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Isotropic transverse XY chain with energy and magnetization currents
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The ground-state correlations are investigated for an isotropic transXétsghain that is constrained to
carry either a current of magnetizatiod™) or a current of energyJE). We find that the effect od™+#0 on
the large-distance decay of correlations is twofglfiOscillations are introduced ar{d) the amplitude of the
power-law decay increases with increasing current. The effect of energy current is more complex. Generically,
correlations in current carrying states are found to decay faster than iifthe states, contrary to expecta-
tions that correlations are increased by the presence of currents. However, increasing the current, one reaches
a special line where the correlations become comparable to those dfthe states. On this line, the
symmetry of the ground state is enhanced and the transverse magnetization vanishes. A further increase of the
current destroys the extra symmetry, but the transverse magnetization remains at the high-symmetry zero
value.[S1063-651X98)13405-7

PACS numbegps): 05.50+q, 05.70.Ln, 64.60.Ht, 75.10.Jm

I. INTRODUCTION nentially decaying two-spin correlations changed into a
power-law form, thus supporting the notion that switching on
A general feature of nonequilibrium steady states is thesurrents increases correlations. In view of the lack of detailed
presence of currentluxes of some physical quantities such knowledge of the interplay of currents and correlations, here
as energy, momentum, and charge. Thus the study of nonve probe the generality of the above result on the example of
equilibrium steady states is, in some sense, a study of thée isotropic transversgY chain. In this system, we have a
effects of currents imposed on the system either by boundar§lobal conservation not only for the energy, as in case of the
conditions and driving fields or by competing dynamical pro-transverse Ising model, but also for the transverse magneti-
cesses. An interesting and much investigated effect of curzation and, consequently, the effect of both the energy and
rents is the rather dramatic change in correlations. Namelynagnetization currents can be investigated. Xhechain is
short-range correlations appear to change into long-rang@/so interesting because it has power-law correlations already
power-law correlations as the currents are switcheftlo. in the equilibrium statéi.e., in the state without any current
This is not entirely surprising in the case of a global currenttnd so one might expect the system to be more sensitive to
since some conserved quantity is carried fast compared t#e introduction of currents. Indeed, in the case of the energy
diffusion and, in the absence of detailed balance, this magurrent we find a rather complex behavi@ncluding an in-
generate long-range effective interactions and, as a conserease of the ground-state symmetry at special values of the
quence, long-range correlations may apd@r It is clear, curren} and our findings for the steady-state correlations are
however, that the general picture should be more compliat variance with those for the transverse Ising model. On the
cated since large currents often lead to chaotic behaviogther hand, the changes we observe in the correlations due to
which in turn results in weakened correlatidd§. Thus, we @ magnetization current allow for a straightforward interpre-
believe, the understanding of the interplay of currents andation in terms of increasing correlations due to presence of a
correlations in nonequilibrium steady states is a rather intercurrent.
esting and important task. The effects of magnetization current are treated exactly
In order to achieve progress one tries to investigate simpléSec. 1), while the correlations in the presence of an energy
models and, indeed, a large number of classical statisticglurrent are calculated by a combination of analytical and
models have been introduced for the study of nonequilibriunexact numerical methods in Sec. lll. A summary and final
steady statef5]. Unfortunately, far from equilibrium, classi- comments are contained in Sec. IV.
cal systems are not constrained by conditions such as de-

tailed balance and there is much arbitrariness in defining the Il. MAGNETIZATION CURRENT

dynamics. In order to avoid such arbitrariness, we have , o o . ,

started to investigate quantum systefs$ where the time Ourstarfung point is the I—_|am|Iton|an of thie=1 isotropic
evolution is defined without ambiguity by the usual rules of XY model in a transverse field:

guantum mechanics. N

. Nor_1equilibrium stee_ldy states in a quantum system may be HXY=_ E (sist, ,+9)s), ,+hs), 1)
investigated by imposing a current on the system and study- /=1 ' ' ’

ing the properties of the ground state thus generated. As an . o _
example, we studied the transverse Ising mojdl and  where the spins are represented by Pauli spin matsges
found that, in the presence of an energy current, the expd«=x,y,z) at sites/’=1,2,...N of a one-dimensional peri-
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odic chain &) ;=s7). The transverse fiel is measured in  This shift is analogous to the phase shift experienced by
units of the Ising coupling, which is set tal=1 throughout electrons on a ring threaded by a constant magnetic flux
this paper. This model can be solved exagflysince it can (P~Ne) [12].

