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Abstract. We study first-passage statistics of the Pólya urn model. In this
random process, the urn contains balls of two types. In each step, one ball is
drawn randomly from the urn, and subsequently placed back into the urn together
with an additional ball of the same type. We derive the probability Gn that the
balls of the two types become equal in number, for the first time, when there are
a total of 2n balls. This first-passage probability decays algebraically, Gn ∼ n−2,
when n is large. We also derive the probability that a tie ever happens. This
probability is between zero and one, so a tie may occur in some realizations but
not in others. The likelihood of a tie is appreciable only if the initial difference
in the number of balls is of the order of the square root of the total number of
balls.
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1. Introduction

Urn models play a central role in probability theory and combinatorics [1, 2]. Since the
balls can represent anything from atoms to biological organisms to humans, urn models
are widely used in the physical, life, and social sciences [3].

In this paper, we investigate the classic Pólya urn model [4]–[6]. This urn process
is a type of birth process, and it is useful for modeling the spread of infectious diseases,
population dynamics, and evolutionary processes in biology [5], [7]–[10]. Furthermore,
this stochastic process is a branching process [11], and it is used to model data structures
in computer science [12]–[14]. Of the myriad other applications, we mention decision
making [15], reinforcement learning [16], and technology usage [17, 18]. We also note that
the Pólya urn model is a limiting case of earlier urn models investigated by Laplace [19],
Markov [20], and Ehrenfest [21].

The Pólya urn model exhibits rich and interesting phenomenology that includes a
strong influence of the initial conditions, large fluctuations from realization to realization,
and substantial finite-size corrections [6, 22, 23]. In this study, we obtain the first-
passage properties [24] of the Pólya urn model, and contrast these with the first-passage
characteristics of an ordinary random walk [24, 25].

In the Pólya urn model, there are balls of two types: black and white ones. In a basic
step, one ball is selected randomly from all balls in the urn. This ball is then returned
to the urn together with an additional ball of the same color. Starting with a given
configuration of balls, the number of balls increases indefinitely by repeating this step ad
infinitum. Thus, a configuration (B, W ) with B black balls and W white balls evolves
according to

(B, W ) →
{

(B + 1, W ) with probability B
B+W ,

(B, W + 1) with probability W
B+W .

(1)
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Figure 1. The urn process as a trajectory on a two-dimensional lattice (bold
line) where bullets indicate intermediate stages of the trajectory. Exit from the
B > W region is equivalent to this trajectory reaching the diagonal (broken line).

We investigate first-passage properties of the urn process (figure 1). We find that the
probability Gn that a tie is reached, for the first time, when there are n balls of each type
decays algebraically:

Gn ∼ n−2, (2)

for large n. This asymptotic behavior holds for arbitrary initial conditions. We also show
that the total exit probability, that is, the probability that a tie is ever reached, is less
than 1. Hence, an initial imbalance in the number of balls can be locked in, forever. We
study how the total exit probability depends on the initial condition and find that it is
appreciable only when the imbalance in the number of balls is of the order of the square
root of the total number of balls.

The rest of this paper is organized as follows. We derive the first-passage probability in
section 2. We then obtain the exit probability by summing the first-passage probability
(section 3). We discuss the extreme cases of nearly maximal and extremely small exit
probabilities (section 4), and then establish scaling properties of the exit probability
(section 5). We generalize the results to near ties in section 6, and conclude in section 7.

2. The first-passage probability

Our goal is to quantify the first-passage process, illustrated in figure 1, using the first-
passage probability and the total exit probability. For the initial condition (B, W ) = (b, w)
where, without loss of generality, black balls are in the majority, b > w, the first-passage
probability Gn(b, w) is the likelihood that a tie is reached, for the first time, when
(B, W ) = (n, n). In other words Gn(b, w) is the probability that the initial imbalance
holds, B > W , if and only if W < n. The total exit probability E(b, w) is the probability
that a tie is ever reached.

