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Geometry and Calculus of Variations

Lecture notes ∗

March 7, 2012

Abstract

This is the typed version of Dr A.Gilbert’s lecture notes. c©

1 Lecture

1.1 Basic notations

We begin with introducing some basic notations which will be used throughout the notes.

• We work in Rn (n = 2, 3)

• Points in Rn will be denoted by column vectors
x1

x2

...
xn

 = (x1, x2, . . . , xn)
T

• The inner product is

x · y =

n∑
i=1

xiyi

• The magnitude of x ∈ Rn is

|x| =
√
x · x =

√
x2
1 + x2

2 + · · ·+ x2
n

• The distance between x and y, x, y ∈ Rn is

|x− y| =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

∗This is a preliminary version of the notes. It will be updated weekly.
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Figure 1: In this figure I = (0, 1).

1.2 Plane Curves (Curves in R2)

Definition:

• A curve ~x in R2 is a smooth mapping t 7→ ~x(t) =

[
x1(t)
x2(t)

]
where t ∈ I, ~x(t) ∈ R2, I is an interval of R.

Here smooth means that ~x is differentiable as often as we like on I.

• t is called the parameter. It is convenient to think of t as time.

• The trace of ~x is the image set ~x(t). The curves are arrowed in direction of increasing t.

Examples:

• For semicircle ~x(t) = (cos t, sin t)T , t ∈ (0, π) = I.

• The straight line ~x(t) = ~a+ t~u for some fixed vectors ~a and ~u, t ∈ (−∞,∞).
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1.3 Tangent vectors

Definition:

• A tangent vector to R2 is a pair (p,~v), where

• p ∈ R2 is the point of application

• ~v ∈ R2 is the vector acting at p

• We say that two tangent vectors (p,~v), (q, ~w) are equal if and only if p = q and ~v = ~w.

• We do the usual vector Algebra with tangent vectors at given point.

• For fixed p the tangent space to R2 at p is the set of all tangent vectors at p and is denoted by

TpR2

• A vectorfield ~V is a function which assigns a tangent vector ~V (p) = (p,~v(p)) to each p ∈ R2.

• The velocity of a curve ~x(t) at time t is the tangent vector

~x′(t) =

[
x′
1(t)

x′
2(t)

]
at the point ~x(t).

• The speed is defined as
v = |~x′(t)|.

v is the rate with respect to t at which the point ~x(t) describes the curve ~x.

Interpretation: By definition

~x′(t) = lim
∆t→0

~x(t+∆t)− ~x(t)

∆t
.

The secants passing through ~x(t) and ~x(t+∆t) tend to the tangent at ~x(t) as ∆t → 0.

Examples: It is clear that for semicircle ~x′(t) = (− sin t, cos t)T and for straight line ~x′(t) = ~u.

2 Lecture

2.1 Regularity

Definition:

• The curve ~x : I 7→ R2 is

• regular at t0 if v(t0) 6= 0

• regular if v 6= 0 on I.

• Regularity is used to avoid nasty behaviour: even though ~x is smooth, the trace of ~x mayw have
corners or worse.
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Example 1:

~x(t) =

[
t3

|t3|

]
This curve is not regular at t = 0. It is easy to see that x1(t) = t3 and x2 = |t3| are twice
continuously differentiable. Note that after excluding the parameter t we get that x2 = |x1|.
Example 2:

~x(t) =

[
t3

t2

]
This curve is not regular at t = 0.

2.2 Implicitly defined curves

Definition:

• Let F : R2 7→ R. A point p ∈ R2 is a regular point of F if ∇F 6= 0, i.e.(
∂F

∂x1
,
∂F

∂x2

)
6= 0

• Let F : R2 7→ R and let C ⊂ R2 be the zero set of F , i.e.

C = {p ∈ R2, F (p) = 0}.

Let C be nonempty If F is regular at each p ∈ C then C is a regular implicitly defined curve.

As the example of

F (x, y) =

{
0 if x2 + y2 ≤ 1

x2 + y2 − 1 if x2 + y2 > 1

shows the regularity assumption on the F is necessary. Note that the zero set of F is the unit disk-Not
a bit curve-like!

Theorem: A regular implicitly defined curve is locally the trace of a regular (parametrized) curve.