be transformed by a Jordan-Wigner transformation into a set We also note that the ferromagnetic and the antiferromag-

of free fermions with wave numbér and of energy netic cases are equivalent in the sense that the canonical
transformation(8) with ¢=# transforms them into each
Ay=—cok—h. (2)  other. For a finite periodic chait™ is transformed td1*",

but with a twisted boundary conditionpé 7).

In this m?dﬁl’ not T)nly the t_ota! enze_rgy b;]t_also theom- As the transformatiori8) does not change the compo-
ponent of the total magnetizatiod“=ZX s; is conserved. aont of the spins, we find that

As a result, one can write down a continuity equation for the
local magnetizatiors? :

1 h
. (s))= —arcsin—= 9
s=iHY, s ]=] =) 3 TV

and this defines the magnetization current through the bond&d the correlation function

M QY X XY
=SS S,SV. 4. 4) h
V7 =S:S,4175/S/+1 rarcco

V1+22

(10

1
_ ZZ _ H
pz(r)_<s/s/+r>__ ZrZSInZ
A macroscopic current can now be defined as ™

N have their equilibrium form but at a different fielth
IM= 2 j'}" (5) =h/\1+\? (angular brackets denote the expectation value
/=1 in the ground state oHM). One can see that, foh

Dzyaloshinskii-Moriya interaction8]. Somewhat surpris- is no current in the system. For J1+2? (h<1) the cur-

ingly, the same expression emerged as the energy current iant has a simple form
the case of the transverse Ising mof&l

Our aim is to find the lowest-energy state among the M M, AV1+\?—h?
states carrying a given current. Singel*Y,JM]=0, the J7=(3%/N)= m(1+\?) (1D
problem can be solved using the Lagrange multiplier
method, i.e., we diagonalize the Hamiltonian and one can observe that the maximum current, reached in
" v " the limit of A\ —o, is given by 14r.
HY=H""—\J", (6) The introduction of the transformatiaf®) simplifies the

calculation of the correlationg*(r)=(s}s;, ,)=pY(r) in

where\ is a Lagrange multiplier. The ground state tét the ground state fi™:

can be considered as a current-carrying steady stalt&*6f

at zero temperature. Note that, without loss of generality, we X(r)=cogr S5
can assumé=0 and\=0. pX(r)=codr¢){Qio|Sy sy |Qibo) (12
The HamiltonianHM is diagonalized using the same ; X oY
+sin(r S,/S ,
transformations that diagonali##" and we get the follow- n(re){Qubolssy (| Qo)
ing spectrum in the thermodynamic limit: where i, is the ground state o™, while Qyy is that of
1 _ HXY at a field h. Without any current, we havés’s). )
A,;K[—coik— ¢)—hl, (7) =0 and, furthermore, the— o behavior of thep*(r) corre-
. lation function[13] is given by
whereg=arctan. and an effective fieldh=hcosp has been C
introduced. One can see that the spectrum is similar to that of pX(r;jM=0)~(1-h?)V*—, (13
HXY with the wave number shifted by. It should be men- Jr

tioned here that the above result is not new. It is implicit in
the Bethe-ansatz solution of the anisotropic Heisenberg chaihere C=e"22#*A"°~0.147 (A~1.282 is the Glaisher
with twisted toroidal boundary conditiori8] and appears in constant Using (12), one can obtain then the following
various forms in studies of the Dzyaloshinskii-Moriya inter- simple form in ther —oo limit:
action[10] and of the associated Berry phddd].

