 1/2.
These intriguing observations are explained by the neat general
formula

D = 1
2

[
1 − ,#- + 1

C

]
, (14)

where ,#- is the integer part of #.
The derivation of Eq. (14) is somewhat lengthy (Appendix),

but it is just an application of general formula (9) for the
diffusion coefficient. The dependence of C and rates on # is
nontrivial and cannot be deduced analytically for an arbitrary
#. Indeed, the problem of counting the total number of
configurations is equivalent to the problem of computing N#

which gives the total number of lattice sites within the disk of
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TABLE III. Total number of configurations and diffusion coeffi-
cients for Euclidean spiders.

# |C| D (1/2 − D) C
√

2 4 1/4 1
2 6 1/4 3/2√

5 10 7/20 3/2√
8 12 3/8 3/2

3 14 5/14 2√
10 18 7/18 2√
13 22 9/22 2

4 24 19/48 5/2√
17 28 23/56 5/2√
18 30 5/12 5/2√
20 34 29/68 5/2

5 40 17/40 3√
26 44 19/44 3√
29 48 7/16 3√
32 50 11/25 3√
34 54 4/9 3

6 56 49/112 7/2√
37 60 53/120 7/2√
40 64 57/128 7/2√
41 68 61/136 7/2√
45 72 65/144 7/2

7 74 33/74 4√
50 84 19/42 4

.1 ≈π#2/2 ≈1/2 − (π#)−1 ≈ #/2

radius #; more precisely, C = (N# − 1)/2. The investigation
of N# constitutes the celebrated Gauss problem [27]. Of
course, N# approximately grows as the area, N# ≈ π#2; the
deviation from this dominant growth law is extremely difficult
to probe analytically. (The subleading asymptotic is unknown.
More precisely, the proven upper bound on the growth of
the subleading asymptotic is substantially weaker than the
conjectural one; proving the conjectural asymptotic is known
to be equivalent to proving the Riemann conjecture.) This
subtlety is irrelevant as long as we are satisfied with the leading
asymptotic. In our problem the case of large # is particularly
simple as both legs essentially diffuse independently and
therefore the diffusion coefficient of the center of mass is
very close to the half of the diffusion coefficient of the random
walk. Thus D# → 1/2 when # → ∞. Note that D < 1/2 for
any two-leg spider. Indeed, since ωj ! 8 (the equality occurs
when each leg is allowed to hop to each of the four neighbors),
the sum on the right-hand side of Eq. (9) cannot exceed 8 × C
which proves D < 1/2. The derivation of Eq. (14) and a
detailed description of the configurations for the threshold
up to # =

√
50 are given in the Appendix.

IV. SPIDERS WITH LARGE MAXIMAL SPAN

Interactions between legs (due to exclusion and the maximal
span constraint) imply that molecular spiders are complicated
self-interacting objects. Therefore it is very difficult to com-
pute the dependence of the diffusion coefficient D(L,S) of
a spider on the number of legs L and the maximal span S.
The behavior of D(L,S) simplifies when the maximal span

S becomes large. In the S → ∞ limit, typical separations
between legs grow with time thereby making exclusion
asymptotically negligible. Therefore in this limit we can
treat legs as noninteracting random walkers. The diffusion
coefficient of such spider is D(L,S = ∞) = 1/L. In this
section we derive this result and then argue that the finite
S correction has the 1/S form.

A. Noninteracting legs

Consider a spider with L noninteracting legs. Each leg
performs a random walk with hopping rates one in each
direction. The mean and mean-square displacement for each
leg read

〈rj 〉 = 0,
〈
r2
j

〉
= 4t, j = 1, . . . ,L, (15)

where we have assumed that initially all legs are at the origin.
(We continue to assume that the spider moves on the square
lattice; generally on the cubic lattice in d dimensions the
amplitude on the right-hand side of Eq. (15) is given by 2d.)
Using (15) one computes the variance of the center of mass
(5) of the spider:

〈R2〉 = L−2
L∑

j=1

〈
r2
j

〉
= L−1 4t,

implying that the diffusion coefficient D(L) of the spider with
L noninteracting legs (each performing the random walk with
diffusion coefficient D ≡ 1) is

D(L) = 1
L

. (16)

This result is remarkably universal: It is valid in any dimension
and it also does not depend on the lattice; the only requirement
is the absence of bias.

