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Isotropic transverse XY chain with energy and magnetization currents

T. Antal,1 Z. Rácz,1,2 A. Rákos,1 and G. M. Schu¨tz3

1Institute for Theoretical Physics, Eo¨tvös University, 1088 Budapest, Puskin utca 5-7, Hungary
2Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom

3Institut für Festkörperforschung, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany
~Received 10 November 1997!

The ground-state correlations are investigated for an isotropic transverseXY chain that is constrained to
carry either a current of magnetization (JM) or a current of energy (JE). We find that the effect ofJMÞ0 on
the large-distance decay of correlations is twofold:~i! Oscillations are introduced and~ii ! the amplitude of the
power-law decay increases with increasing current. The effect of energy current is more complex. Generically,
correlations in current carrying states are found to decay faster than in theJE50 states, contrary to expecta-
tions that correlations are increased by the presence of currents. However, increasing the current, one reaches
a special line where the correlations become comparable to those of theJE50 states. On this line, the
symmetry of the ground state is enhanced and the transverse magnetization vanishes. A further increase of the
current destroys the extra symmetry, but the transverse magnetization remains at the high-symmetry zero
value.@S1063-651X~98!13405-0#

PACS number~s!: 05.50.1q, 05.70.Ln, 64.60.Ht, 75.10.Jm
th
h
o
t
a

ro
cu
el
ng

en
d
a

ns

p
io

n
te

p
tic
um
-
d
th

av

o

b
d

s

p

a
on
iled
ere
e of
a
the
eti-

and

ady
t
e to
rgy

f the
are
the
e to

re-
of a

ctly
rgy
nd
al

-

I. INTRODUCTION

A general feature of nonequilibrium steady states is
presence of currents~fluxes! of some physical quantities suc
as energy, momentum, and charge. Thus the study of n
equilibrium steady states is, in some sense, a study of
effects of currents imposed on the system either by bound
conditions and driving fields or by competing dynamical p
cesses. An interesting and much investigated effect of
rents is the rather dramatic change in correlations. Nam
short-range correlations appear to change into long-ra
power-law correlations as the currents are switched on@1,2#.
This is not entirely surprising in the case of a global curr
since some conserved quantity is carried fast compare
diffusion and, in the absence of detailed balance, this m
generate long-range effective interactions and, as a co
quence, long-range correlations may appear@3#. It is clear,
however, that the general picture should be more com
cated since large currents often lead to chaotic behav
which in turn results in weakened correlations@4#. Thus, we
believe, the understanding of the interplay of currents a
correlations in nonequilibrium steady states is a rather in
esting and important task.

In order to achieve progress one tries to investigate sim
models and, indeed, a large number of classical statis
models have been introduced for the study of nonequilibri
steady states@5#. Unfortunately, far from equilibrium, classi
cal systems are not constrained by conditions such as
tailed balance and there is much arbitrariness in defining
dynamics. In order to avoid such arbitrariness, we h
started to investigate quantum systems@6# where the time
evolution is defined without ambiguity by the usual rules
quantum mechanics.

Nonequilibrium steady states in a quantum system may
investigated by imposing a current on the system and stu
ing the properties of the ground state thus generated. A
example, we studied the transverse Ising model@6# and
found that, in the presence of an energy current, the ex
571063-651X/98/57~5!/5184~6!/$15.00
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nentially decaying two-spin correlations changed into
power-law form, thus supporting the notion that switching
currents increases correlations. In view of the lack of deta
knowledge of the interplay of currents and correlations, h
we probe the generality of the above result on the exampl
the isotropic transverseXY chain. In this system, we have
global conservation not only for the energy, as in case of
transverse Ising model, but also for the transverse magn
zation and, consequently, the effect of both the energy
magnetization currents can be investigated. TheXY chain is
also interesting because it has power-law correlations alre
in the equilibrium state~i.e., in the state without any curren!
and so one might expect the system to be more sensitiv
the introduction of currents. Indeed, in the case of the ene
current we find a rather complex behavior~including an in-
crease of the ground-state symmetry at special values o
current! and our findings for the steady-state correlations
at variance with those for the transverse Ising model. On
other hand, the changes we observe in the correlations du
a magnetization current allow for a straightforward interp
tation in terms of increasing correlations due to presence
current.