It is remarkable thaH™ can be transformed int&1*Y

—~ C
~(1_TR2\1/4_"_
[Eq. (1)] using a unitary transformation pA(r)=(1-h% \/FCOS(“")' (14

N
s . z Thus we find that the correlations decay by a power law and
Q=exp Zl 7 ¢ss ®) show oscillatory behavior in the current-carrying states. This
is similar to what has been observed in the transverse Ising
This transformation rotates théh spin around the axis by  model, but there are some differences. In the Ising case, an

angle/ ¢ and shifts the spectru?) by the wave numbep.  exponential decay of correlations changes into a power-law
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form as the current is switched on. In téY case, on the A
other hand, one has power-law correlations already in the
equilibrium state. The magnetization current does not change
the power law and leaves its exponent intact as well. The
increase of correlations appears as the increase in the ampl

tude of the power lawnote thath = hcosp=<h). J

A~

maximal current line

’ —n 0 T
IIl. ENERGY CURRENT 1 Ji':,_,q~ Jihkx

. . . 2n
Since the energy is a conserved quantity as well, one cai

investigate the effects of the energy current. The local energy Fha 12:”‘3"
(the contribution of theth spin to the total energysatisfies @ L @ :
a continuity equation with the local energy curr¢Eatand its _-in 0 &-ty Tk
sum over/ (the total energy currenhas the form ’,/’ o %Jrkhi
N 0 1 h -

JE= D [SUS)1Sh 1Sy 1S Th(sis) .
/=1 FIG. 1. Phase diagram of the ground state of the transveyse

Y X model in the presence of energy current. The black parts of the
—8/S/41)]- (15 rectangles denote the wave numbers of the occupied fermionic
modes (- mw<k< ). The dashed line is a high-symmetry transition

; XY 1E1— ; i
One can easily show theti™",J%]=0 and diagonalizing the line between regions of IM?*=0) and 2 M?#0). There are no

Hamiltonian states above the maximal current line and region 3 can be mapped
HE=HXY—\JE, (16) onto the vertical dotted lineh(=1).

one obtains the lowest-energy eigenstateld b in the pres- A. Phase diagram

ence _Of a giverg®. _ . ) Let us begin the analysis of the phase diagram by first
Using the standard transformations to fermions again, th@escribing it in terms of the behavior of currents and of the

spectrum is obtained as transverse magnetization. As shown in Fig. 1, there is a

. maximal current for every value df
Ay=(—cok—h)(1—\sink) 17 y

1+h?)/2m  forh<1
and the modes with negative energy are occupied in the = ( 2w

ground state oHE. Although thek— —k symmetry of the Ima forh=1

spectrum is broken fax # 0, the ground state remains that of

HXY for A<1 and, accordingly, no energy current flows and no state exists aboyf,,,.

through the system. This rigidity of the ground state against We can divide thé-jE phase diagram into three regions.

\ is a consequence of the fact that the fermionic spectrum dfhe only interesting areas are 1 and 2 and their boundaries.

HE has a product forng17) and the second factor is positive In region 3, the ground state is the same along the

for A<1. The first and second factors i, change sign at = constxh lines (h=1) thus theh=1 line contains all the

+(w/2+ky) (for h=<1) and w/2+k, (for A=1), respec- information about this region. Below, we restrict the discus-

tively. The “critical momenta”k,, andk, are defined here sion to theh<1 part of the phase diagram with the under-

such that they take valuessk,<=/2 and O<k,=<=/2 and standing that thén=1 line represents region 3.

one has,=arcsinf) andk, =arccosf ~1). As can be seen from E@L5), the energy current has two
One can study the ground state as a functioh ahd X\, parts: the term containing is proportional to the magneti-

but we are more interested in the physical quantities as funcation current ¢ hJ), while the other term is the current of

tions ofh andjE=(J&/N). Thus first we calculatgF, the interaction energy. The distinguishing features of regions