B. Interacting legs

We now return to our original spiders which move on a
lattice and obey two rules: (i) Two legs cannot be attached
to the same site; and (ii) the distance between any two
legs does not exceed S. In the S → ∞ limit the legs are
asymptotically noninteracting. Therefore Eq. (16) implies that
D(L,S = ∞) = 1/L.

The nontrivial task is to compute the leading correction
which describes the deviation from Eq. (16) in the situation
when the maximal span S is large, but finite. To guess the S
dependence of the leading correction let us look at known exact
results for spiders moving on the one-dimensional lattice. For
the bipedal spider the diffusion coefficient is given by Ref. [12]

D(2,S) = 1
2

(
1 − 1

S

)
. (17)

More generally in one dimension for multileg spiders with
nearest-neighbor hopping and the constraint on the maxi-
mal span (spiders with global constraint in terminology of
Ref. [12]), the diffusion coefficient reads [12]

D(L,S) = 1
L

(
1 − L − 1

S

)
. (18)
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This formula is valid for L = 1 (the random walk) and all
L " 2, S " L − 1.

Equations (17) and (18) show that at least in one dimension
the leading correction has the S−1 dependence on the maximal
span. We now demonstrate the universality of this behavior
by analyzing the bipedal spider in one dimension with a more
complicated gate. Namely, let us assume two types of hops:
the nearest-neighbor ±1 hops occur with rate p each, and
the next-nearest-neighbor ±2 hops occur with rate q each.
For a random walk with such gate, the diffusion coefficient
is D = p + 4q, and since we always normalize this diffusion
coefficient of the random walk to unity, we set 1 = p + 4q.
Using methods of Ref. [12], one obtains

D(2,S; p) = 1
2

(
1 − 2 − p

S

)
, (19)

showing that the S−1 behavior is universal, namely, it is
insensitive to the details of the gate.

In two dimensions all known results also agree with the S−1

behavior of the leading correction [28]. The exact diffusion
coefficient for the von Neumann bipedal spider (6) is in
perfect agreement (no other corrections). For the Euclidean
bipedal spider the behavior is more complicated [see (14)];
the asymptotic behavior is very simple:

D(2,∞) − D(2,S) 0 1
πS

, (20)

and it agrees with the S−1 asymptotic. Thus the exact results
(6), (17)–(19), and the asymptotic (20) suggest the following
conjectural asymptotic behavior:

D(L,∞) − D(L,S) 0 Ad (L)
S

as S → ∞. (21)

Intuitively, the 1/S correction stems from the ratio of spider-leg
configurations where the constraint is relevant (the distance of
two or more legs is S) to the total number of such config-
urations. The total number of configurations is essentially a
volume of a domain of characteristic size S, while the number
of configurations for which the constraint is relevant is the
surface area of that domain, so the ratio is indeed proportional
to 1/S.

We have presented evidence in favor of the conjectural
behavior (21) in one and two dimensions, but it is prob-
ably valid in arbitrary dimension d. The limiting diffusion
coefficient D(L,∞) = 1/L is universal, while the amplitude
Ad (L) in the subleading term depends not only on the number
of legs, but also on the spatial dimension d, and on the
details of the gate. In all known examples the amplitude
Ad (L) is positive, e.g., according to Eq. (18) the amplitude is
A1(L) = 1 − L−1 in one dimension. The positivity of Ad (L)
is physically evident (the constraint on the maximal span
makes spiders less motile), although it is not clear how to
prove this positivity. Finally we note that simulation results for
diffusion coefficients presented in Table I are in surprisingly
good agreement with the conjectural asymptotic (21), namely,
the quantity S[D(L,∞) − D(L,S)] already changes very little
when S increases from 2 to 3.

