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Weight-driven growing networks
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We study growing networks in which each link carries a certain weigtmdomly assigned at birth and fixed
thereafter. The weight of a node is defined as the sum of the weights of the links attached to the node, and the
network grows via the simplest weight-driven rule: A newly added node is connected to an already existing
node with the probability which is proportional to the weight of that node. We show that the node weight
distributionn(w) has a universal tail, that is, it is independent of the link weight distributigw) ~w™=2 as
w— oo, Results are particularly neat for the exponential link weight distribution witenis algebraic over the
entire weight range.
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I. INTRODUCTION the maximum allowed flowW11,12. Resistor networkssee,
i i . e.g.,[13-15) form another very important class of weighted
The network structure lies beneath many physical, bioy,enworks.

logical, social, economic, and other real-world systems. Ex-  The models of weighted networks are usually close to the
amples include resistor networks, metabolic networks, comynyeighted ones as far as the underlying graph structure is
munication networks like the Internet, information networks ~qncerned. In other words, the link weights are passive vari-

like the World Wide Web, transportation networks, food gpjes. This allows us to study weighted networks using the
webs, etc. Some networks are engineered, while others likgoyledge of unweighted networks as the starting point
the World Wide Web are created in a chaotic manner, viz.,, by16 17, In reality, the link weights can of course affect the
the uncoordinated actions of many individuals, and yet thelgraph structure. The range of possible models in which the
show a great deal of self-organizatiph]. This surprising  |ink weights are active variables is extremely bro@ee,
order of seemingly disordered networks was noticed long, 4 118-22) while the mechanisms driving the evolution of
ago in the context of random graph3,3], and it is also  the real-world networks are still hardly known. In such a

apparent in the models of growing random networks thakiyation, one wants to study a minimal rather than detailed
have been thoroughly studied in the past few y&ae® re-  model. Here we introduce and investigate a minimal model

views [4—6] and references thergin of the weight-driven growth.

_ Networks or graphs are defined as sets of nodes joined by |, gec. 11, we introduce the minimal model precisely, and
links. A link in a graph merely indicates that a given pair of getermine the node weight distribution and the joint node
nodes is connected. If, however, connections differ inweight—degree distribution. We then compute the in-
“strength,” one may formalize this property by assigning acomponent weight distribution. In Sec. Ill, we discuss some
weight to each link. Many real-world networks are intrinsi- generalizations of the minimal model. We conclude in
cally weighted. In a collaboration network, the weight of agec v/

link between co-authors measures the strength of the col-
laboration such as the number of jointly authored publica-
tions[7,8]. In the airline transportation network, the weight
of a link between two airports gives the passenger capacity
on this routef9,10]. Thus mathematically the weighted net-  the model is defined as follows. Each link carries a posi-
work is a graph in which each link carries a certain numberjye weight w which is drawn from a certain distribution
which is called the weight. Weighted networks appear in thep(w)_ We shall assume that the weights are posit2&]. The
literature under different names. For instance, th€yeight is assigned to the link when the link is created, and it
multigraph—that is, the graph in which two nodes can be&gmains fixed thereafter. The weight of a node is the sum of
joined by multiple links—can be replaced by the graph iny,e \weights of the links attached to the node. When a new
which a link between two nodes carries the integer weighf, 4e is added, it is linked to a single “target” node with

equal to the number of links in the original multigraph join- tprobability proportional to the weight of the target node.
ing those two nodes. Numerous engineering and mathemati- \yia assume that only one link emanates from each newly

cal studies of the flows in networks also treat weightedyyoqyced node, so the resulting network is a tree; the gen-
networks—the weightusually termed “capacity’represents  gr5| case when a few links emanate from each node is dis-
cussed in Sec. lll. The weight of a nodalso termed the
node strength by some authpiscreases when a new link is
*On leave from Institute for Theoretical Physics—HAS, Eétvosattached to it, yet, as the size of the network grows, the node
University, Budapest, Hungary. weight distribution approachesssationarydistribution. Our
"Electronic address: paulk@bu.edu first goal is to determine this distribution.