These first-passage characteristics are of interest in a variety of contexts, for example,
in the growth of bacterial colonies, when bacteria proliferate without resource limitations,
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cell death can be neglected, and the growth can be modeled by branching processes of two
types [26, 27]. These processes and the Pólya urn model have the same exit probability,
which measures the likelihood that the minority species eventually overtakes the majority
species. In the context of binary search trees, first-passage statistics quantify the likelihood
that two branches of a tree reach perfect balance. Balanced trees are relevant in data
structures, because they lead to more efficient searches. Indeed, the Pólya urn process
has been used to model such data structures in computer science [28].

As a preliminary step to finding the first-passage probability, we obtain the likelihood
that the system reaches configuration (B, W ) = (m, n) starting from (B, W ) = (b, w).
Let us consider, for example, the transition (1, 1) → (3, 3) where one possible path is

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3).

The likelihood of this path is

1

2
× 2

3
× 1

4
× 2

5
=

(1 · 2) · (1 · 2)

2 · 3 · 4 · 5 . (3)

There are ( 4
2 ) = 6 distinct routes from (1, 1) to (3, 3) and they all have the same probability

1/30.
In general, all paths from configuration (b, w) to configuration (m, n) have the same

probability

[b(b + 1) · · · (m − 1)] · [w(w + 1) · · · (n − 1)]

(b + w)(b + w + 1) · · · (m + n − 1)
.

We rewrite this probability using factorials:

(m − 1)!

(b − 1)!
× (n − 1)!

(w − 1)!
× (b + w − 1)!

(m + n − 1)!
.

The total number of distinct paths from (b, w) to (m, n) equals the binomial ( m+n−b−w
m−b ).

Hence, the transition probability P that, starting from configuration (b, w), the system
reaches configuration (m, n) is [3]–[6]

P =

(
m − 1
b − 1

) (
n − 1
w − 1

) (
m + n − 1
b + w − 1

)−1

. (4)

In particular, the probability distribution is flat [4, 5], P = 1/(m + n − 1), for the initial
condition (b, w) = (1, 1).

The number of paths from (b, w) to (n, n) that reach the diagonal B = W only at the
end point equals (b − w)/(2n − b − w) times the total number of such paths. This result
can be established using the reflection principle [1]. Since all paths from (b, w) to (n, n) are
equiprobable, the first-passage probability is simply Gn(b, w) = (b − w)P/(2n − b − w).
By substituting m = n into equation (4), we obtain our first main result, the first-passage
probability:

Gn(b, w) =
b − w

b + w

(
n − 1
b − 1

) (
n − 1
w − 1

) (
2n − 1
b + w

)−1

. (5)
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This quantity decays algebraically,

Gn(b, w) % A(b, w)n−2, (6)

in the asymptotic limit n & b, w. The proportionality constant in (6) is

A(b, w) =
(b − w)(b + w − 1)!

(b − 1)!(w − 1)!
2−b−w.

For the special case (b, w) = (2, 1), the first-passage probability (5) is simply

Gn(2, 1) =
1

(2n − 3)(2n − 1)
. (7)

The probability that a tie is ever reached equals the sum 1
1·3 + 1

3·5 + 1
5·7 +· · · = 1

2 , and hence,
there is a finite chance that the initial imbalance in the number of balls is maintained
forever. This behavior is different than that of a one-dimensional random walk. In an
ordinary random walk, the two elementary transitions in (1) occur with probability 1/2,
and the first-passage probability decays algebraically, Gn ∼ n−3/2, for large n. Yet,
the exit probability equals 1, and the random walk is guaranteed to reach the diagonal
B = W . Thus, the one-dimensional random walk is recurrent, but the Pólya urn process
is transient.

3. The exit probability

The exit probability En(b, w) is the likelihood that starting from configuration (b, w), a
tie happens by the time the urn contains 2n balls. The exit probability follows from the
first-passage probability:

En(b, w) =
∑

b≤j≤n

Gj(b, w). (8)

The lower limit reflects that the quickest tie occurs when (B, W ) = (b, b). We are especially
interested in the total exit probability, E(b, w) ≡ limn→∞ En(b, w). From the identity
En(b, w) − En−1(b, w) = Gn(b, w) and equation (6), we conclude the asymptotic behavior

E(b, w) − En(b, w) % A(b, w) n−1, (9)

when n & b, w. In particular, the quantity En(2, 1) = (n − 1)/(2n − 1), that is the sum
of (7), agrees with (9).

