Advanced Partial Differential Equations 1

Based on Thomas Backdahl's notes

The University of Edinburgh

October 19, 2015

Lecture 4

http://www.maths.ed.ac.uk/ aram/advancedpde.html

1/111


http://www.maths.ed.ac.uk/~aram/advancedpde.html

Sobolev spaces

The most useful function spaces for the study of PDEs are the so called Sobolev
spaces. To introduce them we first need to introduce the notation of test functions
and weak derivatives.

Definition
Given an open set U C R". A function ¢ € C°(U), i.e. ¢ € C®(U), ¢ : U — R with

sptp = {x : ¢(x) # 0} C U compact is called a test function. (Alternative notation
C5°(U) and supp.)

RENELS

¢ = 0 outside a closed and bounded subset of U. This means that ¢ = 0 near OU.
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Example (Standard mollifier)
Define n € C*>°(R")
() = {Cexp(lx|+_1) if |x|<1 ’
0 if |x|]>1

with C such that [, ndx = 1. For each € > 0 let
1 /x
w09 = ().
Then we have [, 7edx =1 and spt7. C B(0,¢€).
For all € > 0, we have n1_ € C2°(B°(0, 1)).
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Weak derivative

If ue CL(U), ¢ € C=(U). Integration by parts gives

/uqﬁxidx:—/ Uy, pdx.
U )

We have no boundary term because ¢ = 0 near 0U.
In general if u € Ck(U),

/uDa¢dx:(—1)|C‘|/ Du¢pdx,  |a| <k
U U

by applying the previous formula repeatedly.
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Definition (Weak derivative)

Let u € LL (V) and o a multi-index. We say that u has a weak ath partial derivative
v if there is a v € LL_(U) such that

loc

/uDa¢dx:(—1)lal/ védx, Vo e C(U).
U U

We then write v = D%u.

Recall u € L _(U) if u € LY(V) for every V € U.

loc
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Lemma

If a weak ath partial derivative of u, exists, it is uniquely defined up to a set of
measure zero.

Proof.
Let v and V be weak «ath partial derivatives of u. Then

(—1)'0‘/Uvgbdx:/UuDo‘qbdx:(—1)0"/U\7¢dx, Vo € C2(U).

Hence,
/(v—\7)¢dX:0, Vo € C°(U).
U

This gives v — Vv =0 a.e. L]
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Example

Let n=1, U=(0,2), and

x if 0<x<1 1 if 0<x<1
u(x) = : v(x) = .
1 if 1<x<2, 0 if 1<x<2.

Then v’ = v in the weak sense because for any ¢ € C°(U) we have

/02u¢’dx—/1x¢>'dx+/ ¢ dx

/ g + $(1) — (1 ):—/02v¢dx.
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Example

Let U and v be as in in the previous example. Then v/ does not exist in the weak

_ 1 :
sense. Assume that w = v/ € L (U), i.e.

2 2 2
_ d — /d — / — _ o0 .
/o wodx /0 ve'dx /1 @' dx #(1) Vo e C°(U)
Define the sequence {¢m}5°_, in C°(U) by

exp(l—i—m) if |x—1<
Pm(x) = .
0 if |x—1]>

3= 3=

Then ¢m(1) =1, 0 < pm(x) <1, spto, C B(1,1/m). This gives wp,, — 0 a.e. and
by dominated convergence

2
1= lim ¢m(1l) = lim / womdx = 0.
0

m—0o0 m—o0

A contradiction. Hence, v/ does not exist in the weak sense. 8/111



Sobolev spaces

The Sobolev space W*P(U) consists of all functions u € L _ such that for each
multi-index a with |a| < k, D%u exists in the weak sense and belongs to LP(U).

@ For p =2, we use the notation H¥(U) = W*2(U).
@ We will identify functions in W*P(U) which agree a.e.

9/111



Definition
The norm of u € W*P(U) is defined as

1/p .
<Z|a\§k Ju ’DaU’de> if (1 <p<o0)

lull weruy = _
la|<k €SS supy [ D*u| if (p = o0).

Remark
@ By convergence in W*P(U) we mean convergence in this norm.

@ By convergence in W,’;’CP(U) we mean convergence in W*P(V) for each V e U.
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We let Wok’p(U) denote the closure of C°(U) in WkP(U).

Remark

Loosely speaking the functions u € Wok’p (U) are the functions u € W*P(U) such that
D%u =0 on 90U for all |a| < k —1.

(This statement only makes sense in terms of traces — will be presented later.)
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Let U= B%(0,1) € R", and
u(x) = |x|~¢ (x e U,x #0).

When does this belong to W1P(U)? We have

|Du(x)| € L1(U) if and only if a < n— 1.
Let ¢ € C°(U) and fix € > 0. Then

/ Upy dx = —/ Uy, pdx + / upr'ds,
U—B(0,e) U—B(0,e) dB(0,e)

1 ...,v") is the inward pointing normal on 9B(0, ¢). )

where v = (v



If o < n—1, we get
)/ uqSuidS‘ < ||¢]Loo(u)/ € %dS < Ce" 0.
8B(0,¢) 9B(0,¢)
Hence, as long as a < n — 1 we get

/ Uy dx = —/ Uy pdx for all ¢ € C°(U).

U U

We also see that |Du(x)| = ‘Xl‘ﬂl € LP(U) if and only if (o« + 1)p < n (which implies
a<n-—1).

