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We study growing networks in which each link carries a certain weightsrandomly assigned at birth and fixed
thereafterd. The weight of a node is defined as the sum of the weights of the links attached to the node, and the
network grows via the simplest weight-driven rule: A newly added node is connected to an already existing
node with the probability which is proportional to the weight of that node. We show that the node weight
distributionnswd has a universal tail, that is, it is independent of the link weight distribution:nswd,w−3 as
w→`. Results are particularly neat for the exponential link weight distribution whennswd is algebraic over the
entire weight range.
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I. INTRODUCTION

The network structure lies beneath many physical, bio-
logical, social, economic, and other real-world systems. Ex-
amples include resistor networks, metabolic networks, com-
munication networks like the Internet, information networks
like the World Wide Web, transportation networks, food
webs, etc. Some networks are engineered, while others like
the World Wide Web are created in a chaotic manner, viz., by
the uncoordinated actions of many individuals, and yet they
show a great deal of self-organizationf1g. This surprising
order of seemingly disordered networks was noticed long
ago in the context of random graphsf2,3g, and it is also
apparent in the models of growing random networks that
have been thoroughly studied in the past few yearsssee re-
views f4–6g and references thereind.

Networks or graphs are defined as sets of nodes joined by
links. A link in a graph merely indicates that a given pair of
nodes is connected. If, however, connections differ in
“strength,” one may formalize this property by assigning a
weight to each link. Many real-world networks are intrinsi-
cally weighted. In a collaboration network, the weight of a
link between co-authors measures the strength of the col-
laboration such as the number of jointly authored publica-
tions f7,8g. In the airline transportation network, the weight
of a link between two airports gives the passenger capacity
on this routef9,10g. Thus mathematically the weighted net-
work is a graph in which each link carries a certain number
which is called the weight. Weighted networks appear in the
literature under different names. For instance, the
multigraph—that is, the graph in which two nodes can be
joined by multiple links—can be replaced by the graph in
which a link between two nodes carries the integer weight
equal to the number of links in the original multigraph join-
ing those two nodes. Numerous engineering and mathemati-
cal studies of the flows in networks also treat weighted
networks—the weightsusually termed “capacity”d represents

the maximum allowed flowf11,12g. Resistor networksssee,
e.g.,f13–15gd form another very important class of weighted
networks.

The models of weighted networks are usually close to the
unweighted ones as far as the underlying graph structure is
concerned. In other words, the link weights are passive vari-
ables. This allows us to study weighted networks using the
knowledge of unweighted networks as the starting point
f16,17g. In reality, the link weights can of course affect the
graph structure. The range of possible models in which the
link weights are active variables is extremely broadssee,
e.g.,f18–22gd while the mechanisms driving the evolution of
the real-world networks are still hardly known. In such a
situation, one wants to study a minimal rather than detailed
model. Here we introduce and investigate a minimal model
of the weight-driven growth.

In Sec. II, we introduce the minimal model precisely, and
determine the node weight distribution and the joint node
weight-degree distribution. We then compute the in-
component weight distribution. In Sec. III, we discuss some
generalizations of the minimal model. We conclude in
Sec. IV.

II. THE MODEL

The model is defined as follows. Each link carries a posi-
tive weight w which is drawn from a certain distribution
rswd. We shall assume that the weights are positivef23g. The
weight is assigned to the link when the link is created, and it
remains fixed thereafter. The weight of a node is the sum of
the weights of the links attached to the node. When a new
node is added, it is linked to a single “target” node with
probability proportional to the weight of the target node.

We assume that only one link emanates from each newly
introduced node, so the resulting network is a tree; the gen-
eral case when a few links emanate from each node is dis-
cussed in Sec. III. The weight of a nodesalso termed the
node strength by some authorsd increases when a new link is
attached to it, yet, as the size of the network grows, the node
weight distribution approaches astationarydistribution. Our
first goal is to determine this distribution.
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A. Weight distribution

Let N be the total number of nodes in the network and
NwsNddw the number of nodes whose weight lies in the range
sw,w+dwd. WhenN is large, it can be treated as a continu-
ous variable, andNwsNd satisfies

dNw

dN
=

1

wFE0

w

dxrsw − xdxNx − wNwG + rswd, s1d

wherewsNd=e0
`dwwNwsNd is the total weight of all nodes

f25g. The term in Eq.s1d which is proportional toxNx/w
accounts for nodes with weightx which gain a link of weight
w−x thereby creating nodes of weightw. The termwNw/w is
the corresponding loss term. The last term accounts for the
newly introduced node which has the same weight as its link.