Il. THE MODEL
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A. Weight distribution 1

uniform ——
ﬁal ————
Let N be the total number of nodes in the network and os } e
N,(N)dw the number of nodes whose weight lies in the range \
(w,w+dw). WhenN is large, it can be treated as a continu- o6}
ous variable, andN,(N) satisfies g
04|
dN, 1 J W
— == dxp(w — X)XN, —w + p(w), 1 I
N W{OXP( XN =WN,, [ +p(w), (1) 02
wherew(N)=[gdwwN,(N) is the total weight of all nodes 0o 1 2 3 4
[25]. The term in Eq.(1) which is proportional toxN,/w w

accounts for nodes with weigktwhich gain a link of weight
w—X thereby creating nodes of weight The termwN,,/w is
the corresponding loss term. The last term accounts for th
newly introduced node which has the same weight as its link. )
In the largeN limit, N,,(N)=Nn(w), i.e., the weight distri- _ e etl-w 1
. . ) SN n(w) = ———] forl<w<2.
bution approaches a stationalfyt independentdistribution 1+w\ 1+w w
n(w). Hence, Eq(1) simplifies to

FIG. 1. The node weight distributiamw) emerging for uniform
%nd exponential link weight distributions.

Interestingly, the weight distribution loses continuity at the
w cutoff valuew=1 of the uniform link weight distribution:
(N +w)n(w) = J dxp(W = X)xn(X) + Ap(W), (20 n(1-0)=e/4 while n(1+0)=(e-2)/4. Proceeding, one finds
0 the node weight distribution on the intervakav<3, etc.
where\ = [5dwwr(w) is the average node weight. The total The distribution is analytic everywhere apart from the inte-
weight of all nodes is twice the total weight of all links 9€r values; at the integer valwe=k=2, the node weight
(since each link connects two nodlemd the same obviously distribution is continuously differentiabl&—2 times (see

holds for the average weights. Therefore, F_ig. _1) [_24]. The analytic expressions for the node weight
distribution are very cumbersome for large Fortunately,

> the asymptotic behavior is very simple. To extract the
A=2w) = Zfo dwwp(w). asymptotic, we expand the right-hand side of F4).using

the Taylor series,
We now specialize Eq(2) to the uniform link weight

T 1
distribution F(w) - F(w-1) = F'(w) - E|:"(W) e

o=+ "=t 3 1
0, w>1. :wn(w)—E[wn(w)]’+-~.

Using relation\=2(w)=1 and the shorthand notatid#(w) PILGGIng thi ion into E btai
=1+[¥dxxn(x), we recast Eq(2) into ugging this expansion into E¢4), we obtain

dn

F(w), w<1 W— +3n=0 (5)
1+ = 4 )
(1 +wn(w) {F(W)—F(W—l), w> 1. @ dw
One can solve Eq4) recursively. Usinge’(w)=wn(w), ~ Which is solved to give

we find that forw<1, the cumulative distribution satisfies A
[w+1]F’(w)=F(w) (hereF’=dF/dw). Solving this equa- n(w) — — whenw — . (6)

tion subject to the boundary conditidf(0)=1 yields F(w) we

_ 2w ) L I
(1+w)~'e". Therefore, the weight distribution is The amplitudeA cannot be found by solving the linear

n(w) = (1 +w) 2" forw<1. equation(5); its determination requires analysis of the full
problem(4).
On the next interval ¥ w<2, we ought to solve Note also that for the deterministic link weight distribu-

tion p(w)=48(w-1), the weight of the node is equal to the
degree, so the model becomes equivalent to the basic grow-
ing network model with preferential attachment which also
leads to a node weight distribution withi® tail. In general,

The solution should match the previous one; this gives thehe large weight tail of the node weight distribution is always
boundary conditior-(1) =e/2. The resulting cumulative dis- given by Eq.(6) if the link weight distribution has a cutoff.
tribution is F=e""}(e+1-w)/(1+w), from which we obtain  To prove this assertion, suppose tpétv)=0 for w>1. For

the node weight distribution w>1, Eq.(2) becomes

dF
Wt+1)—=F-wle"t
dw
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(N +w)n(w) = d(w) (7)  shows even slower decayw)~ (3-v)"'w™.