Consequently u € WP(U) if and only if o < 2.
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Example

Let {rx}3°, be a countable, dense subset of U = B°(0,1) € R” (for instance an
enumeration of the points with rational coefficients). Define

o6 :Zik|x_rk| «  (xeU). (1)
k=1

'P(U), even though it is unbounded on each open
subset of U.
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Theorem (Properties of weak derivatives)

Assume u,v € W5P(U), and the multi-index « satisfies || < k. Then
Q@ D%u € Wk-1elP(U) and DP(D*u) = D(DPu) = D**Bu for all multi-indices
o, 3 such that |a| + |5| < k.
@ Foreach A\, € R, Au+ puv € WKP(U) and D*(Au + puv) = AD%u + uD%v.
@ IfV C U is open, then u € WkP(V).
Q If¢ e C(U), then Cu € Wk’P(U) and

D*(Cu) = ; Aila DﬁgDO‘ Pu  (Leibniz’ formula).
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Proof of 1).
Let ¢ € C°(U), then D¢ € C=(U).

/Dauo%dx:(l)'a/ uD* B pix
U U
:(_1)|a(_1)|a+ﬁl/ DB ugpdx
u
= (- [ D Bugax.
()" [ D ugas

Hence, D?(D“u) = DBy in the weak sense. O

The other parts are left as an exercise.
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Theorem (Banach space structure)

For each k > 1 and 1 < p < oo, the Sobolev space W*P(U) is a Banach space.
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Proof

1) Prove that ||u||\y«»rcy) is @ norm:

The definition implies [[Aul|ywkr(uy = [Alllullwrruy and [lullweey = 0 if and only if
u =0 a.e. The triangle inequality follows from Minkowski's inequality. For

u,v € WkP(U) with 1 < p < oo

—~
—

e vilweoqey = (32 1070+ D))

|a|<k

1/p
< (3 1D ullioqwy + 1DVl oqu))?)

|| <k
1/ /
< (X 10%uly)” + (X 10"V linwy)?)
|| <k || <k

= ||u||W’<aP(U) + HV||Wk,p(U).
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2) Prove that WkP(U) is complete:

Assume that {u,}°S_; is a Cauchy sequence in W*P(U).

Then for each |a| < k, {D%um}%S_; is a Cauchy sequence in LP(U). The LP(U) space
is complete, so for each |a| < k there exist a function u, € LP(U) such that

D%pm — uqy in LP(U).
Define u = y(q,...,0), i-e. the case without derivatives.

Um —> U in LP(U).
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3) Prove that u € W*P(U) and D®u = u, in the weak sense for all |a| < k:
Let ¢ € C(U).

m—>00

im | [ (w = um)D*0d| <im0~ umlinuy10°61 500y = O

m—>00

im | [ (0o = D%um)oce| < fim_ o = D"umligop6luscuy = O

/uDagbdx: lim /umDaczde
U m—00 U
= | — |a| DO[ m d = (— |a‘ o d 5
im (1! [ Dumgde = (-1 [ waods

m—00

4) The completeness follows because D*u,, — D%u in LP(U) for all |a| < k, i.e.
Um — u in WKP(U).

Ol
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@ Sobolev functions can be fairly ill-behaved and difficult to use directly in
calculations.
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Sobolev functions can be fairly ill-behaved and difficult to use directly in
calculations.

Smooth functions are better for calculations.
Sobolev functions can be be approximated by smooth functions.
Local approximation in U.

Global approximation in bounded U.

Global approximation in bounded U with C! boundary.
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Mollifiers

Let U. = {x € U|dist(x,0U) > €}.

For u € L _(U), we define its mollification to be

)= (=000 = [ ey = [ ndule )y vxe U
Theorem (Properties of Mollifiers)
Q uf € C*(U.) for each € > 0,
Q@ v —wuae ase—0,
@ Ifue C(U), then u° — u uniformly on compact sets of U as ¢ — 0.
Q Ifuell (U) forl<p< oo, then u® — uin L} (U), ase — 0.

loc loc
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Proof
1) Fixx € U, i € {1,...,n}, and h > 0 so small that x + he; € U.. Then

u(x + hej) —u(x) 1 / 1 X+ hej —y X—y
=— [ = —_— - d
h e Juh 77( € ) 7)( € ) u(y)dy
1 1 X+ hei —y X—y
T en Vh(”( € >_7I< € ))u(y)dy,
for some open set V € U, for instance V = B%(x + he;, ) U B%(x,¢€). As

H(CE) () - Lo () =)

as h — 0 uniformly on V/, 8” “(x) exists and equals fU e €(x y)u(y)dy.
A similar argument shows that D“uf(x) exists, and equals

/UDO‘ne(x — y)u(y)dy x € U..
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2) Lebesque’s differentiation theorem gives

Iim][ lu(y) — u(x)|dy =0 ae. xe U.
B(x,r)

r—0

Fix such a point x

) w1 = [ [ ey w) - sy
1 x—y

@l B(x,€) €

c][ lu(y) — u(x)|dy — 0 as € — 0.
B(x,€)

)u(y) — u(x)|dy

IN
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3) Let u € C(U). For any V &€ U we can choose W such that V € W & U and note
that u is uniformly continuous on W. This means that the limit

im fJuly) ~ u()ldy =
B(x,r)

r—0

holds uniformly on V. Hence, u® — u uniformly on V.

)
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4) Let ue L} (U)for1 < p<ooand V& U. Choose Wst. VEW E U. Now we
want to prove that for small enough € > 0 we have

ufl[eeevy < llull oqwy- (2)

For x € V, we have

Wi=| [ - yutady| < [ a oy y)lau)ldy
B(xe B(x,€)

- </B(x 0" &= y)dy)lil/p </B(X 9 b y)|u(y)|/’dy) ”

-~

1

Jeorass [ ([ nbclatlray)acs [ noP( [ nde-yiax)a

1
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Fix V€ W e U, 6 >0 and choose v € C(W)s. t. ||u— v|[pew) < d. Then

[t — ull ey < MU = vl oy + [IVE = Vieevy + IV — ullo(v)
< 2l|u = vlpwy + IV = Vil
< 26+ [[vE = vllievy-

Since v — v uniformly on V/, we have limsup,_,q [|u¢ — ul[zp(v) < 26.
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Approximation by smooth functions

Theorem (1. Local approximation by smooth functions)

Assume u € WKP(U), 1 < p < oo, and let
u*=nexu in U..