The effects of magnetization current are treated exa
~Sec. II!, while the correlations in the presence of an ene
current are calculated by a combination of analytical a
exact numerical methods in Sec. III. A summary and fin
comments are contained in Sec. IV.

II. MAGNETIZATION CURRENT

Our starting point is the Hamiltonian of thed51 isotropic
XY model in a transverse fieldh:

HXY52 (
l 51

N

~sl
x sl 11

x 1sl
y sl 11

y 1hsl
z !, ~1!

where the spins are represented by Pauli spin matricessl
a

(a5x,y,z) at sitesl 51,2, . . . ,N of a one-dimensional peri
5184 © 1998 The American Physical Society



s

th

n

nt

th

lie

w

e

t

in
ha

r-

by
flux

ag-
nical

lue

re

d in

nd
his
sing
, an
law

57 5185ISOTROPIC TRANSVERSEXY CHAIN WITH ENERGY . . .
odic chain (sN11
a 5s1

a). The transverse fieldh is measured in
units of the Ising couplingJ, which is set toJ51 throughout
this paper. This model can be solved exactly@7# since it can
be transformed by a Jordan-Wigner transformation into a
of free fermions with wave numberk and of energy

Lk52cosk2h. ~2!

In this model, not only the total energy but also thez com-
ponent of the total magnetizationMz5( l sl

z is conserved.
As a result, one can write down a continuity equation for
local magnetizationsl

z :

ṡl
z 5 i @HXY,sl

z #5 j l 21
M 2 j l

M ~3!

and this defines the magnetization current through the bo

j l
M5sl

y sl 11
x 2sl

x sl 11
y . ~4!

A macroscopic current can now be defined as

JM5 (
l 51

N

j l
M ~5!

and one can recognizeJM as the Hamiltonian of the
Dzyaloshinskii-Moriya interaction@8#. Somewhat surpris-
ingly, the same expression emerged as the energy curre
the case of the transverse Ising model@6#.

Our aim is to find the lowest-energy state among
states carrying a given current. Since@HXY,JM#50, the
problem can be solved using the Lagrange multip
method, i.e., we diagonalize the Hamiltonian

HM5HXY2lJM, ~6!

wherel is a Lagrange multiplier. The ground state ofHM

can be considered as a current-carrying steady state ofHXY

at zero temperature. Note that, without loss of generality,
can assumeh>0 andl>0.

The Hamiltonian HM is diagonalized using the sam
transformations that diagonalizeHXY and we get the follow-
ing spectrum in the thermodynamic limit:

Lk5
1

cosw
@2cos~k2w!2 h̃ #, ~7!

wherew5arctanl and an effective fieldh̃5hcosw has been
introduced. One can see that the spectrum is similar to tha
HXY with the wave number shifted byw. It should be men-
tioned here that the above result is not new. It is implicit
the Bethe-ansatz solution of the anisotropic Heisenberg c
with twisted toroidal boundary conditions@9# and appears in
various forms in studies of the Dzyaloshinskii-Moriya inte
action @10# and of the associated Berry phase@11#.

It is remarkable thatHM can be transformed intoHXY

@Eq. ~1!# using a unitary transformation

Q5expi (
l 51

N

l wsl
z . ~8!

This transformation rotates thel th spin around thez axis by
anglel w and shifts the spectrum~7! by the wave numberw.
et

e

ds

in

e

r

e

of

in

This shift is analogous to the phase shift experienced
electrons on a ring threaded by a constant magnetic
(F;Nw) @12#.

We also note that the ferromagnetic and the antiferrom
netic cases are equivalent in the sense that the cano
transformation~8! with w5p transforms them into each
other. For a finite periodic chain,HM is transformed toHXY,
but with a twisted boundary condition (w5” p).