. . . The situation is very different for £ v<2 when the total
with <I>(W)=f(1)pr(x)(w—x)n(w—x); for the uniform distribu- weight grows with size faster than linearky~ N~ Us-

tion ®(w)=F(w)-F(w-1) and Eq.(7) tums into Eq.(4).  ing the usual definitionN,,=Nn(w), we observe that the
Expanding the integrand i (w), square bracket term in E@l) is negligible for largeN val-

(W = X)N(W = X) = wn(w) = x[wn(w)]’ +-+- (8) ues. Hencen(w)— p(w), suggesting that the number of
_ nodes with more than one links grows slower than linearly in
yields N, that is, only the dangling nodes give contributiomtev).
)\ ’
d(w) =wn(w) — E[W”(W)] tey 9 B. Weight-degree distribution

The node weight distribution is perhaps the most natural,
and therefore readily tractable, local characteristic for net-
works with weight-driven growth. Of course, the degree dis-
tribution remains geometrically the simplest local character-
istic, yet for weighted networks it is generally impossible to
write down a closed equation for the degree distributign

where relationd'dwp(w) =1 and[dwwp(w)=\/2 were used.
In conjunction with Eq(9), Eq. (7) reduces to Eq(5) lead-
ing to the tail given by Eq(6). This derivation, as well as the
earlier one that led to E@5), ignores the higher terms in the
expansion8). Keeping such terms, one would obtain

dn , 1 " To computen,, one must determine the joint weight-degree
Waw 3n =k wn(w)]" - §KS[W”(W)] ++ (10 (gistribution n(w); the degree distribution is then found by
integration,
with k=N dww’p(w), kg3=\"1 [ dwwPp(w), etc. Solving B
ch (10) gives higher-order corrections to the tail asymptot- n= j dwn(w). (16)
0
2
= Al, _bxe M The weight-degree distribution obeys a set of equations simi-
n 1 + + (11 ' . SHb
wi w w? lar to Eq.(2). The density of dangling nodes is given by
but it does not affect the leading™ tail. (N +W)ny(W) = Ap(W) (17)
The exponential link weight distribution
_ while for k=2 the weight-degree distribution satisfies
p(w)=e™ (12)
W
is particularly appealing as the node weight distribution in (N + wW)n,(w) :f dxp(W = X)Xny_1(X). (18)
this case is remarkably simple. The governing equati®n 0
becomes )
One can treat Eq$17) and(18) recursively, yet even for the
" simplest link weight distributions like the uniform distribu-
(2 +w)e*n(w) = f 0 dxxen(x) +2. (13 tion (3) the exact expressions fai(w) become very un-

wieldy as the degree grows. Exceptionally neat results
Writing G(w)=2+[{'dxxen(x), we recast integral equations emerge again for the exponential link weight distribution

(13) into a simple differential equation (12). In this case,
2 dG _ w
w +1 aw G. (14) (2 +w)en(w) = fo dxexn,_q(X). (19

. _ o .
We find G(w)=8(w+2)""€", from which Starting withn;(w)=[2/(2+w)]e™™ we explicitly computed a

1 few moren,(w) which led us to the hypothetical solutigwe
n(w) = w\3 (15 use the shorthand notatidd=w-2 In[1+(w/2)])
(1 " 2) 1 Qk—le—&l
Th - . o n(w) = 30 (20
us for the exponential link weight distribution, the emerg- w\® (k= 1)!
ing node weight distribution is scale-fréthat is, purely al- (1 +E)

gebraig over the entire weight range.

We now outline the behavior for link distributions with [Of course, the above ansatz agrees with the sumntug
heavy tails. Consider particularly distributions with a power-=2,-1n(w).] Having guessed the solution, it is then straight-
law tail p(w) ~w™”; the exponent must obey the inequality forward to verify its validity. Note that asymptoticallgk
v>1 to ensure normalizatiofdwp(w)=1. It is easy to check >1), the joint weight-degree distribution approaches a
that for »>3 the leading asymptotic of the node weight dis- Gaussian centered aroudl=k-4, or w,~k+2Ink, with
tribution isn(w) ~w™3; moreover, expansiofil) holds up to  width = k. Interestingly, the average weight of the nodes of
the order ofn, wheren is the largest integer smaller than  degreek, viz., w,=k+2 Ink, slightly exceed427] the ex-
(i.e., n<v<n+1) [26]. For 2<v<3, the leading term pected valuev=k.
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P i

< . A
;" in—component *«_ i(Wo) = ny(Wp) = ——p(Wp). (23

out—component

\ A+ WO
w ! \’ S The densityi(wy, W) satisfies
0, |
! w
DD i (Wo,w) = f dxp(w = X)(Wp + 2X)i (Wg,X)
" 0
........ — (Wo + 2W)i (Wo,W) + i (W) Wgp(W)..