In the largeN limit, NwsNd=Nnswd, i.e., the weight distri-
bution approaches a stationarysN independentd distribution
nswd. Hence, Eq.s1d simplifies to

sl + wdnswd =E
0

w

dxrsw − xdxnsxd + lrswd, s2d

wherel=e0
`dwwnswd is the average node weight. The total

weight of all nodes is twice the total weight of all links
ssince each link connects two nodesd and the same obviously
holds for the average weights. Therefore,

l = 2kwl = 2E
0

`

dwwrswd.

We now specialize Eq.s2d to the uniform link weight
distribution

rswd = H1, w , 1

0, w . 1.
s3d

Using relationl=2kwl=1 and the shorthand notationFswd
=1+e0

wdxxnsxd, we recast Eq.s2d into

s1 + wdnswd = HFswd, w , 1

Fswd − Fsw − 1d, w . 1.
s4d

One can solve Eq.s4d recursively. UsingF8swd=wnswd,
we find that forw,1, the cumulative distribution satisfies
fw−1+1gF8swd=Fswd shereF8=dF/dwd. Solving this equa-
tion subject to the boundary conditionFs0d=1 yields Fswd
=s1+wd−1ew. Therefore, the weight distribution is

nswd = s1 + wd−2ew for w , 1.

On the next interval 1,w,2, we ought to solve

sw−1 + 1d
dF

dw
= F − w−1ew−1.

The solution should match the previous one; this gives the
boundary conditionFs1d=e/2. The resulting cumulative dis-
tribution is F=ew−1se+1−wd / s1+wd, from which we obtain
the node weight distribution

nswd =
ew−1

1 + w
Se+ 1 −w

1 + w
−

1

w
D for 1 , w , 2.

Interestingly, the weight distribution loses continuity at the
cutoff value w=1 of the uniform link weight distribution:
ns1−0d=e/4 while ns1+0d=se−2d /4. Proceeding, one finds
the node weight distribution on the interval 2,w,3, etc.
The distribution is analytic everywhere apart from the inte-
ger values; at the integer valuew=kù2, the node weight
distribution is continuously differentiablek−2 times ssee
Fig. 1d f24g. The analytic expressions for the node weight
distribution are very cumbersome for largew. Fortunately,
the asymptotic behavior is very simple. To extract the
asymptotic, we expand the right-hand side of Eq.s4d using
the Taylor series,

Fswd − Fsw − 1d = F8swd −
1

2
F9swd + ¯

= wnswd −
1

2
fwnswdg8 + ¯.

Plugging this expansion into Eq.s4d, we obtain

w
dn

dw
+ 3n = 0, s5d

which is solved to give

nswd → A

w3 whenw → `. s6d

The amplitudeA cannot be found by solving the linear
equations5d; its determination requires analysis of the full
problems4d.

Note also that for the deterministic link weight distribu-
tion rswd=dsw−1d, the weight of the node is equal to the
degree, so the model becomes equivalent to the basic grow-
ing network model with preferential attachment which also
leads to a node weight distribution withw−3 tail. In general,
the large weight tail of the node weight distribution is always
given by Eq.s6d if the link weight distribution has a cutoff.
To prove this assertion, suppose thatrswd=0 for w.1. For
w.1, Eq. s2d becomes