2 and 3 are that the current of interaction energy is z&4g

(19

Z(14h2-\2)  forkp=<k, while the transverse magnetizatidi* is nonzero in the
2 ground state.
For any fixed value oth, the magnetization decreases
iE=¢{ h with increasingj® and M? becomes zero on the link;,
J - for ky=k, orh, \=1 - E_ o -
—V1=A OrKh=Ky orn, A= =k, corresponding tojE=h?%s. On this line, the
magnetization-current part ¢f saturates and, upon increas-
Lo forn<1 ing jE, we enter region 1 where the interaction part of the

(1g ~ currentstarts to flow. Another characteristic feature of region
1 is thatM?=0 throughout this region.
and then express all the dependences in terms ¢f. We One tends to conclude at this point that the line separating
can then obtain ah— j& phase diagram as shown in Fig. 1, regions 1 and 2 is a line of second order, nonequilibrium
where the phases, discussed below in more detail, are distiphase transitions wittM? being the order parameter. This
guished by symmetries of the regions of occupied states inotion is also supported by the facts that several quantities
the k space. such ap?(1) andp*(1) have a jump in their first derivatives
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when crossing the transition line and, furthermore, that the<1,jE=0), are knowr{13] and ther —« asymptotics op*
correlations are enhancéchange front " tor ~¥?) on this s given by
line (see Sec. Ill B. If this was a phase transition, however,

it was certainly a transition not in the usual sense. The sym- p*(r;h,jF=0)~C(1—h*)¥r =12 (20)
metry of the ground state is the same on both sides of the ) )
transition line and theM?=0 result in region 1 is not a (if) The correlations on thie=1 line can be related to the

consequence of the up-down symmetry of the ground stat@auilibrium case (6ch<1,j5=0) and one finds
The magnetization is zero in 1 because the motion of the
zeros of the dispersion relatiofl7) conspire to keep the X BN xrn ] . g2 ™
ground state at half filling. We emphasize, however, that the PLIE) =N =7 ’O)CO{Er)' (21)
half filling does not mean that the ground state has a sym-
metry with respect to global spin fligf— —s’. Thus the large-distance behavior is given by

It is interesting to note that the symmetry of the ground
state is higher on the transition line than on either side of it. ) — T
Indeed, on this “high”-symmetry line, the ground state is pX(riLi®)=C\mjFr mCOS(Er)- (22
symmetric with respect to rotation of the spins aroundxhe
axis by, followed by a spatial reflection mapping sité0  Since the whole region 3 phase can be projected ontd the
L+1—i. The HamiltonianH*" has no such symmetry and, =1 line, we find that correlations decay es'2 for h=1.
off the transition line, the ground state does not have such (jii) The correlations on the high-symmetry liiee., on
symmetry either. Thus we can see here an example where tiige boundary between 1 and €an also be related to equi-
increase of current in a system leads, at a particular value Qfprijum:
the current, to symmetry enhancement. The reason for the

increase of symmetry is obviously some level crossing com- pX(r;h,jE=h?/7)=pX(r;0,0)cogkpr)

ing from the interplay of the current operator and the original (23
Hamiltonian. One might speculate that the occurrence of ~Cr~Y2coqkyr),

such symmetry enhancements is not an accidental but a gen-

eral feature of current-carrying systems. so we find again an~ 2 decay in ther —o limit.

(iv) On the line of maximal currenfh<1,E_ =(1
+h?)/27], the correlations can be expressed in terms of
those on the linel{=0,jF):

The p*(r) correlations can be calculated easily and, just
as in the equilibrium case, one finggr)~r~2. The differ- - —h?
ence from the equilibrium is that the oscillatory modulation Px(ﬂhylmax)sz(fi().?) C05<§r
of ther ~2 decay(present in equilibrium foh+0) becomes
more complex. Such modulation has been observed in casgnfortunately, this does not help in calculating theso
of the imposed magnetic curretdee Sec. )las well as in  panavior.
the transverse Ising model with energy currgsit The ex- (v) The long-range behavior of the correlations at the in-

ponent of the power-law decay, however, is unchanged whep, seaction poinf0,1/27] of the (h=0,j€) and the h'ern )
the currents are introduced in all of the above example1=1ines is also calculable: @