To evaluate the total exit probability E(b, w), we introduce the shorthand notation
Ck(b, w) ≡ Gb+k(b, w). With this notation, equation (8) becomes E(b, w) =∑

k≥0 Ck(b, w), and

Ck(b, w) =
b − w

b + w

(
b + k − 1

b − 1

) (
b + k − 1

w − 1

)

(
2b + 2k − 1

b + w

) , (10)

which is obtained by substituting n = b + k into (5). In particular, the quantity

C0(b, w) =
Γ(b)Γ(b + w)

Γ(2b)Γ(w)

is the probability that a tie occurs as quickly as possible.
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In terms of the quantities Ck(b, w), the total exit probability E(b, w) =
∑

j≥b Gj(b, w)
equals

E(b, w) =
∑

k≥0

Ck(b, w). (11)

We now evaluate the ratio of two consecutive first-passage probabilities:

Ck+1(b, w)

Ck(b, w)
=

(k + b)(k + (b − w)/2)(k + (b − w + 1)/2)

(k + 1)(k + b + 1
2)(k + b − w + 1)

. (12)

Given these ratios, the exit probability can be expressed in terms of the hypergeometric
function [29]:

E(b, w) =
Γ(b)Γ(b + w)

Γ(2b)Γ(w)
F

(
b,

b − w

2
,
b − w + 1

2
; b +

1

2
, b − w + 1; 1

)
. (13)

This closed form expression is our second main result. As expected, E(b, b) = 1 and
E(b, 0) = 0.

We also note that the exit probability satisfies the compact recursion relation

E(b, w) =
b

b + w
E(b + 1, w) +

w

b + w
E(b, w + 1), (14)

for all b (= w. The boundary conditions are E(b, b) = 1 and E(b, 0) = 0. This recursion
follows directly from the definition of the stochastic process (1), and is reminiscent of the
recursion equation for an ordinary random walk E(b, w) = 1

2 E(b+1, w)+ 1
2 E(b, w+1) [24].

We use this recursion to analyze extremal and scaling properties of E(b, w) in section 4.

4. Extremal behavior

Intuitively, we expect that when b is fixed, the exit probability increases monotonically
with w. The exit probability is largest when the number of balls is balanced, E(b, b) = 1,
and conversely, the exit probability is smallest when the initial imbalance is maximal,
E(b, 0) = 0. We now discuss the extreme cases of very small and nearly maximal exit
probabilities.

When w = 1, the exit probability decays exponentially with the total number of balls,

E(b, 1) = 21−b. (15)

To obtain this result, we note that when w = 1, two of the arguments of the
hypergeometric function in (13) coincide and hence,

E(b, 1) =
Γ(b)Γ(b + 1)

Γ(2b)
F

(
b

2
,
b − 1

2
; b +

1

2
; 1

)
.

We obtain the expression (15) using the Gauss identity for the hypergeometric function:

F (x, y; z; 1) =
Γ(z − x − y)Γ(z)

Γ(z − x)Γ(z − y)
, (16)

and the following two identities for the Gamma function: Γ(x + 1) = xΓ(x) and
Γ(1

2)Γ(2x) = 22x−1Γ(x)Γ(x + 1
2).
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By substituting E(b, 1) = 21−b into the recursion (14), we have E(b, 2) = (b + 2)2−b.
Similarly, we obtain E(b, 3) = (b2 + 5b + 8)2−b−2 by substituting E(b, 2) into (14). In
general, the exit probability has the form

E(b, w) =
Uw(b)

(w − 1)!
22−w−b, (17)

where Uw(b) is a polynomial of degree w − 1 in the variable b. From equation (14), these
polynomials satisfy the recursion

Uw+1(b) = 2(b + w)Uw(b) − b Uw(b + 1). (18)

Starting with the boundary condition, U1(b) = 1, we have

Uw(b) =






1 w = 1,

b + 2 w = 2,

b2 + 5b + 8 w = 3,

b3 + 9b2 + 32b + 48 w = 4,

b4 + 14b3 + 83b2 + 262b + 384 w = 5.