As the transformation~8! does not change thez compo-
nent of the spins, we find that

^sl
z &5

1

p
arcsin

h

A11l2
~9!

and the correlation function

rz~r !5^sl
z sl 1r

z &52
1

p2r 2
sin2F rarccos

h

A11l2G ~10!

have their equilibrium form but at a different fieldh̃
5h/A11l2 ~angular brackets denote the expectation va
in the ground state ofHM). One can see that, forh
>A11l2 ( h̃>1), the spins are parallel to the field and the
is no current in the system. Forh,A11l2 ( h̃,1) the cur-
rent has a simple form

j M5^JM/N&5
lA11l22h2

p~11l2!
, ~11!

and one can observe that the maximum current, reache
the limit of l→`, is given by 1/p.

The introduction of the transformation~8! simplifies the
calculation of the correlationsrx(r )5^sl

x sl 1r
x &5ry(r ) in

the ground state ofHM:

rx~r !5cos~rw!^Qc0usl
x sl 1r

x uQc0&
~12!

1sin~rw!^Qc0usl
x sl 1r

y uQc0&,

wherec0 is the ground state ofHM, while Qc0 is that of
HXY at a field h̃ . Without any current, we havêsl

x sl 1r
y &

50 and, furthermore, ther→` behavior of therx(r ) corre-
lation function@13# is given by

rx~r ; j M50!'~12h2!1/4
C

Ar
, ~13!

where C5e1/2224/3A26'0.147 (A'1.282 is the Glaisher
constant!. Using ~12!, one can obtain then the following
simple form in ther→` limit:

rx~r !'~12 h̃2!1/4
C

Ar
cos~rw!. ~14!

Thus we find that the correlations decay by a power law a
show oscillatory behavior in the current-carrying states. T
is similar to what has been observed in the transverse I
model, but there are some differences. In the Ising case
exponential decay of correlations changes into a power-
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5186 57T. ANTAL, Z. RÁCZ, A. RÁKOS, AND G. M. SCHÜTZ
form as the current is switched on. In theXY case, on the
other hand, one has power-law correlations already in
equilibrium state. The magnetization current does not cha
the power law and leaves its exponent intact as well. T
increase of correlations appears as the increase in the a
tude of the power law~note thath̃5hcosw<h).

III. ENERGY CURRENT

Since the energy is a conserved quantity as well, one
investigate the effects of the energy current. The local ene
~the contribution of thel th spin to the total energy! satisfies
a continuity equation with the local energy currentj l

E and its
sum overl ~the total energy current! has the form

JE5 (
l 51

N

@sl
z ~sl 21

y sl 11
x 2sl 21

x sl 11
y !1h~sl

x sl 11
y

2sl
y sl 11

x !#. ~15!

One can easily show that@HXY,JE#50 and diagonalizing the
Hamiltonian

HE5HXY2lJE, ~16!

one obtains the lowest-energy eigenstates ofHXY in the pres-
ence of a givenJE.

Using the standard transformations to fermions again,
spectrum is obtained as

Lk5~2cosk2h!~12lsink! ~17!

and the modes with negative energy are occupied in
ground state ofHE. Although thek→2k symmetry of the
spectrum is broken forlÞ0, the ground state remains that
HXY for l<1 and, accordingly, no energy current flow
through the system. This rigidity of the ground state aga
l is a consequence of the fact that the fermionic spectrum
HE has a product form~17! and the second factor is positiv
for l,1. The first and second factors inLk change sign at
6(p/21kh) ~for h<1) and p/26kl ~for l>1), respec-
tively. The ‘‘critical momenta’’kh and kl are defined here
such that they take values 0<kh<p/2 and 0<kl<p/2 and
one haskh5arcsin(h) andkl5arccos(l21).

One can study the ground state as a function ofh andl,
but we are more interested in the physical quantities as fu
tions of h and j E5^JE/N&. Thus first we calculatej E,

j E55
1

2p
~11h22l22! for kh<kl

h

p
A12l22 for kh>kl or h, l>1

0 for l<1,
~18!

and then express all thel dependences in terms ofj E. We
can then obtain anh2 j E phase diagram as shown in Fig.
where the phases, discussed below in more detail, are di
guished by symmetries of the regions of occupied state
the k space.
e
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A. Phase diagram

Let us begin the analysis of the phase diagram by fi
describing it in terms of the behavior of currents and of t
transverse magnetization. As shown in Fig. 1, there i
maximal current for every value ofh

j max
E 5H ~11h2!/2p for h<1

h/p for h>1
~19!

and no state exists abovej max
E .