For the exponential link weight distributiofll2), this

. equation can be rewritten in a simple form
FIG. 2. In- and out-components of nodeln this example, the q P

out-component has size 3 and the in-component has sigedex ( 2 )5(3
. . . _ - + —_—
itself belongs to its in- and out-components Wo + 2W

o G, (29

The degree distribution does not admit a simple closedvhereG=G(wp,w) is the auxiliary variable

form even for the exponential link weight distribution. The w oW
exact expression G= f dxe(wg + 2X)i (Wg,X) + 9 _gwo, (25)
0 2 +wy
(7 do oFte? Solving Eq.(24), we obtain
n, = 3 ] (21)
0o W w\“ (k=1)! o4

2012 GlWo,W) = G, 0)5—— 2 —g.

2 +wy+ 2w

simplifies fork>1. Indeed, utilizing two properties of the Equation (25) gives the initial condition, so the auxiliary
quantity Q%e™?/K!, viz., (i) it has a sharp maximum &  variable reads
=k and (i) [5dQQ*e¥/kI=1, we estimate the integral in

Eqg. (21) as the value of the slowly varying part of the inte- G= ﬂew—%_
grand (W/2)" 1+(w/2)]2 near the maximum, i.e., at 2+Wo+ 2w
~k+2Ink. Thus This result leads to the in-component density
2w,
8 Ink B ; — 0 W,
=15~ 4877 + Ok™). (22) WoW) = o ot 2w2e (26)

Now the total weight of the in-componentssw,+ 2w, and

the respective weight distributidits) is

C. In-component weight distribution
S

The emerging network has the natural structure dfi-a I(s)=i(s) + }f dwgi[wo, (s—Wp)/2]. (27
rectedgraph since each new link starts at the new node and 2Jo

ends up at some previous node. Taking into account the or
entation of each link allows us to define mrcomponenand

an out-componentvith respect to each node. For instance, 1 1 1 _
the in-component of node& is the set of all nodes from I(s) = (2+9)? + {2+S+ (2+S)2}e °
which nodex can be reached following a path of directed

links (Fig. 2. The computation of in- and out-component Therefore, up to an exponentially small correction, the in-
size distributions is quite complicated as one must first decomponent weight distribution is algebraic with exponent 2
termine joint distributions that involve both size and weight. (the same exponent characterizes the in-component size dis-
In contrast, in- and out-component weight distributions cartribution [28], which is not so surprising as this exponent is
be determined directly. Here we compute the in-componenfiound to be very robugt

weight distribution.

Let wy be the weight of the link emanating from noge
andw the total weight of all other links in the in-component
of nodex; then the total weight of that in-component, thatis, The model of the previous section always results in a tree
the sum of weights of all nodes in the in-component of nodestructure by construction. In this section, we consider two
X, is Wo+2w. Denote byi(wo,w) the density of such in- generalizations of that model which allow the formation of
components. Here we tacitly assume that O, that is, the loops in the evolving network.

if’lugging Eqs(23) and(26) into Eq.(27), we arrive at

(28)