(19)

Since the coefficient of the dominant term in Uw(b) equals 1, the exit probability decays
exponentially with the total initial population,

E(b, w) % bw−1

(w − 1)!
22−b−w, (20)

when w is finite and b → ∞.
To analyze the behavior in the opposite limit of nearly maximal exit probabilities, we

consider the special case w = b − 1 where the ratio (12) simplifies as follows:

Ck+1

Ck
=

(k + b)(k + 1
2)

(k + 2)(k + b + 1
2)

. (21)

We now shift the index of the first-passage probability by 1, Dk+1 ≡ Ck, with D0 = −1,
and then evaluate the sum (11) to find E(b, b − 1) = 1 − F (b − 1,−1

2 ; b −
1
2 ; 1). Further,

we express the exit probability through Gamma functions by using the identity (16):

E(b, b − 1) = 1 − Γ(b − 1/2)

Γ(b)Γ(1/2)
. (22)

The exit probability increases monotonically with b: E(b, b − 1) = 1/2, 5/8, 11/16 for
b = 2, 3, 4. Moreover, ties become practically certain, E(b, b − 1) % 1 − 1/

√
πb, in the

limit b → ∞.
Along the same lines, we evaluate E(b, b − q) by substituting the form (22) and the

boundary condition E(b, b) = 1 into the recursion (14):

E(b, b − q) = 1 − Γ(b − 1/2)

Γ(b)Γ(1/2)
×






1 q = 1,

2 q = 2,

3
b − 5/3

b − 3/2
q = 3,

4
b − 2

b − 3/2
q = 4.

(23)
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From these examples, we conclude that E(b, b − q) % 1 − q/
√

πb when q is finite and
b → ∞. In other words,

E(b, w) % 1 −
√

2

π

|b − w|√
b + w

, (24)

when the initial imbalance |b − w| is fixed and the total number of balls b + w diverges.
We used the symmetry E(x, y) = E(y, x), so (24) applies for both b > w and w > b. This
equation implies that a tie is nearly certain whenever the initial discrepancy in the number
of balls is much smaller than the square root of the total number of balls. Otherwise, the
exit probability is substantially reduced.

5. Typical behavior

The asymptotic behavior (24) suggests that the exit probability is a function of a single
variable when the total number of balls is very large. Specifically, the scaling function
Φ(z), given by

E(b, w) % Φ(z) with z =
|b − w|√

b + w
, (25)

quantifies the exit probability in the limit b + w → ∞.
To show this scaling behavior, we make the change of variables (b, w) → (z, N) with

the scaling variable z = (b − w)/
√

b + w and the time-like variable N = b + w. Here, the
case b > w is considered without loss of generality. We now consider the limit of very large
N and finite z, substitute E(b, w) = Φ̃(z, N) into the recursion equation (14), and expand
for very large N . Specifically, we substitute b = (N +z

√
N)/2 and w = (N −z

√
N)/2 and

the corresponding expressions for b+1 and w+1 into (14), and identify the leading terms in
the limit N → ∞. This analysis shows that the scaling function Φ(z) ≡ limN→∞ Φ̃(z, N)
satisfies the differential equation

d2Φ(z)

dz2
+ z

dΦ(z)

dz
= 0. (26)

The boundary conditions are Φ(0) = 1 and Φ(∞) = 0. The solution to (26) subject to
these boundary conditions is simply

Φ(z) = erfc

(
z√
2

)
, (27)

where erfc(z) is the complementary error function [29], erfc(x) = (2/
√

π)
∫ ∞

x du exp(−u2).
The scaling function is monotonically decreasing because a larger initial imbalance implies
a smaller exit probability (figure 2). The behaviors of the scaling function for small z and
for large z are as follows:

Φ(z) %
{

1 −
√

2/π z z + 1,
√

2/π z−1 exp(−z2/2) z & 1.
(28)

The small argument behavior agrees with (24), while the large argument behavior is
consistent with (15). Indeed, when w = 1 and b is very large, the scaling variable is
z %

√
b, and hence, lnΦ ∼ −z2 ∼ −b.
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Figure 2. The scaling function Φ(z) given in (27) versus the scaling variable
z (solid line). Also shown is the exit probability E(b, w), given by the exact
expression (13), versus z for three different values of N = b + w (symbols).