Then u® — u in W,’;’CP(U), ase— 0.
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Proof
We now want to prove that if |a| < k, then

D*u® = ne* D%u € U, (3)

i.e. the ath partial derivative of u€ is the e-mollification of the weak ath partial
derivative of w.
For x € U,, we have

D®u(x) = D" /U nelx — y)u(y)dy

- / DEne(x — y)uly)dy = (~1)/* / DSe(x — y)u(y)dy.
U U
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For a fixed x € U, the function ¢(y) = ne(x — y) € C°(U). The definition of a weak
derivative gives

/U Dyne(x — y)u(y)dy = (—1)1* /Une(x — y)D%u(y)dy.
Thus

D () = (—1)lellal /U ne(x — y)Du(y)dy = (1 * D*u)(x).

Hence, we have (3).
Now choose an open set V' & U then from the properties of mollifiers we get
D%*u¢ = ne * DYy — D%u in LP(V) as € — 0, for each |a| < k. Hence,

lu® = ullfyenery = Y D% = D%u||fp — 0 as e = 0. (4)
|a| <k
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Theorem (2. Global approximation by smooth functions)

Assume that U is open and bounded. Let u € W*P(U), 1 < p < co. Then there exist
functions up, € C®(U) N W5P(U) such that

Um — u in WRP(U).

The functions un,, might not be smooth on U.
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Proof
Let

Ui ={x € Ul|dist(x,0U) > 1/i} (i=1,2,...)

Vi = Uiys — Uiy, Vo = Us.

We get U = JZ, Vi
Let {¢;i}?°, be a C* partition of unity subordinate to {V;}3°,, i.e.

Z?ioc,':]. on U.

From u € W¥P(U) and the product properties of the weak derivative

Ciu € WRP(U) and spt(¢iu) C V..
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Fix € > 0. Choose ¢; > 0 small enough so u' = 7., * (C;u) satisfies

v = Gullwioy <2771 (i=0,1,...)
sptu’ C W, (i=1,...),

where W, = Ui g —U; D Vi, (i=1,...).

Let v =", u'. For any V € U there are only finitely many non-zero terms in the
sum. Therefore v e C*(U). Also u = >"7°, (iu have finitely many non-zero terms
when restricted to V.

9 oo
v — uHWk'P(V) < Z |u" — Ci”HWk,p(U) < 622_'_1 =e.
i=0 A=(0)

Taking the supremum over all sets V € U we get [|v — ufywrpyy < €
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Theorem (3. Global approximation by functions in C*°(U))
Assume U is bounded and OU is C. Let u € W*P(U), 1 < p < co. Then there exist

functions uy, € C*>°(U) such that

Um — u in WRP(U).
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Proof

Fix any point x° € QU. Then there exist a radius r > 0 and a C! function
v :R"~1 — R such that (after relabelling the coordinate axes) we have

UNBO(x% r) = {x € BY(x% r)|xn > v(x1, ..., Xn_1)}
Set V =UnNBYx% r/2), we get V = {x € B(x®,r/2)|x, >v(x1,-..,Xs—1)}. Define
Xt =x+Xee, (x € V,e>0).

Observe that for some fixed, sufficiently large A > 0 the ball B9(x¢,¢) ¢ Un B°(xY, r)
for all x € V and all small € > 0.
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€n
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Now define the translated function u(x) = u(x¢) for x € V.

Let v¢ = 1 * uc € C*°(V). (By the translation, we have room for the mollification.)
We now want to prove v¢ — uin WKP(V):

For any |a| < k we have

[D%vE = D%ul|re(vy < |D*vE = D%uell1o(vy + | D%ue — D¥ul|1o(v).-

The second term goes to zero with € since translation is continuous in the LP norms.

The first terms also vanishes in the limit due to Theorem 1.
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Select € > 0. Since QU is compact, we can find finitely many points x° € OU and radii
ri > 0, corresponding sets V; = U N B%(x?, r;/2), and functions v; € C>(V})
(i=1,...,N) such that 83U c UY, B(x?, r;/2) and

lvi = ullwwe(vyy <€

Also choose Vy @ U such that U C U,I'V:o V; and use Theorem 1 to get vy € C*°(Vp)
satisfying

[vo — ullwrr(vy) < e
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Let {¢;}, be a C partition of unity on U, subordinate to Vo and {B%(x?, r;/2)}Y ;.
Let v = Z,,‘V:o Civi € C(U). For |a| < k we get (using UNspt¢; C V;)

N
1DV — D®ul| oy < Y ID*(Givi) — D*(Giw) | e(vy)
i—0

N
> CZ ||V,' — U||Wk,p(vl.) § CNe.
i=0
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Extensions

Extending a function u € W1P(U) to R" by setting out to zero on R” — U does not
work due to weak derivatives.

Theorem (Extension Theorem)

Assume that U is bounded and OU is C'. Select a bounded open set V such that
U € V. Then there exist a linear operator

E: WHP(U) — WHP(R™)

such that for each u € WYP(U)

@ Eu=uvae inU

@ sptEuC V

o [[Eullwrrmwny < Cllullwrey)-
(C depends on p, U and V' but not u.)
Eu is called an extension of u to R".
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Fix x° € U and suppose first
AU is flat near x°, lying in the plane {x, = 0}.
Then we may assume there exists an open ball B = B%(x?, r), such that

Bt =Bn{x,>0}cU
B~ =Bn{x, <0} CcR"—U
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Temporarily assume that u € C!(U) and define

B(x) = {U(x) if x € BT

=3u(x1,. ..y Xn—1, —Xn) +4u(x1,..., xp-1,—%) ifxeB".