Proof: The key idea is to use the implicit function theorem: if F (x, y) = 0 defines an implicit curve
C and Fy 6= 0 on C then then y can be solved in x, i.e. there exists a function f such that C is the
graph of y = f(x). If Fx 6= 0 then x is a function of y, i.e x = g(y).

Now given (x0, y0) ∈ C and assume that Fy(x, y) 6= 0 in some rectangular neighbourhood of R =
(x0 − α, x0 + α) × (y0 − β, y0 + β), α, β > 0 centered at (x0, y0). Then according the implicit function
theorem C ∩R is the graph of some function y = f(x) and clearly as parametrisation we can take

~x(t) =

[
t

f(t)

]
with t = x. When Fx 6= 0 then the parametrisation is

~x(t) =

[
g(t)
t

]
and y = t is the parameter.

Geometric interpretation: Consider surface S : z = F (x, y) and introduce φ(x, y, z) = z − F (x, y).
Clearly the C curve is the intersection of φ = 0 and z = 0. The normal of the surface S is (−Fx,−Fy, 1).
At the points where ∇F = 0 allows possibility of zero set line disc since at those points the normal is
parallel to z-axis.
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3 Lecture

3.1 Orientation

In what follows C denotes the curve.

Theorem:

• An orientation of C: of a regular implicitly defined curve with no self-intersection is a choice of direction
in which C is to be traversed.

• The curve C parametrized by t (i.e.~x(t) is given) is naturally oriented in the x-direction of increasing
t (see Lecture 1).

3.2 Reparametrisation

First lets consider the following example.

• For semicircle we have

~x(t) =

[
cos t
sin t

]
t ∈ (0, π). Introduce a new parameter u :

t =
u

2
i.e. u = 2t.

Denote h(u) = u/2, then the composed map

(~x ◦ h)(u) ≡ ~X(u) =

[
cos u

2
sin u

2

]
,

is another parametrization of the semicircle with parameter u ∈ (0, 2π).

Hence ~X(u), u ∈ (0, 2π) has exactly the same trace as ~x(t), t(0, π) but x with different parameter
u.

• We conclude that different parametrizations can define the same curve!

Now we give the precise definition:

Definition:

• Let ~x(t) : I 7→ R2 be a curve. If h : J 7→ I is a smooth bijection, with smooth inverse, of an interval J

onto I then ~X = ~x ◦ h is a reparametrization of ~x by h.

Remarks:

• Recall that bijection is an one-to-one mapping hence the inverse is well-defined.

• if h 6= 0 and ~x is regular (i.e |~x′(t) 6= 0) then so is ~X. Indeed it follows from Chain Rule

~X ′(u) = ~x′(h(u))h′(u), | ~X ′(u) = |~x′(h(u))||h′(u)| 6= 0.

• If h′ > 0 then ~X has the same orientation with ~x. Otherwise if h′ < 0 then ~X has opposite
orientation with ~x.

h is said to be orientation preserving if h′ > 0 and reversing otherwise.
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Figure 2: Reparametrisation through h(s).

Examples: 1) For the reparamatrization of the semicircle t = h(u) = u/2 considered at the
beginning of the subsection we have that h is orientation preserving since h′ = 1/2.

2) If one defines h(u) = 2π − u, u ∈ (π, 2π) and t = h(u), t ∈ (0, π) then ~X(u) = ~x(h(u)) is a
reparametrization of the upper semicircle which is orientation reversing since h(u) = −1.

3.3 Arc-Length

Definition:

• Let ~x be an oriented curve (i.e. we know in which direction it is traversed). The arclength from A = ~x(a)
to B = ~x(b) is

s(b) =

∫ b

a

v(t)dt =

∫ b

a

|~x′(t)|dt =
∫ b

a

√
[x′

1(t)]
2 + [x′

2(t)]
2dt

• The curve C is arc-length parametrized if the parameter s is the arc-length from some point A belongs to
the trace of C and hence s = 0 at A.

• Symbol s is usually reserved for arc-length.

4 Lecture

Theorem:
Parameter s arc length parametrizes C if and only if

i) v = 1 (unit speed)

ii) s = 0 at some point A ∈ trace of C.