V. NON-MARKOVIAN EFFECTS

In this section we continue to assume that the reattachment
of a leg is instantaneous. In contrast to Secs. II and III, however,
we take into account the effects of memory associated with
previous visits of the legs. These effects are unavoidable in
most experimental realizations—the first time a leg visits
a site (an uncleaved substrate), the leg hops from this site
only after it has cleaved it into a product. (The product is
unaffected by future visits, so we only need to know if the site
has been visited in the past or not.) Thus the motion of the
synthetic molecular motor, the molecular spider, irreversibly
changes the environment making the problem non-Markovian.
Intriguingly, one natural molecular motor, a special protein
called collagenase which moves along collagen fibrils, exhibits
even stronger irreversible effect on its one-dimensional track
and undergoes a biased diffusion [30–32].

Our main interest is the leading order behavior of two
quantities: the mean square position 〈R2〉 ∼ 4Dt , i.e., the
diffusion coefficient, and the mean number of visited sites
〈N〉 ∼ At/ ln t . We start with the one-leg spider, the ran-
dom walk, where the effect of memory is asymptotically
negligible, yet the corrections to the leading behaviors
are qualitatively similar to those which arise for multilegs
spiders.

The results reported in this section are mostly numerical.
In two dimensions, all simulations are made for von Neumann
spiders. The convergence to the true asymptotic behaviors is
slow, especially in two dimensions where it is logarithmically
slow. Therefore to extract accurate numerical predictions for
the diffusion coefficient D and the amplitude A we need to
know functional forms of correction terms. We make use [in
Eqs. (22)–(24)] of correction terms which provide good fit
to the data. The functional forms of these leading correction
terms are still lacking theoretical justification.

A. Random walk, L = 1

We consider the random walk which hops symmetrically
to nearest-neighbor sites and changes substrates into products.
As in Ref. [13], the change of the substrates to the products
(which occurs after the leg first visits the site) is modeled by
postulating that the hopping rate to each neighbor is equal to
1 for the site which has not been visited before (the substrate),
and to r for the site which has been visited in the past. Thus the
hopping rate is determined by the state of the issuing site, but
not by the state of the target site. Mathematically, the parameter
r can be an arbitrary positive number, r > 0; in experiments,
the detachment from the product is easier, so 0 < r < 1 as we
shall assume in the following.

According to simulations, the memory has no effect on a
random walk in the leading order. Independently of the value
of r , we obtained D = 1 for the diffusion coefficient, and A =
4π for the amplitude. The same universality was numerically
observed in one dimension [13]; for the amplitude A, the lack
of dependence on r was established analytically [13].

To extract the leading order behavior from the simulation
data one has to investigate higher order corrections as well. Our
numerical simulations indicate that the mean-square position
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has the following correction terms in the presence of memory:

〈R2〉 ≈
{

2Dt[1 − a1(r)/
√

t] : d = 1

4Dt[1 − a2(r)/ ln t] : d = 2,
(22)

while there are no corrections at all in the absence of
memory r = 1; that is, ad (1) = 0. The large corrections in
two dimensions are especially important in determining the
diffusion coefficient. Fitting our data to Eq. (22) we got
D = 1 both in one and two dimensions. The amplitudes of
the correction terms are positive, ad (r) > 0 when 0 < r < 1,
and monotonically decreasing functions of r . Therefore the
memory slows down the random walk in the next to leading
order. This behavior is understandable, as the random walk
slows down at newly visited sites.

For the average number of sites 〈N〉 visited during the
time interval (0,t), the corrections to the leading asymptotic
are also more important (since they vanish much more slowly
with time) in two dimensions. According to our simulations,

〈N〉 ≈
{

A1(r)
√

t[1 − c1(r)/
√

t] : d = 1
A2(r) t

ln t
[1 − c2(r)/ ln t] : d = 2.