This is called a higher-order reflection of u from B* to B~
We now want to show & € C1(B):

Define u~ = i|g- and u™ = @|g+.
ou~ ou ou Xn
—3 Xty —xn) — 22 (o X, — 2R
aXn (X) aXn (X17 y Xn—1 Xn) 8Xn (Xl Xn—1 2 )
This gives u,, = ul on {x, = 0}. Since v~ = u™ we also get u,, = u on {x, = 0}.

Together, we get D*u™ = D*u™ on {x, = 0} for |a| < 1.
We can conclude @ € C(B).
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Direct calculations also gives

[allwrey < Cllullwieat)

for some constant C which does not depend on wu.
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Now, we can consider the case when QU is not flat near x°. We can find a C!
mapping ® with inverse W such that ® straightens out U near x°. We write

y = ®(x), x =V(y), v(y) = u(¥(y)). Then /(y) can be handled as the previous
case to extend v’ from BT to a function @’ € C}(B%(y?, r)) with an estimate

17 [lwrpgoy,ry) < Cllu[lwrpgsr). Let W =W(B(yp, r)).

(O]

—

5/111



Converting back to x variables, we obtain an extension & of u to W, with
[allwrewy < Cllullwreuy-

Since QU is compact, there exist finitely many points X,Q € dU, open sets W;, and
extensions u; of uto W; (i =1,...,N), as before, such that OU C U,N:1 W;. Take
Wo € U so that U C U,I'V:o W;, and let {¢;}., be an associated partition of unity.
Write &1 = Z,{V:o Citj, where g = u. Then we get the estimate

HE’H Wl.p(R") < C”Ule,p(U)

for some constant C not depending on u. Furthermore we can arrange spto C V 3 U.
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Write Eu = & and observe thgt the mapping u — Eu is linear.
Instead of assuming u € C}(U), we now assume u € W1P(U), 1 < p < oo and choose
Um € C®(U) such that uy, — uin WHP(U). We get

| Eum — EUIHWLP(R") < Cllum — UIHWLP(U)‘

Thus {Eum}S_; is a Cauchy sequence so it converges to o = Eu. This extension does
not depend on the approximating sequence and satisfies the conclusions in the
theorem. []
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The theorem can without much change be extended to W2P(U). However, for
WkP(U) with k > 2 one needs a more complicated reflection technique.
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Theorem (Trace Theorem)

Assume U is bounded and QU is C1. Then there exists a bounded linear operator
T : WHP(U) — LP(OU)
such that Tu = u|gy if u € WHP(U) N C(U) and
I Tullrouy < Cllullwiswy Yu e WHP(U)

where C only depends on p and U.
We call Tu the trace of u on OU.
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Traces

Theorem (Trace Theorem)

Assume U is bounded and OU is C1, 1 < p < co. Then there exists a bounded linear
operator

T : WHP(U) — LP(OV)
such that Tu = U|8U ifue Wl,p(U) N C(U) and
I Tullmouy < Cllullwioy Yu € WHP(U)

where C only depends on p and U.
We call Tu the trace of u on OU.
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Assume first that u € CH(U), x° € U and U = {x, = 0} in an open ball
B = B%(xp, r) such that UN B = {x, >0} N B. Let B = B%(xp,r/2), T = BNAU.
Select ¢ € C°(B), with ( > 0in B and ( =1 on B.

N/
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Set X' = (x1,...,X,-1) € R™1 = {x, = 0}. Then by Young's inequality we get

/ ulPd’ < / ClufPdx’ = — / (C[ulP)uydix
r {xn=0} B+
2 / 6PCx, + plulP~(sgn u)uy, Cax
B+
< / 01PCy + Lt ? + 2] 7=
B+ q

< c/ |ul? + |DulPdx,
B+

where g7l =1—-p
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If xX° € OU, but QU is not flat near x°, we straighten out the bounday near x° to
obtain the previous setting. Changing the variables we still get a bound

/|u|de’ < c/ lulP + |DulPdx,
r U

where T is some open neighbourhood of x° in QU.
Since QU is compact, we can choose finitely many points x,Q € 0U and corresponding
open subsets [; C 9U, (i =1,...,N) such that U = |J!_; I; and

lulleeqryy < Cllullwreuy-
With the notation Tu = ulgy, we have

[ Tulleouy < Cllullwrey,

for some constant C not depending on wu.



If we assume u € WYP(U) instead of u € C1(U), then there exist functions
Um € C°°(U) such that up, — uin WLHP(U). Due to the estimate

| Tum — Tuil|rauy < Cllum — ulllwrewy,
the sequence { Tup,}7°_; is a Cauchy sequence in LP(OU). We can therefore define

Tu= lim Tup,
m—>00
where the limit is taken in LP(QU). This limit does not depend on the choice of
approximating functions.
Finally, if u € W1P(U) N C(U), then the functions u,, € C*(U) converge uniformly to
uon U. Hence, Tu = ulay. O
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Theorem (Trace-zero functions on W1P)
Assume U is bounded and OU is C1, ue W1P, 1< p < co. Then

u € WyP(U) if and only if Tu =0 on dU.
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Proof

Suppose first that u € Wol’p(U). Then by definition we have functions up, € C2°(U)
such that
Um — u in WHP(U).

As Tupy, =0o0n U and T : WHP(U) — LP(QU) is a bounded linear operator, we get
Tu=0o0noU.
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Now, we want to prove the converse.
Assume Tu = 0 on QU. Using partitions of unity and straightening out the boundary,
we may as well assume

= Wl”’(Ri% u has compact support in Ri,
Tu=0on JR] =R" 1.