FIG. 1. The node weight distributionnswd emerging for uniform
and exponential link weight distributions.
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sl + wdnswd = Fswd s7d

with Fswd=e0
1dxrsxdsw−xdnsw−xd; for the uniform distribu-

tion Fswd=Fswd−Fsw−1d and Eq.s7d turns into Eq.s4d.
Expanding the integrand inFswd,

sw − xdnsw − xd = wnswd − xfwnswdg8 + ¯ s8d

yields

Fswd = wnswd −
l

2
fwnswdg8 + ¯, s9d

where relationsedwrswd=1 andedwwrswd=l /2 were used.
In conjunction with Eq.s9d, Eq. s7d reduces to Eq.s5d lead-
ing to the tail given by Eq.s6d. This derivation, as well as the
earlier one that led to Eq.s5d, ignores the higher terms in the
expansions8d. Keeping such terms, one would obtain

w
dn

dw
+ 3n = k2fwnswdg9 −

1

3
k3fwnswdg- + ¯ s10d

with k2=l−1edww2rswd ,k3=l−1edww3rswd, etc. Solving
Eq. s10d gives higher-order corrections to the tail asymptot-
ics

n =
A

w3F1 −
6k2

w
+

36sk2d2 − 4k3

w2 + ¯G s11d

but it does not affect the leadingw−3 tail.
The exponential link weight distribution

rswd = e−w s12d

is particularly appealing as the node weight distribution in
this case is remarkably simple. The governing equations2d
becomes

s2 + wdewnswd =E
0

w

dxxexnsxd + 2. s13d

Writing Gswd=2+e0
wdxxexnsxd, we recast integral equations

s13d into a simple differential equation

S 2

w
+ 1DdG

dw
= G. s14d

We find Gswd=8sw+2d−2ew, from which

nswd =
1

S1 +
w

2
D3 . s15d

Thus for the exponential link weight distribution, the emerg-
ing node weight distribution is scale-freesthat is, purely al-
gebraicd over the entire weight range.

We now outline the behavior for link distributions with
heavy tails. Consider particularly distributions with a power-
law tail rswd,w−n; the exponent must obey the inequality
n.1 to ensure normalizationedwrswd=1. It is easy to check
that for n.3 the leading asymptotic of the node weight dis-
tribution isnswd,w−3; moreover, expansions11d holds up to
the order ofn, wheren is the largest integer smaller thann
si.e., n,n,n+1d f26g. For 2,n,3, the leading term

shows even slower decaynswd,s3−nd−1w−n.
The situation is very different for 1,nø2 when the total

weight grows with size faster than linearly:w,N1/sn−1d. Us-
ing the usual definitionNw=Nnswd, we observe that the
square bracket term in Eq.s1d is negligible for largeN val-
ues. Hencenswd→rswd, suggesting that the number of
nodes with more than one links grows slower than linearly in
N, that is, only the dangling nodes give contribution tonswd.

B. Weight-degree distribution

The node weight distribution is perhaps the most natural,
and therefore readily tractable, local characteristic for net-
works with weight-driven growth. Of course, the degree dis-
tribution remains geometrically the simplest local character-
istic, yet for weighted networks it is generally impossible to
write down a closed equation for the degree distributionnk.
To computenk, one must determine the joint weight-degree
distribution nkswd; the degree distribution is then found by
integration,

nk =E
0

`

dwnkswd. s16d

The weight-degree distribution obeys a set of equations simi-
lar to Eq.s2d. The density of dangling nodes is given by

sl + wdn1swd = lrswd s17d

while for kù2 the weight-degree distribution satisfies

sl + wdnkswd =E
0

w

dxrsw − xdxnk−1sxd. s18d

One can treat Eqs.s17d ands18d recursively, yet even for the
simplest link weight distributions like the uniform distribu-
tion s3d the exact expressions fornkswd become very un-
wieldy as the degree grows. Exceptionally neat results
emerge again for the exponential link weight distribution
s12d. In this case,

s2 + wdewnkswd =E
0

w

dxexxnk−1sxd. s19d

Starting withn1swd=f2/s2+wdge−w we explicitly computed a
few morenkswd which led us to the hypothetical solution(we
use the shorthand notationV=w−2 lnf1+sw/2dg)