(23)

The correction amplitudes are again positive, cd (r) > 0 when
0 < r < 1, and monotonically decreasing functions of r .
Fitting our data to (23) we found that the amplitudes Ad (r)
do not depend on r for the random walk. [Equation (23) also
describes the average number of sites visited by a spider, and
in that situation the amplitudes Ad (r) do depend on r .] Note
that in two dimensions we found the same type of asymptotic
behavior both with and without memory[ see Eq. (13)], and
for an arbitrary number of legs.

B. Multipedal molecular spiders, L > 1

In order to investigate the effects of memory we numerically
studied the two simplest spiders: the bipedal L = 2, S = 1
spider, and the tripod L = 3, S = 2.

We have seen in Sec. II that when memory effects are
ignored, the corrections to the diffusion coefficient D quickly
decay with time (12). This feature makes D easy to measure.
In the presence of memory, however, a much slower decaying
correction term appears in two dimensions:

〈R2〉 ≈
{

2D1(r)t[1 − a1(r)/
√

t] : d = 1

4D2(r)t[1 − a2(r)/(ln t)2] : d = 2.
(24)

In one dimension, the correction also decays slower with
time in the presence of memory, yet it remains algebraic;
the qualitative behavior is similar to the random walk with
memory [see (22)]. The (ln t)−2 type correction observed in
two dimensions is unusual; it is rather slow of course, yet it is
faster than for the random walk.

Using (24) and (23) we extract the diffusion coefficient D(r)
and the amplitude A(r); their dependencies on r are displayed
[29] in Figs. 2 and 3. Surprisingly, the slowdown of legs at
new sites leads to larger diffusion coefficients and increases
the average number of visited sites in the large time limit.
The qualitative reason is that the slow leg at new sites keeps
the other legs close to newly visited sites, which generates
an effective bias toward new sites, and thereby it leads to

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1

D

r

L=2; S=1
L=3; S=2

FIG. 2. (Color online) Diffusion coefficient D describing the
asymptotic behavior of the mean-square position of a spider 〈R2〉 ∼
4Dt as a function of the memory parameter r . Simulation data are
shown for the simplest bipedal spider with S = 1, and for the simplest
tripod with S = 2. The no memory case corresponds to r = 1.

the increase in the number of visited sites. This effect has
already been observed, and quantitatively understood, for one-
dimensional spiders [13]. Although here we talk about the
asymptotic behavior, the actual number of mean visited sites
also becomes larger for smaller values of r after about a few
hundred time units.

An interesting new feature of two-dimensional spiders is
that the tripod is somewhat more sensitive to the slowdown at
new sites than the bipedal spider, as D changes more rapidly
with changing r (see Fig. 2). Another remark is that, as one can
see in Figs. 2 and 3, with large enough slowdown (r # 0.6) the
tripod becomes faster than the bipedal spider without memory
(r = 1).

An intriguing feature of these two-dimensional spiders is
that for sufficiently small r tripods become more motile than
bipedal spiders (see Fig. 2). A possible reason for this effect
is that the spider with more legs sticks to the domain of new
sites more efficiently.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  0.2  0.4  0.6  0.8  1

A

r

L=2; S=1
L=3; S=2

FIG. 3. (Color online) Amplitude A describing the asymptotic
behavior of the number of visited sites as 〈N〉 ∼ At/ ln t as a function
of the memory parameter r . Simulation data are shown for the
simplest bipedal spider with S = 1, and for the simplest tripod with
S = 2.
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VI. UNBINDING OF SPIDERS

All our previous analyses have relied on the assumption
that the reattachment of a leg is instantaneous, so the process
is controlled by detachment. This implies that spiders remain
fully attached and never leave the surface. If the reattachment
takes time, the problem becomes more complicated but not
necessarily intractable—for molecular motors [33], for in-
stance, some analyses allow complete detachment (unbinding)
from cytoskeletal filaments [34–40].

In this section we treat a more restricted problem, namely,
we compute the probability that a spider remains attached.
We disregard memory and lattice effects and focus on the
attachment-detachment process.