Then, there exist functions u, € CY(R") such that
Um — uin WHP(RT)
and, since Tu = 0 on R"1

Tum = Upm|ge-1 — Tu =0 in LP(R"1).
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Now, if X' € R"1 x, > 0, we have

s x)] < [, 0)] + / [ (X' )
0
1/p

< |um(x, 0)] + 2~ 1/"(/ | D (X, t)ypdt)
0
For fixed x, this gives
/ / p—1 o / [N 1/p
[um(x's x) I o1y < [[um(x; 0)[| o (mn—1) + <X,, e |Dum(x', t)|Pdx dt) .
Letting m — co we get

o x ey < 5870 [ [ 10wt )P (6)

for a. e. x, > 0.
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Let ¢ € C*°(R4) satisfy
¢=1on [071]7<:00n R+_[072])0§C§ 1

and define

{gm(x) =((mx)) (x€R}) {wm,x,, = Uy (1 — Cm) — muC’(mxy)
Wm(x) = u(x)(1 — (m(x)). Dy Wm = Dy u(1 — ().

We get |Dw,,, — Du| < |¢m||Du| + m|ul|¢'(mx,)| and

2 1/p
| DWin — Dul| oy < ”CmDuHLp(Ri)qLC(mp/ / uPdx'ax,) "
—_— 0 Rn—1

—0

since (m # 0 only if 0 < x, < 2/m.
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Using (6) we get

2/m
1D = Dulagy < €GP [ 1o 50 sy

2/m Xn
< Cmp/ x,’,’l/ / |Du(x', t)|Pdx’ dtdx,
0 0o JRre-1

< CmP </2/m X,’,J_ldxn) </2/’"/ . |Du(x', t)|pdx'dt)
0 0 R~

2/m
< C(/ / |Du(x', t)\pdx/dt> — 0 as m — oo.
0 Rn-1

Since also wm, — u in LP(R") we get wy, — u in WHP(RT).
Note that w, = 0if 0 < x, < 1/m so we can mollify w,, to produce u, € CZ°(R")
such that up, — uin WHP(R?). We therefore conclude u € Wol’p(]Ri).
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Sobolev inequalities

Sometimes one would like to know if a function belongs to W*P(U), does it then
automatically belong to some other space.
We will focus our attention on the cases 1 < p < n.
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@ We would like to establish an inequality
[ull Larny < ClIDullLp(wn),

for certain constants 1 < p<n, 1< g <ooand C >0 and all ue C(R").
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@ We would like to establish an inequality
[ull Larny < ClIDullLp(wn),

for certain constants 1 < p<n, 1< g <ooand C >0 and all ue C(R").

@ This can only work for a specific g depending on p and n.
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Assume 1 < p < n and
lulltarny < C||Dul[pwey  Vu € C°(R").

Let v € C2°(R"), not identically zero. Define for A > 0 a rescaling u)(x) = u(Ax).
The inequality gives [[uxl[orn) < C||Duxl|rp(rn)-

/ lun[ 9l = / ()| = = / u(y)|7dy.
Rn Rn )\ Rn
)\P
/ |DuA”dx:>\”/ ]Du()\x)|pdx:n/ \Du(y)[Pdy.
]Rn Rn )\ Rn

Hence,

1 A 1-n/ptn
WHUHL‘I(R") < CWHDUHLP(W) = ullgaqey < CAYPEY 9| Dut| 1oy
Unless 1 — n/p+ n/q = 0 we can get a contradiction (u identically zero) if we let

A — 0 or A = oco. Hence, we must choose g = n"fpp.
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If 1 < p < n, the Sobolev conjugate of p is

Observe that pi* == — % and p* > p.
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Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Assume 1 < p < n. There exists a constant C, depending only on p and n, such that
lull g (rey < ClIDull oy Vu € C°(R").

Compact support is needed because constant functions does not satisfy the inequality.
The constant C does not depend on the size of the support of u.
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First assume p = 1.
Since u has compact support, for each i = 1,...,n and x € R” we have
Xi
u(x) = / U (X153 Yis - -, Xn)dyi,
—0oQ
which gives
(e}
W < [ IDua i)
—o0
Hence,

1

|LI(X)|ﬁ SH(/ ’D“(Xl""ay""“an)|dy,-)”*1'
i=1 -

(e}
o0

66 /111



Integrate with respect to x;

/00 |u|nT"1dx1 < /OO lﬂl(/OO |Du|dy,'> " dxq
—00 —00 ;1§ W/ —00

g(/ \Du|dy1)1/oof[</ \Du|dy,) "
<(/_ 1oulan)” H/ | Iuldady) ™.

where the last inequality comes from the general Holder inequality with p = n — 1:

n n
/ [T 1eildes < [T loillirquy
Ui i—2
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Integrate with respect to x>
/ H 17 T g,

/ / |u| 71 dxydxp < (/ / |Du|dx1dy2
—00 J —00 —00 J —00 i=1,i2

11:/ |Duldyr, l,-:/ / |Duldxidy; (i=3,...,n).

Applying the general Holder inequality again gives

/ / U|n I dxy dxo < / / |Du|dx1dy2 / / ]Du\dyldxz
=1
X H(/ / / \Du|dx1dX2dy,-)
j—3 Y/ —00J—00J—00

1

68 /111



Continue integrating with respect to xs, ..., x, eventually gives

1

o< T [ .
Rn|u| Tdx < 11:[1(/—00 /_OO|Du\dX1...dy,...dx,,)

- ( . |Du|dx> " (7)

This is the desired inequality for p = 1.
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Now consider the case 1 < p < n. Apply the estimate (7) to v = |u|” for some v > 1.

n—1
([ 1ufidx) " s/ \Druwdx—v/ || Duldx
Rn Rn Rn
p—1 1
Sfy(/ |u|(7_1)ﬁdx) ’ </ ]Du|pdx)p
Rn Rn

Choose 7 so that 1% = (v —1) = Y= (" 1)>1: I :n’f’p:p*.

1 1
( ]u]p*dx> < ’y(/ ]Du]de> ?
R R"

p(n—1)

This gives the desired inequality with C =~y = —p -
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Theorem (Estimates for WP, 1 < p < n.)