We can divide theh-j E phase diagram into three region
The only interesting areas are 1 and 2 and their bounda
In region 3, the ground state is the same along thej E

5 const3h lines (h>1) thus theh51 line contains all the
information about this region. Below, we restrict the discu
sion to theh<1 part of the phase diagram with the unde
standing that theh51 line represents region 3.

As can be seen from Eq.~15!, the energy current has tw
parts: the term containingh is proportional to the magneti
zation current (2hJM), while the other term is the current o
the interaction energy. The distinguishing features of regi
2 and 3 are that the current of interaction energy is zero@14#,
while the transverse magnetizationMz is nonzero in the
ground state.

For any fixed value ofh, the magnetization decrease
with increasing j E and Mz becomes zero on the linekh
5kl corresponding to j E5h2/p. On this line, the
magnetization-current part ofj E saturates and, upon increa
ing j E, we enter region 1 where the interaction part of t
current starts to flow. Another characteristic feature of reg
1 is thatMz50 throughout this region.

One tends to conclude at this point that the line separa
regions 1 and 2 is a line of second order, nonequilibriu
phase transitions withMz being the order parameter. Th
notion is also supported by the facts that several quant
such asrz(1) andrx(1) have a jump in their first derivative

FIG. 1. Phase diagram of the ground state of the transverseXY
model in the presence of energy current. The black parts of
rectangles denote the wave numbers of the occupied fermi
modes (2p<k,p). The dashed line is a high-symmetry transitio
line between regions of 1 (Mz50) and 2 (MzÞ0). There are no
states above the maximal current line and region 3 can be ma
onto the vertical dotted line (h51).
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57 5187ISOTROPIC TRANSVERSEXY CHAIN WITH ENERGY . . .
when crossing the transition line and, furthermore, that
correlations are enhanced~change fromr 21 to r 21/2) on this
line ~see Sec. III B!. If this was a phase transition, howeve
it was certainly a transition not in the usual sense. The s
metry of the ground state is the same on both sides of
transition line and theMz50 result in region 1 is not a
consequence of the up-down symmetry of the ground st
The magnetization is zero in 1 because the motion of
zeros of the dispersion relation~17! conspire to keep the
ground state at half filling. We emphasize, however, that
half filling does not mean that the ground state has a s
metry with respect to global spin flipsi

z→2si
z .

It is interesting to note that the symmetry of the grou
state is higher on the transition line than on either side o
Indeed, on this ‘‘high’’-symmetry line, the ground state
symmetric with respect to rotation of the spins around thx
axis byp, followed by a spatial reflection mapping sitei to
L112 i . The HamiltonianHXY has no such symmetry and
off the transition line, the ground state does not have s
symmetry either. Thus we can see here an example wher
increase of current in a system leads, at a particular valu
the current, to symmetry enhancement. The reason for
increase of symmetry is obviously some level crossing co
ing from the interplay of the current operator and the origi
Hamiltonian. One might speculate that the occurrence
such symmetry enhancements is not an accidental but a
eral feature of current-carrying systems.

B. Correlations

The rz(r ) correlations can be calculated easily and, j
as in the equilibrium case, one findsrz(r );r 22. The differ-
ence from the equilibrium is that the oscillatory modulati
of the r 22 decay~present in equilibrium forhÞ0) becomes
more complex. Such modulation has been observed in
of the imposed magnetic current~see Sec. II! as well as in
the transverse Ising model with energy current@6#. The ex-
ponent of the power-law decay, however, is unchanged w
the currents are introduced in all of the above examp
Thus it seems thatrz(r ) correlations are not too sensitive
the presence of currents. A possible reason for this appa
rigidity is, perhaps, the lack of internal interactions amo
the z components of the spins.