nkswd =
1

S1 +
w

2
D3

Vk−1e−V

sk − 1d!
. s20d

fOf course, the above ansatz agrees with the sum rulenswd
=okù1nkswd.g Having guessed the solution, it is then straight-
forward to verify its validity. Note that asymptoticallysk
@1d, the joint weight-degree distribution approaches a
Gaussian centered aroundV=k−4, or wk<k+2 ln k, with
width ~Îk. Interestingly, the average weight of the nodes of
degreek, viz., wk<k+2 ln k, slightly exceedsf27g the ex-
pected valuewk=k.
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The degree distribution does not admit a simple closed
form even for the exponential link weight distribution. The
exact expression

nk =E
0

` dV

w

2
S1 +

w

2
D2

Vk−1e−V

sk − 1d!
s21d

simplifies for k@1. Indeed, utilizing two properties of the
quantity Vke−V /k!, viz., sid it has a sharp maximum atV
=k and sii d e0

`dVVke−V /k!=1, we estimate the integral in
Eq. s21d as the value of the slowly varying part of the inte-
grand sw/2d−1f1+sw/2dg−2 near the maximum, i.e., atwk

<k+2 ln k. Thus

nk =
8

k3 − 48
ln k

k4 + Osk−4d. s22d

C. In-component weight distribution

The emerging network has the natural structure of adi-
rectedgraph since each new link starts at the new node and
ends up at some previous node. Taking into account the ori-
entation of each link allows us to define anin-componentand
an out-componentwith respect to each node. For instance,
the in-component of nodex is the set of all nodes from
which nodex can be reached following a path of directed
links sFig. 2d. The computation of in- and out-component
size distributions is quite complicated as one must first de-
termine joint distributions that involve both size and weight.
In contrast, in- and out-component weight distributions can
be determined directly. Here we compute the in-component
weight distribution.

Let w0 be the weight of the link emanating from nodex
andw the total weight of all other links in the in-component
of nodex; then the total weight of that in-component, that is,
the sum of weights of all nodes in the in-component of node
x, is w0+2w. Denote by isw0,wd the density of such in-
components. Here we tacitly assume thatw.0, that is, the
size of the in-components is larger than 1. The densityisw0d
of in-components of size 1 and weightw0 is found by noting
that such in-components are just dangling nodes, so

isw0d ; n1sw0d =
l

l + w0
rsw0d. s23d

The densityisw0,wd satisfies

lisw0,wd =E
0

w

dxrsw − xdsw0 + 2xdisw0,xd

− sw0 + 2wdisw0,wd + isw0dw0rswd.

For the exponential link weight distributions12d, this
equation can be rewritten in a simple form

S 2

w0 + 2w
+ 1D ]G

]w
= G, s24d

whereG=Gsw0,wd is the auxiliary variable

G =E
0

w

dxexsw0 + 2xdisw0,xd +
2w0

2 + w0
e−w0. s25d

Solving Eq.s24d, we obtain

Gsw0,wd = Gsw0,0d
2 + w0

2 + w0 + 2w
ew.

Equation s25d gives the initial condition, so the auxiliary
variable reads

G =
2w0

2 + w0 + 2w
ew−w0.

This result leads to the in-component density

isw0,wd =
2w0

s2 + w0 + 2wd2e−w0. s26d

Now the total weight of the in-component iss=w0+2w, and
the respective weight distributionIssd is

Issd = issd +
1

2
E

0

s

dw0ifw0,ss− w0d/2g. s27d

Plugging Eqs.s23d and s26d into Eq. s27d, we arrive at

Issd =
1

s2 + sd2 + F 1

2 + s
+

1

s2 + sd2Ge−s. s28d

Therefore, up to an exponentially small correction, the in-
component weight distribution is algebraic with exponent 2
sthe same exponent characterizes the in-component size dis-
tribution f28g, which is not so surprising as this exponent is
found to be very robustd.

III. GENERALIZATIONS

The model of the previous section always results in a tree
structure by construction. In this section, we consider two
generalizations of that model which allow the formation of
loops in the evolving network.

