SCHAUDER ESTIMATES

The proof to follow is contained in the paper of Xu-Jia Wang [W].

Theorem 1. Let $u \in C^2$ be a solution of

(1)
$$\Delta u = f \quad in \ B_1(0)$$

where f is Dini continuous, i.e. $\int_0^1 \frac{\omega(t)}{t} dt < \infty$ where $\omega(t) = \sup_{|x-y| < t} |f(x) - f(y)|$. Then for all $x, y \in B_{\frac{1}{2}}(0)$ we have

(2)
$$|D^2 u(x) - D^2 u(y)| \le C_n \left[d \sup_{B_1} |u| + \int_0^d \frac{\omega(t)}{t} dt + d \int_d^1 \frac{\omega(t)}{t^2} dt \right]$$

where $d = |x - y|, C_n > 0$ depends only on dimension n. It follows that if $f \in C^{\alpha}(B_1)$ then

(3)
$$\|u\|_{C^{2,\alpha}(B_{\frac{1}{2}})} \le C_n \left[\sup_{B_1} |u| + \frac{\|f\|_{C^{\alpha}(B_1)}}{\alpha(1-\alpha)} \right], \quad if \ \alpha \in (0,1),$$

(4)
$$|D^{2}u(x) - D^{2}u(y)| \le C_{n}d \left[\sup_{B_{1}} |u| + ||f||_{C^{\alpha}(B_{1})} |\log d| \right], \quad if \ \alpha = 1.$$

Proof. Step 1

From Bernstein's estimate we have that

(5)
$$|D^k w(0)| \le C_{n,k} r^{-|k|} \sup_{B_r} |w|$$

for any harmonic function w in B_1 . Here $C_{n,k}$ is a constant depending only on n and k.

Denote $B_k = B_{\rho^k}(0), \rho = \frac{1}{2}$. For k = 0, 1, 2, ..., let u_k be the solution of

$$\Delta u_k = f(0)$$
 in B_k , $u = u_k$ on ∂B_k

Recall the maximum principle $\sup_U |u| \leq \sup_{\partial U} + \frac{C}{\lambda} \sup_U |f|$, then we have after using the scaling properties of the equation $\Delta u = f$

(6)
$$||u_k - u||_{L^{\infty}(B_k)} \le C\rho^{2k}\omega(\rho^k).$$

Hence

(7)
$$\|u_k - u_{k+1}\|_{L^{\infty}(B_{k+1})} \le C\rho^{2k}\omega(\rho^k).$$

Since $u_{k+1} - u_k$ is harmonic, by (5) we have

(8)
$$||D(u_k - u_{k+1})||_{L^{\infty}(B_{k+2})} \leq C\rho^k \omega(\rho^k), \quad ||D^2(u_k - u_{k+1})||_{L^{\infty}(B_{k+2})} \leq C\omega(\rho^k).$$

(9)
$$Du(0) = \lim_{k \to \infty} Du_k(0), \quad D^2u(0) = \lim_{k \to \infty} D^2u_k(0).$$

Step 2

For any point z near the origin we have that

(10)
$$|D^2 u(z) - D^2 u(0)| \le I_1 + I_2 + I_3$$

where

$$I_1 = |D^2 u_k(z) - D^2 u_k(0)|,$$

$$I_2 = |D^2 u_k(0) - D^2 u(0)|,$$

$$I_3 = |D^2 u(z) - D^2 u_k(z)|.$$

Let $k \ge 1$ such that $\rho^{k+4} \le |z| \le \rho^{k+3}$. Then by (8) we have

(11)
$$I_2 \le C \sum_{j=k}^{\infty} \omega(\rho^k) \le C \int_0^{|z|} \frac{\omega(t)}{t} dt.$$

Similarly we can estimate I_3 through the solutions $\Delta v = f(z)$ in $B_j(z)$ and v = u on $\partial B_j(z)$ for $j = k, k + 1, \dots$

Step 3

To estimate I_1 , denote $h_j = u_j - u_{j-1}$. By (5) and (7) we have

(12)
$$|D^2 h_j(z) - D^2 h_j(0)| \le C \rho^{-j} \omega(\rho^j) |z|$$

where the last inequality follows from the mean value theorem, $D^2h_j(z) - D^2h_j(0) =$ $D^3h_j(\tilde{z})z$. Hence

$$I_{1} \leq |D^{2}u_{k-1}(z) - D^{2}u_{k-1}(0)| + |D^{2}h_{k}(z) - D^{2}h_{k}(0)|$$

$$\leq |D^{2}u_{0}(z) - D^{2}u_{0}(0)| + \sum_{j=1}^{k} |D^{2}h_{j}(z) - D^{2}h_{j}(0)|$$

$$(13) \leq C|z| \left(||u_{0}||_{L^{\infty}} + C\sum_{j=1}^{k} \rho^{-j}\omega(\rho^{j}) \right) \leq C|z| \left(||u||_{L^{\infty}} + C\int_{|z|}^{1} \frac{\omega(t)}{t^{2}} \right).$$
Combining (10), (11), and (13) we obtain (2). This completes the proof.

Combining
$$(10)$$
, (11) , and (13) we obtain (2) . This completes the proof

Similarly we have the stimates at the boundary by using the reflection across the flat portion of the boundary.

Theorem 2. Let $u \in C^2(B_1 \cap \{x_n \ge 0\})$ be a solution of $\Delta u = f$ and u = 0 on $\{x_n = 0\}$. Suppose f is Dini continuous. Then $\forall x, y \in B_{\frac{1}{2}} \cap \{x_n \ge 0\}$, the estimate (2) holds.

References

[W] Wang, Xu-Jia, Schauder estimates for elliptic and parabolic equations. Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637–642.