The scaling form (25) implies that the likelihood of a tie is appreciable only when the
initial population difference, ∆ = |b − w|, is of the same order as the square root of the
total population, N = b + w, that is,

∆ ∼
√

N. (29)

A tie is nearly certain when the discrepancy is small, ∆+
√

N , but extremely rare when
∆&

√
N .

6. Near ties

There are a number of generalizations of the first-passage process discussed above. Two
natural questions are: (i) what is the probability that the ratio between the majority
population and the majority population is always above a fixed threshold and (ii) what
is the probability that the difference between the two populations is always above a fixed
threshold. In this section, we address the latter problem.

We define Gn(b, w; d) to be the first-passage probability that starting with
configuration (b, w), the difference B − W > d if and only if W < n. In other words
Gn(b, w; d) is the probability that there are at least d more black balls throughout the
evolution and, moreover, this condition is violated for the first time when (B, W ) =
(n + d, n). We obtain the first-passage probability

Gn(b, w; d) =
b − w − d

b + w

(
n + d − 1

b − 1

) (
n − 1
w − 1

)

(
2n + d − 1

b + w

) , (30)

by multiplying the probability (4) for transitioning from (b, w) to (n + d, n) with
the fraction (b − w − d)/(2n + d − b − w) of these paths that do not cross the line
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B = W +d [1]. Of course, this expression matches (5) when d = 0. Again, the asymptotic
behavior in the limit n → ∞ is Gn ∼ n−2.

The exit probability E(b, w; d) is the probability that the line B = W + d is reached
at least once during the evolution. By repeating the steps leading to (13), we find the
exit probability in terms of a hypergeometric function of higher order:

E(b, w; d) =
Γ(b − d)Γ(b + w)

Γ(2b − d)Γ(w)
F (c1, c2, c3, c4; e1, e2, e3; 1). (31)

The corresponding arguments are

c1 = b, c2 =
b − w − d

2
, c3 =

b − w − d + 1

2
, c4 = b − d,

e1 = b +
1 − d

2
, e2 = b − w − d + 1, e3 = b − d

2
.

For near ties, d = 1, there are many similarities with E(b, w) of equation (13). For
example, the exit probability decays exponentially when the initial imbalance is maximal:

E(b, 1; 1) =
b

b − 1
21−b. (32)

Additionally, the exit probability is close to 1 when the initial imbalance is minimal:

E(b, b − 2; 1) = 1 − 1

2(b − 1)
− Γ(b − 1/2)

Γ(b)Γ(1/2)
. (33)

Thus, the behavior E(b, b − 2; 1) % 1 − 1/
√

π b is recovered when b → ∞.

7. Discussion

In summary, we obtained first-passage characteristics of the Pólya urn process as a function
of the initial condition. The first-passage probability that a tie is reached for the first time
when there are 2n balls decays algebraically, Gn ∼ n−2, for large n. The probability that
a tie ever occurs is less than 1; hence ties are not certain. This exit probability decreases
as the initial discrepancy in the number of balls increases. Moreover, there is a universal
scaling behavior when the total initial population is very large. This scaling behavior
implies that the exit probability is appreciable only when the initial population imbalance
is of the order of the square root of the total population.

The key property of the Pólya urn model is that the fraction of white balls approaches
a limiting value, but this value fluctuates from realization to realization. In many other
urn models, however, the opposite is true, and moreover, the two fractions approach the
same limiting value. This is the case for the Friedman urn process [30, 31] which, in its
simplest form, is equivalent to the stochastic process

(B, W ) →
{

(B + 1, W ) with probability W
B+W ,

(B, W + 1) with probability B
B+W .

It will be interesting to investigate first-passage properties of this urn process. We
conjecture that first-passage statistics are much closer to those of the ordinary random
walk.
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In the context of population dynamics and evolutionary biology, continuous time
processes are more appropriate [11]. The continuous time analog of the Pólya urn
model (1) is the two-species branching process, B → B +B and W → W +W , where the
two birth rates are equal. This continuous time process is closely related to the discrete
time urn process. For instance, our results for the total exit probabilities are valid for the
continuous time process as well.
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