Let U C R" be bounded, open, such that OU is C'. Assume 1 < p < n and
u € WYP(U). Then u € LP", with the estimate

[l o= vy < Cllullwraq),

where C only depends on p, n and U.
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Proof

The conditions in the extension theorem are satisfied, so we get o1 = Eu € W1P(R")
such that

u=uin U,
spt U is compact,

|| BH Wi.p(R") < CH U“ WLe(U)-

Because & has compact support, we can use the local approximation theorem, and get
a sequence for functions up, € CZ°(R") such that

Um — T in WHP(R™).
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Now, from the Gagliardo-Nirenberg-Sobolev inequality we get
l|tm — ull o (rey < C||Dum — Duyl|prny VI, m > 1.
Hence, {um}5S_; is a Cauchy sequence also in LP"(R") and therefore
Um — T in LP"(R").

We also have
[tmll o (mny < Cl|Dtip|| oy  Vm > 1.

Taking the limit m — oo gives

12l 1o* ey < ClI D[ p(geny,
1l o= (uy = N1l o~ vy < 18l o mey < ClIDT]|ogey < Cllullwrew)-
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Theorem (Estimates for Wol’p, 1<p<n)

Let U C R" be bounded, open, such that OU is C'. Assume 1 < p < n and
ue Wol’p(U). Then we have the estimate

lullLauy < Cl|Dul|euy

for each 1 < g < p*, C only depends on p, g, n and U.
In particular, for all 1 < p < oo,

lull vy < ClIDul|euy-

RENEILS

This is often called a Poincaré inequality.
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Proof.

Since u € Wol’p(U), there are functions up, € C2°(U) such that up, — uin WHP(U).
Extend up, to be 0 on R” — U and apply the Gagliardo-Nirenberg-Sobolev inequality to
get

luml o= vy < Cll Dum||Lo(u)-

The argument with the Cauchy sequeces gives u, — u in LP"(U).
Hence, in the limit we get
lull o= vy < ClIDul|teuy.-

The domain U has finite measure which gives [[u|s < Cllul|ppr(yy if 1< g<p*. [
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On Wol’p(U), the norms || Dul|p(uy and |ullwre(yy are equivalent.

Remark

From the limit p* = n’fp — 00 as p — n, one would guess u € W"(U) implies
u € L*°(U), but this is not true for n > 1. A counterexample is given by
u = loglog(1 + ﬁ) € Wn(B%(0,1)), but does not belong to L>(B°(0,1)).

(One of the exercises to prove this.)
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Theorem (General Sobolev inequalities)

Let U C R" be open, bounded such that QU is C*. Assume u € W*P(U) with

k<l
p

)

then u € LI(U), where

oI~
S| x

1
q
and we have the estimate

ullaquy < Cllullwreuys

where C only depends on k, p, n and U.
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Proof.
From the assumptions we get D%u € W1P(U) for all |a| < k — 1. We therefore have

1D%ul| oy < Cllullwrey  if laf < k=1,

which means u € W*=L1P"(U). Similarly, we find u € Wk=2P""(U), where

p** p* p n
After k steps like this we find u € W%9(U) = L9(U) for % = % - % The estimate
follows from the chain of estimates in the k steps. []
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Theorem (Morrey's inequality)

Assume U C R" is bounded open with C! boundary and n < p < oo, and
u € WHP(U). Then u has a version u* € C%7(U), fory=1— 5. and a constant C
depending only on p, n and U such that

HU*HCO»’Y(U) < C“””wl,p(u)

The Holder space C%7(U) has the norm

|u(x) = u(y)| }

lullconzy = llullcoy + sup {
0 = e LB =P

),

X7y
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Theorem (Consequence of Morrey's inequality)

Let U C R" be a bounded, open with C1 boundary. Assume u € W5P(U) with
n < kp < oo, then

ull ooy < Cllullwrr(uys
where the constant C only depends on k, p, n and U.

The L*° norm is a part of the Holder norm.
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Compactness

Definition
Let X and Y be Banach spaces, X C Y. We say that X is compactly embedded in Y
(XeY)if

Q ||x]|ly < Clx||x for all x € X

© Each bounded sequence in X is precompact in Y, i.e. has a subsequence that
converges in Y.

N
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Theorem (Rellich-Kondrachov Compactness Theorem)

Assume U C R" is bounded open with C' boundary and 1 < p < n. Then
WP(U) € LI(V)

foreach1§q<p*:n"Tpp.
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Proof
Fix 1 < g < p*. The Sobolev inequality gives

WYP(U) C LYU), lulliauy < Cllullwiew)-

Assume {um,}°_; is a bounded sequence in WP(U).

We would like to find a subsequence {um,}?°; which converges in LI(U).
By the extension theorem, we can assume u,, € W1P(R") and u,, is compactly
supported in V, for all 1 < n < co and some bounded open set V C R".

Here V. = {x € V|dist(x,0V) > €}.

The mollified functions uS, = 7 * um € C°(V).
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We want to prove uS, — up in L9(V) uniformly in m.
First note that if u,, is smooth, then

U5 (x) = tim(x) = /B 0 TN =) = ()

Ld
= oo™ [ lumte ety

1
= —e/ n(y)/ Dum(x — €ety) - y dtdy.
B(0,1)

/\u ) — um(x)|dx <€ / //]Dumx—ety)dxdtdy
(01

< e/ |Dum(z)|dz.
v

By approximation by smooth functions this estimate holds also if u, € W1P(V).
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Together with the fact that V is bounded and the assumtion that {u,}55_; is bounded
in WLP(V) this gives

I, = tmlisvy < el Dumllisqy) < €ClIDumllisgv) < €€ sup umlwrsy
%,_/

Hence, uS, — upy, in LY(V) uniformly in m. =

Since 1 < g < p*, we can use the interpolation inequality for LP-norms to get

0 —0
lum — UmHLQ(V) < lup, — ”mul_l(v)HUan - ”mHip*(V),

where 1 =6 + (P % 0 <6 < 1. We can estimate the LP* (V) norm with the
Gagliardo-Nirenberg-Sobolev inequality and bound it by a constant because {upm}55_;
is bounded in W1P(V).

lugy = tmllaqvy < Cllug, = umllfs(yy < € C.