IIl. GENERALIZATIONS

size of the in-components is larger than 1. The derisity) The simplest generalization of the minimal model leading
of in-components of size 1 and weighy is found by noting  to a network with many loops is to connect a newly created
that such in-components are just dangling nodes, so node tom> 1 target nodes. The attachment probability is still
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proportional to the weight of the target node as before, and w

the weights of them new links are chosen independently (A+w)n(w)=J dxp(w —x)xn(x) + Ap(w).  (30)
from the link weight distributionp(w). The weight of the 0

newly introduced node becomes the sum of théndepen- The average node Weigm:fa"dwwrfw) is now equa| to
dent link weights, which is then distributed according to2(1+r)(w) since the number of links 1r+times exceeds the
pm(W), them-fold convolution ofp(w). The governing equa- ymper of nodes and each link contributes twice. Multiply-
tion thus remains similar to Eq1) except that the last term jhg Eq. (30) by w and integrating ovew, we indeed obtain

p(w) becomespry(w), and the square bracketed term gains & =2(1+r) f;dwwp(w), thereby providing a useful check of
factor m due to them attached links. As the average node self-consistency.

weight is alsom times larger than previously, that i3, For the exponential link weight distributid 2), the node
=2m{w), and the node density satisfies equation weight distribution satisfies
w 1+2r \ o L1+ ("
(2(w) +w)n(w) = f dxp(w = X)XN(X) + 2(W)p(W), 1+ o)W =1+ . dxxen(x).
0

. . ) _ ) Solving this equation, we again obtain the purely algebraic
which is almost identical to Ed2), the only difference is the 5qe weight distribution

second term on the right-hand side, which now contains

pm(w) instead ofp(w). The modified model leads to the same : +2r \77 3+

~w3 tail for the node weight distribution for arp(w) with nw)={1+ 24+ 2rW AP

a cutoff since therp,(w) also has a cutoff and the same

argument applies as before. For the exponential link weighf "€ €XPonent monotonously decreases from 3 to 2ras
distribution p(w)=e™ the convoluted distribution ig,(w)  ncreases from O te.

=e"w™?/(m-1)!, and the resulting node weight distribu- IV. CONCLUSIONS

tion is algebraiqup to an exponentially small correctign

We examined a minimal model for the weight-driven net-
2m(m+ 3) work growth. The virtue of the minimal model is that its
n(w) — “2+w? forw>1. (299 many features, such as the node weight distribution, the joint
node weight-degree distribution, the in-component weight
A more substantial generalization of the minimal modeldistribution, etc., are tractable analytically. In particular, we
can be obtained by combining two processes: In addition t@howed that the node weight distribution exhibits a universal
the original process of creating and linking new nodes to thev2 tail independently of the link weight distributidias long
network (Sec. 1), links between already existing nodes areas the tail of the latter is sharper thav®), and the in-
created as wel[29]. We again choose the simplest weight- component weight distribution displays a robsst tail.
driven rule, namely we assume that a new link between two Remarkably simple behaviors characterize the exponen-
existing nodes is created with a rate proportional to the prodtial link weight distribution: The emerging node weight dis-
uct of their weights. Letr be the average number of link tribution is purely algebraic, while the joint node weight-
creations between already existing nodes per node creatiodegree distribution and the in-component weight distribution
so in the network witiN nodes the average number of links are also given by neat closed formulas.
is (1+r)N. This can be modeled by two independent pro- We also studied generalizations of the minimal model for
cesses: with probability 11+r), a new node is attached to the weight-driven network growth. When a new node is con-
the network, and with probability/(1+r), a new link is nected to several target nodes and/or links are additionally
added between two already existing nodes. The weights dfreated between already existing nodes, the network acquires
the new links created in both processes are drawn indepetPops yet it remains tractable. One generic feature of this
dently from the same distributiop(w). The node weight class of models is that the node weight distribution remains
distribution N,(N) satisfies an equation similar to E¢),  algebraicn(w)~w™", with the exponent varying from 3 to
with the term in the square brackets multiplied b 2 as the average node degree increases fromed to
+2r)/w. The governing equation for the normalized weight

distributionn(w) is therefore almost identical to ER); the ACKNOWLEDGMENT

only change is the replacemexnt> A=x\/(1+2r), T.A. thanks the Swiss NSF for financial support.

[1] S. N. Dorogovtsev and J. F. F. Mend&s/olution of Networks: Physics ApproaciiCambridge University Press, Cambridge,
From Biological Nets to the Internet and WW\Wxford Uni- 2004).
versity Press, Oxford, 2003R. Pastor-Satorras and A. Vespig- [2] P. Erdss and P. Rényi, Publ. Math. Inst. Hung. Acad. S;il17
nani, Evolution and Structure of the Internet: A Statistical (1960.