Thus it seems thai*(r) correlations are not too sensitive to

B. Correlations

. (24

the presence of currents. A possible reason for this apparent r 2 q r
rigidity is, perhaps, the lack of internal interactions among 1 4 p* ;0,0 | ~— for —integer
the z components of the spins. R R Dy
It is harder to calculate the*(r) = p¥(r) correlations but 0 otherwise
they show a more interesting behavior. Some of our results (25)

described below are exact and were derived by combining _ S

the Wick theorem and the spin rotation transformatigy and it is remarkable that the correlation function in this point

which relates the correlation functions between states wherdecays as t/instead of 14 .

the ground-state occupation patterrkispace is identical up ~ The exact results can be summarized as follows. ghe

to shifts k— (k+ «)mod2m. As we shall see, these exact =p’ correlations decay as I on the boundaries of region

results are restricted to the boundaries of regions 1 and 2. A, while a 1f decay can be observed in the upper-left corner

a general point If,jf), we were able to calculatp*(r)  [0,1/27] of the phase diagram.

=p*(r:h,j¥) numerically(for r<100 lattice spacingausing Numerical calculations suggest, however, that threak-

the fact that the square of the correlation can be expressed ggptotics is more general than it looks from the exact re-

a determinant of a 2<2r matrix with exactly calculable sults. There is a strong indication that the large-distance as-

elements. ymptotics is actually ¥/ everywhere in region 1 and 2 apart
Let us start by enumerating the exact results. The bound¥om the boundaries of region 2. Figure 2 shows an example

aries of region 2 are discussed in poifits-(ii ), while the  of numerical results at a general point of the phase diagram.

boundaries of 1 are treated in poirtii)—(iv). The following formula gives an excellent fit to the numerical
(i) As discussed in Sec. Il, the correlations in the trans-data throughout the phase diagréexcept very close to the

verse XY model without current, i.e., on the line ¢th  lines with the 14r behavioy:
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s h=0.1 j"=0.38

fit for r even

------------ fit for r odd

10 20 30 40

FIG. 2. Absolute value of the*(r)=(s}s}, ) correlation func-
tion at a general point of the phase diagram. The distance
measured in units of lattice spacing. The long-range decay (o)
is fitted by expressiof26) (solid and dashed lingsfor this point of
the phase diagram one hag~a,~0.0934 anda;~0.0469).

forr even
for r odd.

(26)

[a;cogkyr)+ascogk,r)]/r
P*(r) =\ [azcogkyr)+a,cogk,r)]ir

The a; coefficients are functions df and jE, and for the 1
phasea;=a, seems to be valid.

As one can see from Eq26), the amplitude of the t/
decay is modulated with the critical wave numbé&psand
k). On the high-symmetry transition line we hakg=Kk,

1 fe « h=02 jF=0.021
« h=0.6 £=0.122
T s h=0.6 j=0.099
L] 5 » h=0.8 iF=0.194 ]
%
05 f

o

i
(kK )/2Ir

FIG. 3. Absolute value of the scalgd correlation function at
four points of the phase diagram near the boundary between regions
1 and 2. Two points are above and two are below this high-
symmetry line. The data points showing large deviations from scal-
ing come from arguments where both the numerator and the de-
nominator in Eq(27) are close to zero.

Furthermore® is independent of the crossing poirhtc(,jf)
unless we are close to the zero-field equilibrium point (
=0,jE=0). In this sense we have the kind of universality
usually observed in critical phase transitions.

The equilibrium point b=0,jE=0) is the end point of
the high-symmetry line. At this point, the ground-state sym-
metry is higher than on the line and so we may expect that,
provided scaling is still present, the scaling function would
be different. This is indeed what we observe. Approaching

and the transition across this line takes us from region }ne point h=0,jE=0) along the h=0,jE—0) line, one has

wherek;, <k, to region 2 where,,>k, . Thus one can view

again a diverging length scale proportional té&,14nd one

the high-symmetry line as a line of degeneracy where twQan search again for scaling in the correlation function

characteristic wavelengths of the system become equal.