Consider a spider with L legs. Let &n(t) be the probability
that n of its legs are attached. To simplify notation we
set the detachment rate equal to unity; we shall disregard
the difference between the substrate and the product. We
denote the attachment rate by λ. The probabilities &n(t) with
n = 1, . . . ,L obey

d&n

dt
= (n + 1)&n+1 − n&n − λ(L − n)&n

+ λ(L − n + 1)&n−1, (25)

where the terms on the right-hand side in the top line account
for detachment and the terms in the bottom line describe
reattachment. Equation (25) remains applicable to extreme
probabilities &1 and &L if we set

&0(t) ≡ 0, &L+1(t) ≡ 0. (26)

The latter relation is obvious (by definition, the spider has L
legs); the former relation is actually the assumption that if
all legs are detached, the spider leaves the surface and never
reattaches to it. The initial condition is

&n(0) = δn,L (27)

if we imagine that the spider is initially fully attached.
An analysis of the initial-boundary value problems (25)–

(27) is rather straightforward, so we only present one asymp-
totic result which is valid in the most interesting limit of quick
reattachment, λ . 1. In this limit we found that, for any L,
the probability &(t) =

∑L
n=1 &n(t) that the spider remains

attached at time t is exponential:

& = exp(−Lt/λL−1). (28)

Equation (28) shows that the mean time for the spider to detach
is

〈tL〉 = λL−1

L
(29)

in the λ . 1 limit.
If we were only interested in the mean detachment time,

we could have determined it exactly without computing the
probabilities &n(t). Indeed, utilizing an exact solution for the
adsorption time for the so-called one-step process [41], one
finds an exact expression

〈tL〉 =
L∑

a=1

λL−a

a∑

b=1

(L − b)!(b − 1)!
(a − b)!(L − a + b)!

, (30)

which is a polynomial in λ. Keeping only the dominant a = 1
term we see that (30) reduces to (29). Displaying a few more
terms we obtain

〈tL〉 = λL−1 1
L

+ λL−2
[

1 + 1
L(L − 1)

]

+ λL−3
[
L − 1

2
+ 1

L − 1
+ 2

L(L − 1)(L − 2)

]
+ · · · .

The above analysis is “zero dimensional” as we ignored
the lattice. For instance, consider a tripod in the configuration
• • • and imagine that one of its legs detaches. If an extreme
leg detaches, its reattachment rate is clearly larger than the
reattachment rate of the middle leg. In Eq. (25) this feature
is ignored. Therefore combining detachment with diffusion
makes the problem very complicated even in the absence
of memory effects. A numerical analysis of models which
take into account the possibility of the detachment has been
undertaken in Refs. [14,15]. For the bipedal molecular spider,
the one-dimensional version of this problem could be tractable
as long as the memory effects are ignored.

VII. SUMMARY

We investigated the motion of a single molecular spider
on the square lattice. The limit when the motion of the spider
does not affect the environment is tractable for bipedal spiders,
while spiders with more than two legs remain very challenging
for analytical work. For bipedal spiders we computed the
diffusion coefficient with an arbitrary maximal span between
the legs. Generally, the increase in the maximal span leads
to the increase in the diffusion coefficient. This phenomenon
strictly holds for one type of bipedal spiders (von Neumann),
while for Euclidean bipedal spiders an increase of the span can
sometimes, unexpectedly, decrease the diffusion coefficient.

We explored the behavior of von Neumann spiders with
more than two legs by means of numerical simulations. In
general we found that the increase of the number of legs
makes spiders less motile. The increase of the maximal span
S (maximal allowed distance between the legs), on the other
hand, makes spiders more motile. In the infinite span limit
the diffusion coefficient is reciprocal to the number of legs,
D(L,S = ∞) = 1/L. We argued that the leading large S
correction to the diffusion coefficient is proportional to 1/S.
We also considered the effect of spiders completely unbinding
from the substrate, and we found that the time it takes grows
exponentially with the number of legs. The reason is that a
spider unbinds only if all of its legs simultaneously unbind.

