HOMEWORK 1

- (1) Let u be $C^2(D)$ function solving the following nonlinear equation $Lu = \operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right)$ in the punctured ball $D = B_1 \setminus \{0\} = \{0 < |x| < 1\}$. Under what condition L is elliptic in the ball B_1 ?
- (2) Let $u \in C^2(B_1) \cap C^1(\overline{B_1})$ be harmonic in B_1 . Prove that

$$\sup_{B_1} |Du| \le \sup_{\partial B_1} |Du|.$$

(3) Let $u \in C^2(B_1) \cap C^1(\overline{B_1})$ be subharmonic in B_1 . Prove that if v is harmonic in B_1 and v = u on ∂B_1 then

$$\int_{B_1} |Du|^2 \ge \int_{B_1} |Dv|^2.$$

(4) Let u be harmonic in B_r such that $u \ge 0$ in B_1 . Let $z \in \partial B_r$ such that u(z) = 0and $|\partial_{\nu}u(z)| \le K$. Then there is a dimensional constant C such that

$$u(0) \le CKr.$$

Hint: Use the construction in the proof of Hopf's lemma.

(5) (The Liouville theorem) Let u be harmonic in \mathbb{R}^n and there is a constant C > 0 such that

$$|u(x)| \le C|x|.$$

Prove that u is a linear function, i.e. $u(x) = a + \sum_{i=1}^{n} b^{i} x_{i}$ for some $a, b^{i} \in \mathbb{R}, i = 1, ..., n$.