It is harder to calculate therx(r )5ry(r ) correlations but
they show a more interesting behavior. Some of our res
described below are exact and were derived by combin
the Wick theorem and the spin rotation transformation~8!,
which relates the correlation functions between states wh
the ground-state occupation pattern ink space is identical up
to shifts k→(k1a)mod2p. As we shall see, these exa
results are restricted to the boundaries of regions 1 and 2
a general point (h, j E), we were able to calculaterx(r )
[rx(r ;h, j E) numerically~for r<100 lattice spacings! using
the fact that the square of the correlation can be expresse
a determinant of a 2r 32r matrix with exactly calculable
elements.

Let us start by enumerating the exact results. The bou
aries of region 2 are discussed in points~i!–~iii !, while the
boundaries of 1 are treated in points~iii !–~iv!.

~i! As discussed in Sec. II, the correlations in the tra
verse XY model without current, i.e., on the line (0,h
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,1,j E50), are known@13# and ther→` asymptotics ofrx

is given by

rx~r ;h, j E50!;C~12h2!1/4r 21/2. ~20!

~ii ! The correlations on theh51 line can be related to the
equilibrium case (0,h,1,j E50) and one finds

rx~r ;1,j E!5rx~r ;A12p2 j E2
,0!cosS p

2
r D . ~21!

Thus the large-distance behavior is given by

rx~r ;1,j E!5CAp j Er 21/2cosS p

2
r D . ~22!

Since the whole region 3 phase can be projected onto thh
51 line, we find that correlations decay asr 21/2 for h>1.

~iii ! The correlations on the high-symmetry line~i.e., on
the boundary between 1 and 2! can also be related to equ
librium:

rx~r ;h, j E5h2/p!5rx~r ;0,0!cos~khr !
~23!

;Cr21/2cos~khr !,

so we find again anr 21/2 decay in ther→` limit.
~iv! On the line of maximal current@h<1,j max

E 5(1
1h2)/2p#, the correlations can be expressed in terms
those on the line (h50,j E):

rx~r ;h, j max
E !5rxS r ;0,

12h2

2p D cosS p

2
r D . ~24!

Unfortunately, this does not help in calculating ther→`
behavior.

~v! The long-range behavior of the correlations at the
tersection point@0,1/2p# of the (h50,j E) and the (h, j max

E )
lines is also calculable:

rxS r ;0,
1

2p D5H 4FrxS r

2
;0,0D G2

;
1

r
for

r

4
integer

0 otherwise
~25!

and it is remarkable that the correlation function in this po
decays as 1/r instead of 1/Ar .

The exact results can be summarized as follows. Therx

5ry correlations decay as 1/Ar on the boundaries of region
2, while a 1/r decay can be observed in the upper-left corn
@0,1/2p# of the phase diagram.

Numerical calculations suggest, however, that the 1/r as-
ymptotics is more general than it looks from the exact
sults. There is a strong indication that the large-distance
ymptotics is actually 1/r everywhere in region 1 and 2 apa
from the boundaries of region 2. Figure 2 shows an exam
of numerical results at a general point of the phase diagr
The following formula gives an excellent fit to the numeric
data throughout the phase diagram~except very close to the
lines with the 1/Ar behavior!:
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rx~r !5H @a1cos~khr !1a2cos~klr !#/r for r even

@a3cos~khr !1a2cos~klr !#/r for r odd.

~26!

The ai coefficients are functions ofh and j E, and for the 1
phasea15a2 seems to be valid.

As one can see from Eq.~26!, the amplitude of the 1/r
decay is modulated with the critical wave numberskh and
kl . On the high-symmetry transition line we havekh5kl

and the transition across this line takes us from regio
wherekh,kl to region 2 wherekh.kl . Thus one can view
the high-symmetry line as a line of degeneracy where
characteristic wavelengths of the system become equal.

This transition may resemble transitions arising fro
competing wavelengths but, actually, here we do not hav
competition betweenkh andkl . Due to the product form of
Lk , kh is independent ofl while kl is independent ofh.
Nevertheless, this transition does have similarities to seco
order transitions in that the correlations decay more slo
(1/r→1/Ar ) and, furthermore, one can observe scaling up
approach of the transition line. In order to see this, let
assume that the distance from the transition linekh2kl pro-
vides the single diverging length scale that generates
1/r→1/Ar crossover in correlations. Then one should o
serve scaling when plotting the ratio

rx~r ;h, j E!

rx~r ;hc , j c
E!