In experimental realizations, the legs usually convert
substrates into shorter products that have a lower affinity for
the legs. Assuming that the substrate turns into the product
after the first visit of a leg, we investigated this non-Markovian
problem numerically. We showed that the long-time behavior
is diffusive in character. More precisely, we demonstrated that
the mean-square displacement grows as t and the total number
of distinct visited sites grows as t/ ln t . The amplitudes are
affected by memory. Furthermore, the non-Markovian nature
of the problem leads to very large subleading corrections. For
instance, the relative magnitude of the subleading correction
to the mean-square displacement decays with time in a very
slow (ln t)−2 manner.
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The most surprising influence of memory is that the more
spiders are slowed down on unvisited sites, the more motile
spiders become. An explanation of this very counterintuitive
behavior is that the “stickiness” to unvisited sites generates
an effective bias toward unvisited sites, which results in the
increase of the visited area. For example, although without
memory an L = 3, S = 2 spider is slower than an L = 2, S =
1 spider, with the memory effect the three-leg spider can visit
more sites on average.
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APPENDIX: EUCLIDEAN BIPEDAL SPIDERS

For small #, we can count various configurations and
compute their rates by hand. Here we record what happens
when # varies up to

√
50. Configurations that arise when #

varies up to
√

20 are depicted below.

1.
√

2 ! ! < 2

There are four different configurations. The rates are
ω1 = ω2 = ω3 = ω4 = 4 and hence (9) gives D = 1/4.

2. 2 ! ! <
√

5

Two additional configurations are • ◦ • and its vertical
cousin, so that C = 6. We have

ω(••) = 6, ω(• ◦ •) = 2, ωdiag = 8,

and therefore

D = 1
16

1
6 [6 + 2 + 4] × 2 = 1

4 . (A1)

Surprisingly, the diffusion coefficient is the same as for the
previous two-leg spider.

3.
√

5 ! ! < 2
√

2

Four more configurations become possible: C = 10. The
rates of these new knight configurations (Fig. 4) are ωknight = 4.
The rates of the previous configurations are

ω(••) = ω(• ◦ •) = 6, (A2)

while the diagonal configurations reach the maximal possible
rate ωdiag = 8. Thus

D = 1
16

1
10 [6 × 4 + 8 × 2 + 4 × 4] = 7

20 .

4. 2
√

2 ! ! < 3

Two new diagonal configurations (Fig. 4) of length 2
√

2
become possible; overall C = 12. The rates remain the same
[Eq. (A2)] for horizontal and vertical configurations of both
kinds, and for short diagonal configurations (ωdiag = 8). The
rates increase for knight configurations: ωknight = 6. Finally for
the new diagonal configurations (Fig. 4) the rates are ω

(2)
diag = 4.

1

111

2

2

3

33

3

44

5

5

6

6

6

7

77

7

8

8

9

99

9

6 1 010

11

1111

11

FIG. 4. Nonisomorphic configurations for # =
√

20. Configura-
tions share the center site (filled disk) while another leg is in a
labeled disk. The label counts the “bifurcation” event when such
configurations first appear (the first bifurcation is identified with
# =

√
2). For instance, the simplest knight configurations appear in

the third bifurcation event (when # passes through
√

5) and hence the
corresponding label is 3.

Thus

D = 1
16

1
12 [6 × 4 + 8 × 2 + 6 × 4 + 4 × 2] = 3

8 .

Note that as the number of configurations from 6 to 10 to 12,
the diffusion coefficient also gets larger.

5. 3 ! ! <
√

10

The rates of horizontal configurations are

ω(••) = 6, ω(• ◦ •) = 8, ω(• ◦ ◦ •) = 2, (A3)

and similarly for the vertical one. The other rates are

ωdiag = 8, ω
(2)
diag = 4, ωknight = 6. (A4)

The diffusion coefficient D = 5/14 is smaller than the
diffusion coefficient D = 3/8 that characterizes spiders with
2
√

2 ! # < 3.

6.
√

10 ! ! <
√

13

Four new knight configurations obtained by hopping one
lattice spacing in one direction and three lattice spacings in
orthogonal direction arise. The rates which change compared
to rates (A3) and (A4) are

ω(• ◦ ◦ •) = 6, ωknight = 8, ω
(2)
knight = 4.