This transition may resemble transitions arising from
competing wavelengths but, actually, here we do not have a

competition betweeR;, andk, . Due to the product form of
Ay, ky is independent of while k, is independent oh.

px(rvovk)\)

px(r;0,0) :‘P(k)\r)' (28)

Nevertheless, this transition does have similarities to secongxs shown in Fig. 4, scaling is indeed seen and the scaling
order transitions in that the correlations decay more slowly
(1/r—1/\r) and, furthermore, one can observe scaling upon

approach of the transition line. In order to see this, let us h=0
assume that the distance from the transition kpe k, pro- 1k + 20,0003
vides the single diverging length scale that generates the E
. . x j=0.0031
1 —1/\r crossover in correlations. Then one should ob- . _00091
serve scaling when plotting the ratio JE' )
[Pl @ j=0.0148
X(r:h,jE) kn—k i
p’( J.E =(I>(| h )\|r), 27 0s 3
Px(r;hc:Jc) 2 i
=N . . . !M!
where i.,j:) is a point on the transition line and the f " Ea L3
—he,jE—jE limit is taken. Note that the long-range behav- % . ht
ior of the denominator g* on the phase transition lines 0 "a f By

known[Eq. (23)]. As one can see from Fig. 3, the data col-
lapse is excellent, thus supporting the assumption of scaling
(27).

It is interesting to note that the scaling function appears to FIG. 4. Absolute value of the scalgd correlation functions on
be the same on the both sides of the phase-transition lingheh=0 line nearj=0.

1 2n 3n 41



57 ISOTROPIC TRANSVERSEXY CHAIN WITH ENERGY . .. 5189

function is significantly different from that found away from IV. FINAL REMARKS
the (h=0,jE=0) point.

The numerical results presented abdas well as other
data gathered in our explorations of the phase diagsug-
gest strongly thap*o 1/r for generic current-carrying states.
Slower decay*1/\r is observed only on the boundaries of
region 2 and the crossover between thedrd 1Ar behav-

A general conclusion we can draw from the present study
of the transversXY model and from a comparison with the
results on the transverse Ising mo{@) is that currents ap-
pear to generate and maintain power-law correlations. An
interesting feature of th¥Y model that may also have some

: b d di ¢ sinalel h | enerality is the increase of the symmetry of the ground state
lors can be understood in terms of single-length scale scag special values of the energy current. This feature should
ing. It is intriguing that there is a simple correspondence

b h £ d ; lati d the “b ertainly be searched for in other models as well as in ex-
etween”t e types of decay of correlations and the an;ieriments. It should be recognized, however, that both the
structure” of the ground state. The lines of slower decay o

) s : . XY and the transverse Ising models are integrable and, con-
correlations coincide with those lines where the ground Statgequently they are special in that conductivity and, in par-
is built by a single band of excitations in momentum space i ;

: . . ticular, the thermal conductivity are ideal for themot only
whereas in all regions of d/decay, the filling pattern of the at zero but also at nonzero temperatufds—17. Thus it is
ground state splits into two separate bafi€ig. 1).

. ; . an important next step to find out whether nonintegrable

Regarding the interplay of currents and correlations, thesg, J 1o have the same connection between currents and
results leave us with the following conclusions. First, we find ower-law correlations and, furthermore, whether they show
that the large-distance correlations are not necessarily i iny additional general featL,Jres. '
creased by switching on a current. Second, it is found that
the equilibrium power-law correlations are not destroyed by
the current; only the exponent in the power law is increased.
This strengthens previous observations that currents and We thank J. Cardy, F. Essler, and L. SasvVar helpful
power-law correlations are intimately related. Third, we finddiscussions. Z.R. is thankful for partial support from the
that the increase of current may lead to interesting phaseHungarian Academy of Science&Grant No. OTKA T
transition-like behavior related to tfrecrease of symmetigt 019453 and from the EPSRC, United Kingdoffsrant No.
special values of the current. L58088.
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