Hence, u§, = upm in L9(V) uniformly in m.
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We now want to show that for each fixed ¢ > 0, the sequence {u§,}°5_; is
uniformly bounded and equicontinuous.
If x € R", then

C
I < [ b= Plumldy < Inllmgnlumlla) < = <o,

where C does not depend on m. Similarly

C
6n+1

DUty ()] < /B 1Pl lon()ldy < 1Dl el <

Hence, the sequence {u,}SS_; is uniformly bounded and equicontinuous.
q m=1

< 00.
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Now, fix 6 > 0. We will show there exists a subsequence {umj }j’il such that

lim sup ”Umj - UmkHLP(V) <.
J,k—o0

To see this, we use the uniform convergence in L9( V') to select € > 0 such that
lup = Umllp(vy < 6/2  Vm.

As the functions {u¢,}>°_; are all supported in the bounded set V/, uniformly bounded
and equicontinuous, we can use the Arzela-Ascoli theorem to obtain a subsequence
{ufn, } 721 which converges uniformly on V. In particular

lim sup Hufnj = Um, llaqvy = 0.
J,k—o0

Together we get

lim sup ”Umj - UmkHLP(V) <.
Jj,k—o00
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Now, we can use a diagonal argument: For each / =1,..., we can choose §; = 1//,

and a subsequence {ufn/j gas)

limsup Hum/,j - um/,k”LP(V) <éd =1/l
Jj,k—o0

Hence, the diagonal sequence {um, = upm,,}72; converges in LP(V). O

88 /111



Assume U C R" is bounded open with C* boundary. Then WYP(U) € LP(U) for all
1< p<oo.

Proof
If 1 < p < n, then p* > p, this follows from the Rellich-Kondrachov compactness

theorem.
In general we have [|uf|;p(y) < [Jullwip(u), SO We just need to check that bounded

sequences in W1P(U) are precompact in LP(U).
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For the case n < p < 0o, we assume that a sequence {um}5<_; is bounded in W1P(U),

but then it is also bounded in WP(U), where

. 1 1\-1
p= (f + 7) < n.
n  2p
The Rellich-Kondrachov compactness theorem gives a subsequence that converges in
LP(U), because p < p* = 2p.

WLP(U) ¢ WHP(U) € LP(U)

The case p = oo follows from Arzela-Ascoli.
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For the case p > n we alternatively use
WiP(U) c C%7(U) e €(D) c LP(V)

where the first embedding is Morrey's inequality, the compact embedding follows from
Arzela-Ascoli. O
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Assume U C R" is bounded open (no condition on the boundary). Then
W, P(U) € LP(U) for all 1 < p < oo.

Proof.
Only the extension theorem needed the C' boundary condition. For u € Wol’p(U) we

can extend with 0. ]
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The average of u over U will be denoted (u)y = f judy. Also (u)x,r = f g, ,udy

Theorem (Poincaré inequality)

Let U be a bounded, connected, open subset of R", with C1 boundary. Assume
1 < p < 0. Then there exists a constant C, depending only on n, p and U, such that

|u = ()ulleuy < CllDullo(u)

for each function u € W1P(U).
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Proof
We argue by contradiction. If the estimate would be false, there would exist for each
integer k = 1,..., a function uy € WLP(U) satisfying

luk = (uk)uller(uy > kIl Dukll e (uy-
Let

_u—(uu
luk = (uk)ullLruy

Vk

Then (Vk)U =0 and HVkHLp(U) =1 and HDVkHLp(U) < 1//(.
In particular the functions {v, }3° ; are bounded in W1P(U).
WP(U) € LP(U) gives that there exist a subsequence {vk}721 and a function
v € LP(U) such that
vk, — v in LP(U).

We get (v)y = 0 and ||v||py) = 1.
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On the other hand || Dvi||p(yy < 1/k implies

/ Vs dx = lim / Vi ¢x;dx = — lim / Vi xpdx =0 Vo € C(U).
U J—00 Juy J—00 Juy

Consequently, v € WLP(U) with Dv = 0 a.e. Thus v is constant, since U is
connected. Together with (v)y = 0 we get v = 0 a.e. which means ||v||;»(y) = 0, but
we had [|v[;»(yy = 1, a contradition. O
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Theorem (Poincaré inequality on a ball)

Assume 1 < p < co. Then there exists a constant C, depending only on n and p, such
that
v = (W)xrllLr(Bo(x,r)) < CrllDullo(o(x,r))

for each ball B(x,r) C R™ and each function u € WHP(BO%(x, r)).

Proof.

The case U = B(0, 1) follows from the previous theorem. If u € WP(B%(x, r)), we
define
v(y) =u(x+ry) ye B(0,1).

Then v € WLP(B9(0,1)), and
[v = (V)o1llr(Bo(0,1)) < ClIDV|1e(mo(0,1))-
Changing variables gives the desired estimate. [
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A locally integrable function u has bounded mean oscillation u € BMO(R") if

sup {][ |u_(u)x,r|dY} <00
B(x,r) B(x,r)

Theorem
Assume u € WH"(R™) N LY(R"). Then u € BMO(R").

Proof
The Poincaré inequality with p =1 on an arbitrary ball B(x, r) gives

][ |u— (u)xr|dy < Cr][ |Du|dy
B(x,r) B(x,r)

< Cr(][ |Du|" dy / |Du\”dy
B(x,r)
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Fractional Sobolev spaces

Theorem (HX in terms of Fourier transform.)