The diffusion coefficient is D = 7/18.

7.
√

13 ! ! < 4

Four new knight configurations obtained by hopping two
lattice spacings in one direction and three lattice spacings in
orthogonal direction arise. The rates which change are

ω
(2)
diag = 8, ω

(2)
knight = 6, ω

(3)
knight = 4.

The diffusion coefficient is D = 9/22.

8. Large !

We now outline following bifurcations. We classify various
configurations into linear, diagonal, and knight. Each linear
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TABLE IV. The rates of the linear and diagonal configurations
for Euclidean spiders in the 5 ! # ! 7 window.

# 1 2 3 4 5 6 7 (1,1) (2,2) (3,3) (4,4)

5 6 8 8 8 2 0 0 8 8 8 0√
26 6 8 8 8 6 0 0 8 8 8 0√
29 6 8 8 8 6 0 0 8 8 8 0√
32 6 8 8 8 6 0 0 8 8 8 4√
34 6 8 8 8 6 0 0 8 8 8 4

6 6 8 8 8 8 2 0 8 8 8 4√
37 6 8 8 8 8 6 0 8 8 8 4√
40 6 8 8 8 8 6 0 8 8 8 4√
41 6 8 8 8 8 6 0 8 8 8 8√
45 6 8 8 8 8 6 0 8 8 8 8

7 6 8 8 8 8 8 2 8 8 8 8

configuration is either horizontal or vertical. There are also two
kinds of diagonal configurations, while knight configurations
have four different types. The rates of linear configurations
and diagonal configurations [by (d,d) we denote the diagonal
configuration of length d

√
2] change with their size. Some of

these rates are collected in Table IV (we present results in the
window 5 ! # ! 7; overall we analyzed # ! 11).

In Table V we summarize how the rates of the knight
configurations (nm denotes the knight configuration obtained
by hopping n lattice spacings in one direction and m lattice
spacings in another) vary with #.

We now give some explanations. The behavior of the
quantity ) ≡ (1/2 − D) C (see Table III) is easy to understand.
First, using Eq. (9) we can rewrite ) as

) = 1
2
C − 1

16
R, R =

C∑

j=1

rj . (A5)

TABLE V. The rates of the knight configurations for Euclidean
spiders in the 5 ! # ! 7 window.

# 21 31 32 41 42 43 51 52 53 54 61 62 63

5 8 8 8 6 6 4 0 0 0 0 0 0 0√
26 8 8 8 8 6 4 4 0 0 0 0 0 0√
29 8 8 8 8 8 4 6 4 0 0 0 0 0√
32 8 8 8 8 8 6 6 4 0 0 0 0 0√
34 8 8 8 8 8 8 6 6 4 0 0 0 0

6 8 8 8 8 8 8 6 6 4 0 0 0 0√
37 8 8 8 8 8 8 8 6 4 0 4 0 0√
40 8 8 8 8 8 8 8 8 4 0 6 4 0√
41 8 8 8 8 8 8 8 8 6 4 6 4 0√
45 8 8 8 8 8 8 8 8 8 4 6 6 4

7 8 8 8 8 8 8 8 8 8 4 6 6 4

Now let us examine the increment of ) that occurs when
new configurations are born. A direct counting gives

(*C,*R)diag = (2,16), (A6a)

(*C,*R)linear = (2,8), (A6b)

(*C,*R)knight = (4,32). (A6c)

Plugging (A6b) and (A6c) into (A5) we find that

(*))linear = 1
2 , (*))diag = (*))knight = 0. (A7)

Thus ) increases by 1/2 when a pair of linear configurations
are born and does not change when configurations of other
types are added. This explains why ) is half-integer and why
the jumps in ) occur when # passes the integer value. Hence
) = (,#- + 1)/2, where ,#- is the integer part of #; that is,
the largest integer not exceeding #. Plugging this into D =
1/2 − )/C we arrive at Eq. (14).
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