5FS ukh2klu
2

r D , ~27!

where (hc , j c
E) is a point on the transition line and theh

→hc , j E→ j c
E limit is taken. Note that the long-range beha

ior of the denominator (rx on the phase transition line! is
known @Eq. ~23!#. As one can see from Fig. 3, the data co
lapse is excellent, thus supporting the assumption of sca
~27!.

It is interesting to note that the scaling function appears
be the same on the both sides of the phase-transition

FIG. 2. Absolute value of therx(r )5^sl
x sl 1r

x & correlation func-
tion at a general point of the phase diagram. The distancer is
measured in units of lattice spacing. The long-range decay ofrx(r )
is fitted by expression~26! ~solid and dashed lines! ~for this point of
the phase diagram one hasa1'a2'0.0934 anda3'0.0469).
1
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a

d-
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e
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Furthermore,F is independent of the crossing point (hc , j c
E)

unless we are close to the zero-field equilibrium pointh
50,j E50). In this sense we have the kind of universal
usually observed in critical phase transitions.

The equilibrium point (h50,j E50) is the end point of
the high-symmetry line. At this point, the ground-state sy
metry is higher than on the line and so we may expect th
provided scaling is still present, the scaling function wou
be different. This is indeed what we observe. Approach
the point (h50,j E50) along the (h50,j E→0) line, one has
again a diverging length scale proportional to 1/kl and one
can search again for scaling in the correlation function

rx~r ;0,kl!

rx~r ;0,0!
5C~klr !. ~28!

As shown in Fig. 4, scaling is indeed seen and the sca

FIG. 3. Absolute value of the scaledrx correlation function at
four points of the phase diagram near the boundary between reg
1 and 2. Two points are above and two are below this hi
symmetry line. The data points showing large deviations from s
ing come from arguments where both the numerator and the
nominator in Eq.~27! are close to zero.

FIG. 4. Absolute value of the scaledrx correlation functions on
the h50 line nearj E50.
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57 5189ISOTROPIC TRANSVERSEXY CHAIN WITH ENERGY . . .
function is significantly different from that found away from
the (h50,j E50) point.

The numerical results presented above~as well as other
data gathered in our explorations of the phase diagram! sug-
gest strongly thatrx}1/r for generic current-carrying state
Slower decayrx}1/Ar is observed only on the boundaries
region 2 and the crossover between the 1/r and 1/Ar behav-
iors can be understood in terms of single-length scale s
ing. It is intriguing that there is a simple corresponden
between the types of decay of correlations and the ‘‘ba
structure’’ of the ground state. The lines of slower decay
correlations coincide with those lines where the ground s
is built by a single band of excitations in momentum spa
whereas in all regions of 1/r decay, the filling pattern of the
ground state splits into two separate bands~Fig. 1!.

Regarding the interplay of currents and correlations, th
results leave us with the following conclusions. First, we fi
that the large-distance correlations are not necessarily
creased by switching on a current. Second, it is found
the equilibrium power-law correlations are not destroyed
the current; only the exponent in the power law is increas
This strengthens previous observations that currents
power-law correlations are intimately related. Third, we fi
that the increase of current may lead to interesting pha
transition-like behavior related to theincrease of symmetryat
special values of the current.
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IV. FINAL REMARKS

A general conclusion we can draw from the present stu
of the transverseXY model and from a comparison with th
results on the transverse Ising model@6# is that currents ap-
pear to generate and maintain power-law correlations.
interesting feature of theXY model that may also have som
generality is the increase of the symmetry of the ground s
at special values of the energy current. This feature sho
certainly be searched for in other models as well as in
periments. It should be recognized, however, that both
XY and the transverse Ising models are integrable and, c
sequently, they are special in that conductivity and, in p
ticular, the thermal conductivity are ideal for them~not only
at zero but also at nonzero temperatures! @15–17#. Thus it is
an important next step to find out whether nonintegra
models have the same connection between currents
power-law correlations and, furthermore, whether they sh
any additional general features.
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