Let k be a nonnegative integer.
@ A complex valued function u € L2(R") belongs to HX(R") if and only if

(1+|y|)a € L2(R").
@ In addition, there exists a positive constant C such that
1 P
clullrny < I+ Iy )l 2rny < Cllull s rny

for each u € HX(R").
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Proof

Assume first that u € HX(R"). Then for each multiindex |a| < k, we have
D%u € L2(R"). If v € CK with compact support, we get

Dov(y) = (iy)*0(y).

Approximating with smooth functions gives D/\au(y) = (iy)*0(y) € L2(R") for |a| < k
due to Plancherel’s Theorem. In particular

k
i “1@ll1Z2ray = 1)< ull2(rn)-
(R")

Which gives

IA

lyl“lalliE2@n < ClID*ullfaer)-

Hence,

12+ 1y 19)all gy < Nullizgny + Iy 11211 2g@n < Cllull prgny < oo
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Conversely, assume (1 4+ |y|%)& € L2(R") and |a| < k. Then

1(iy)* &l faqny < /]R yPalPdy < Il + Iyl @l ey

Let u, be the inverse Fourier transform of (iy)*@. Then for each ¢ € C°(R") we get

/ (D) = / (B3g)bdy = / (iy)*dbdy = (~1)! [ pimax.
Rn Rn n Rn

Hence, u, = D%u in the weak sense, and D%u € L?(R"). This means u € HX(R"). [
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We can use this idea to define fractional Sobolev spaces.
Definition

Assume 0 < s € R and u € L2(R"). Then u € H*(R") if (1 + |y|®)& € L2(R"). For
non-integer s, we set

[ull sy = 1L + 1y 7))@l 2 ey
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If ue H¥(R") with s > n/2, then u € L>*(R") and

|ull oo mny < Cllull Hs(rny,

where C only depends on s and n.
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Proof
Assume u € H*(R") with s > n/2.

180l qny < N+ I1) M2y 1L+ |y 1#)@lli2gen)
= [ @) 2l < Cllullwe < .
Hence, & € L}(R") and for a. e. x € R", we can use the inverse Fourier transform
1 by 1 -
460 = gl [ €8] < G Blgany < Clulega
Hence,

ull oo mny < Cllull Hs(rny,
]
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Definition

The dual space of H3(U) is H71(U).
(, ) denotes the pairing between H=1(U) and HZ(U).
For f € H1(U) we define the norm

1Fll-10y = sup{ (£, u)|u € HE(U), lulluy < 1}
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Theorem (Characterization of H™1)

© Assume f € H™Y(U). Then there exist functions fO, f1 ... f" € L?(U) such that
n .
- / v+ Fludx (v e H(U)). (8)
u i=1
@ Furthermore,

n L N1/2
11l =10y = inf{ (/ 3 |f'|2) | satisfies (8) for £O,...,f" € L2(U)}.
Uizo

Proof.
From the book. ]
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Extra material.

Theorem (Morray's inequality for C*(R"))

Assume n < p < oo. Then there exists a constant C, depending only on p and n, such
that

ullcormny < Cllullwrpwn
for all u € CY(R"), where y =1 — n/p.
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Proof

Choose a ball B(x, r) € R".
We want to prove

| Du(y)|
u(y) — u(x dySC/ ———dy, 9
][B(x,r)‘ ( ) ( )| B(x,r) |.y_X|n ! ( )

where C only depends on n.
Fix any point w € 9B(0,1). Thenif 0 <s < r,

lu(x + sw) — u(x)| = ’/05 %u(x—}— tw)dt’

5] S]
= ‘/ Du(x + tw) - Wdt‘ < / |Du(x + tw)|dt.
0 0
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Integrate over 9B(0,1)

/ lu(x + sw) — u(x)|dS < / / |Du(x + tw)|dSdt
8B(0,1) 8B(0,1)

/ / |Du(x + tW)| det
8B(0,1)

Let y = x+ tw = t = |[x — y|. From polar coordinates we get

/ Ju(x + sw) — u(x)|dS < / ABul_, g/ ABul_,
9B(0,1) B(x.s) [X — ¥ B(x,r) X = I

Multiply by s"~! and integrate s from 0 to r gives

r" Du
[y —utoey <= [ 2L,
B(x.r) B(x,r) X = YI

Hence, we have (9).
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Fix x € R" and apply (9).
lu(x)] < ][ u(x) — U(Y)ldy+][ lu(y)ldy
B(x,1) B(x,1)

‘Du(}/)‘
< ( / —— 7 _dy + Cllu N
B(x,1) |X }/|n71 4 H HLP(B( )

1/p dy (p—1)/p
p
= C</R |Dd dy) </B(X71) b y|(n1)p/(p1)) + Cllullo(x,))

< Cllullwrewn;

because p > n implies (n — 1)p/(p — 1) < n and the integral over the ball is finite.
Hence,

lullcwny < Cllullwregn.-
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Choose two arbitrary points x,y € R” and let r = |[x — y|, W = B(x,r) N B(y, r).
Then

o) = w0 < () =~ w2z + F—wluly) = u(2)] .
Apply (9)
][W]u(x) —u(z)|dz < C][B(XJ)IU(X) — u(z)|dz
1/p b4 (p—1)/p
C( /B(Xﬂ,) D “'p) / ( /B(X’,) Ix — z|<nd1)p/(p1)>

€ (r= =D/ =2y P=1/P) Dy
Crl_”/pHDUHLP(]R")

IA

IN

The same estimate holds if we change x to y.
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We get
|u(x) = u(y)| < Cr*=""P||Dul| tp(rny = Clx — y[*="/P|| Du| tp(em.-
We can conclude

{IU(X) - U(y)l}

lull cor—nrp(mny = llullcrny + sup X — Y|P

x,yE€R"
x#y

< Cllullwrp@wny + Cl|Dul| ooy < Cllull wrpgny-
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