The simplest generalization of the minimal model leading
to a network with many loops is to connect a newly created
node tom.1 target nodes. The attachment probability is still

FIG. 2. In- and out-components of nodex. In this example, the
out-component has size 3 and the in-component has size 5snodex
itself belongs to its in- and out-componentsd.
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proportional to the weight of the target node as before, and
the weights of them new links are chosen independently
from the link weight distributionrswd. The weight of the
newly introduced node becomes the sum of them indepen-
dent link weights, which is then distributed according to
rmswd, them-fold convolution ofrswd. The governing equa-
tion thus remains similar to Eq.s1d except that the last term
rswd becomesrmswd, and the square bracketed term gains a
factor m due to them attached links. As the average node
weight is alsom times larger than previously, that is,l
=2mkwl, and the node density satisfies equation

s2kwl + wdnswd =E
0

w

dxrsw − xdxnsxd + 2kwlrmswd,

which is almost identical to Eq.s2d, the only difference is the
second term on the right-hand side, which now contains
rmswd instead ofrswd. The modified model leads to the same
,w−3 tail for the node weight distribution for anyrswd with
a cutoff since thenrmswd also has a cutoff and the same
argument applies as before. For the exponential link weight
distribution rswd=e−w the convoluted distribution isrmswd
=e−wwm−1/ sm−1d!, and the resulting node weight distribu-
tion is algebraicsup to an exponentially small correctiond,

nswd → 2msm+ 3d
s2 + wd3 for w @ 1. s29d

A more substantial generalization of the minimal model
can be obtained by combining two processes: In addition to
the original process of creating and linking new nodes to the
network sSec. IId, links between already existing nodes are
created as wellf29g. We again choose the simplest weight-
driven rule, namely we assume that a new link between two
existing nodes is created with a rate proportional to the prod-
uct of their weights. Letr be the average number of link
creations between already existing nodes per node creation,
so in the network withN nodes the average number of links
is s1+rdN. This can be modeled by two independent pro-
cesses: with probability 1/s1+rd, a new node is attached to
the network, and with probabilityr / s1+rd, a new link is
added between two already existing nodes. The weights of
the new links created in both processes are drawn indepen-
dently from the same distributionrswd. The node weight
distribution NwsNd satisfies an equation similar to Eq.s1d,
with the term in the square brackets multiplied bys1
+2rd /w. The governing equation for the normalized weight
distributionnswd is therefore almost identical to Eq.s2d; the
only change is the replacementl→L=l / s1+2rd,

sL + wdnswd =E
0

w

dxrsw − xdxnsxd + Lrswd. s30d

The average node weightl=e0
`dwwnswd is now equal to

2s1+rdkwl since the number of links 1+r times exceeds the
number of nodes and each link contributes twice. Multiply-
ing Eq. s30d by w and integrating overw, we indeed obtain
l=2s1+rde0

`dwwrswd, thereby providing a useful check of
self-consistency.

For the exponential link weight distributions12d, the node
weight distribution satisfies

S1 +
1 + 2r

2 + 2r
wDewnswd = 1 +

1 + 2r

2 + 2r
E

0

w

dxxexnsxd.

Solving this equation, we again obtain the purely algebraic
node weight distribution,

nswd = S1 +
1 + 2r

2 + 2r
wD−n

, n =
3 + 4r

1 + 2r
.

The exponentn monotonously decreases from 3 to 2 asr
increases from 0 tò .

IV. CONCLUSIONS

We examined a minimal model for the weight-driven net-
work growth. The virtue of the minimal model is that its
many features, such as the node weight distribution, the joint
node weight-degree distribution, the in-component weight
distribution, etc., are tractable analytically. In particular, we
showed that the node weight distribution exhibits a universal
w−3 tail independently of the link weight distributionsas long
as the tail of the latter is sharper thanw−3d, and the in-
component weight distribution displays a robusts−2 tail.

Remarkably simple behaviors characterize the exponen-
tial link weight distribution: The emerging node weight dis-
tribution is purely algebraic, while the joint node weight-
degree distribution and the in-component weight distribution
are also given by neat closed formulas.

We also studied generalizations of the minimal model for
the weight-driven network growth. When a new node is con-
nected to several target nodes and/or links are additionally
created between already existing nodes, the network acquires
loops yet it remains tractable. One generic feature of this
class of models is that the node weight distribution remains
algebraic,nswd,w−n, with the exponentn varying from 3 to
2 as the average node degree increases from 1 to`.
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