026103-5



T. ANTAL AND P. L. KRAPIVSKY PHYSICAL REVIEW E 71, 026103(2005

[3] B. Bollobas,Random GraphgAcademic, London, 1985 [21] P. J. Macdonald, E. Almaas, and A.-L. Barabasi, e-print cond-

[4] R. Albert and A.-L. Barabasi, Rev. Mod. Phy24, 47 (2002. mat/0405688.

[5] P. L. Krapivsky and S. Redner, Comput. Net8®, 277(2002. [22] A. Barrat, M. Barthélemy, and A. Vespignani, Phys. Rev. Lett.

[6] M. E. J. Newman, SIAM Rev45, 167 (2003. 92, 228701(2004; Phys. Rev. E70, 066149(2004).

[7]M. E. J. Newman, Phys. Rev. B4, 016131 (2001; 64, [23] Negative weights are occasionally appropriate, e.g., they can
016132(2001). represent animosity between individuals in a social network.

[8] A-L. Barabési, H. Jeong, Z. Neda, E. Ravasz, A Schubert[24] The analyticity of the node weight distributiomw) breaks
. . L L T " down at integer values as is obvious from E4). Differenti-

and T. Vicsek, Physica /311, 590 (2002. . - )
[9] R. Guimera, M gales-Par](;Io argd LzA N. Amaral, e-print ating Eq. (4), one can expre_s:F(k l).(w) via Fw), F.(W
' o ’ i ! -1),...,F(w=k+1). SinceF(w) is continuous but not differ-

cond-mat/0312535. | . ) entiable atw=1, the cumulative distribution is continuously
[10] A. Barrat, M. Barthélemy, and A. Vespignani, Proc. Natl. differentiablek- 1 times aw=k (implying that the weight dis-

Acad. Sci. U.S.A.101, 3747(2004. _ tribution is continuously differentiable-2 times.
[11] L. R. Ford and D. R. Fulkersorflows in NetworkgPrinceton  [25] N s a discrete variable arid,(N) are random variables. Treat-

University Press, Princeton, NJ, 1962 ing N as a continuous variable ah,(N) as the average values
[12] R. K. Ahuja, T. L. Magnanti, and J. B. OrlitNetwork Flows: of the corresponding random variables is asymptotically exact

Theory, Algorithms, and Application@rentice Hall, Engle- when the weight is sufficiently small; see, e.g., P. L. Krapivsky

wood Cliffs, NJ, 1993 and S. Redner, J. Phys. 85, 9517 (2002 for the detailed
[13] P. G. Doyle and J. L. SnelRandom Walks and Electric Net- analysis of these issues in the model where growth is governed

works (Math. Assoc. Amer., Washington, D.C., 1984 by preferential attachment.
[14] L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Re8B  [26] For integerv=4, the vth term in expansior{11) acquires a

4725(1985; 34, 4656(1986. logarithmic correction; forr=3, even the leading-order term
[15] R. Rammal, C. Tannous, P. Breton, and A.-M. S. Tremblay, has a logarithmic correction(w) ~ w3 In(w).

Phys. Rev. Lett54, 1718(1985. [27] The expected value for the sum kfindependent identically
[16] M. E. J. Newman, e-print cond-mat/0407503. distributed random variables taken from the exponential distri-
[17] E. Almaas, P. L. Krapivsky, and S. Redner, e-print cond-mat/ bution isw=k; in the present case, the average weight of the

0408295. node of large degree islightly) higher since the growth is
[18] S. H. Yook, H. Jeong, A.-L. Barabasi, and Y. Tu, Phys. Rev. weight-driven.

Lett. 86, 5835(2001). [28] P. L. Krapivsky and S. Redner, Phys. Rev. 3, 066123
[19] J. D. Noh and H. Rieger, Phys. Rev. @, 066127(2002. (2001).

[20] D. Zheng, S. Trimper, B. Zheng, and P. M. Hui, Phys. Rev. E[29] P. L. Krapivsky, G. J. Rodgers, and S. Redner, Phys. Rev. Lett.

67, 040102R) (2003. 86, 5401(2002).

026103-6