Proof: ⇒ Assume that s is the arc-length then let’s show that i) and ii) are satisfied. ii) is satisfied
by the definition of the arclength, hence we need to show oly i). Assuming that the point A in the
definition of the arc length corresponds to s = 0 we have

s =

∫ s

0

|~x′(u)|du

differentiation with respect s gives

1 = |~x(s)|.
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⇐ To prove the converse statement we need to show that i)&ii) imply that curve is arc-length
parametrized. Thus let’s assume that we are given a parametrization t such that |~x′(t)| = 1 and
arc-length is 0 at t = 0. Then we have

t =

∫ t

0

du =

∫ t

0

|~x′(u)|du = arc-length.

Theorem: A regular curve can always be arc length parametrized.

Proof: Given a regular curve ~x(t) then

s(t) =

∫ t

a

|~x′(u)|du ⇒ ds

dt
= |~x′(t)| 6= 0.

Hence s is strictly increasing function of t, and by inverse function theorem t = h(s) and h is arc-length
reparametrizes ~x.

• Remark: Since ds
dt > 0 ⇒ ~X and ~x have the same orientation.

• Example: Let arc length reparametrize the following curve

~x(t) =

[
3t

2t3/2

]
⇒ ~x′(t) =

[
3

3t1/2

]
, t > 0

Then v(t) = 3
√
1 + t and for the arc-length we have s(t) = 3

∫ t

0

√
1 + tdt = 2[(1 + t)3/2 − 1]. Now from

this formula express t as a function of s:

s = 2[(1+ t)3/2−1], ⇒ s

2
+1 = (1+ t)3/2, ⇒

(s
2
+ 1
) 2

3

= 1+ t, t =
(s
2
+ 1
) 2

3 −1

hence h(s) = ( s2 + 1)2/3 − 1.
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4.1 Frenet Frame

Definition:

• Let ~x be a regular curve. The unit tangent vector is

~T (t) =
~x′(t)

v(t)
.

Note that if t = s-arclength then ~T = ~x′.

• The unit normal vector is ~N = J ~T where J is the 90o anticlockwise rotation

J =

(
0 −1
1 0

)

• Frenet frame at ~x(t) is (~T (t), ~N(t)): is an orthogonal 2× 2 orthogonal matrix i.e. its columns are unit
vectors which are mutually orthogonal.

• In the example above with

~x(t) =

[
3t

2t3/2

]
t > 0

it is easy to see that

~T (t) =
1√
1 + t

[
1

t1/2

]
, ~N(t) =

1√
1 + t

[
−t1/2

1

]

4.2 Rate of change of ~T

• First we notice that if ~a(t) is a unit vector then 2~a(t) · ~a′(t) = 0. Indeed if

~a(t) =

[
a1(t)
a2(t)

]
⇒ a21(t) + a22(t) = 1, differentiating ⇒ 0 = 2(a1a

′
1 + a2a

′
2) = 2~a · ~a′

• since ~T is the unit tangent vector then the computation above implies that ~T ′ ⊥ ~T

• introduce θ(t) inclination of ~T to Ox1 direction, then

8
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~T (t) =

[
cos θ(t)
sin θ(t)

]
, ~N(t) =

[
− sin θ(t)
cos θ(t)

]
• Next differentiating this we get

~T ′(t) =

[
− sin θ(t)
cos θ(t)

]
θ′(t) = ~N(t)θ′(t)

• Thus θ′(t) measures the rate of change of direction but depends on parametrization. To deal with
this we first take the arc length parametrization.

Definition: Let ~x : J 7→ R2 be a regular curve parametrized by arc-length. The curvature k is
the coefficient k in the equation

~T ′ = k ~N (1)

• Remark 1: Since ~N is a unit vector we have after taking the inner product of ~N and ~T ′ and
using equation (1) we get k = ~T ′ · ~N . k can be interpreted as the rate with respect to distance at

which ~T turns towards ~T ′.

• Remark 2: Next we want to show that

~N ′ = −k~T (2)

Indeed by definition ~N = J ~T which after differentiation and using equation (1) yields

~N ′ = J ~T ′ = Jk ~N = JkJ ~T = kJ2 ~T = −k~T

where the last line follows from

J2 =

(
0 −1
1 0

)(
0 −1
1 0

)
= −

(
1 0
0 1

)
• Combining equations (1) and (2) we get the structure equations of the arc-length parametrized
curve

Definition:
The equations (1) and (2) are equivalent to

(~T ′, ~N ′) = (~T , ~N)︸ ︷︷ ︸
Frenetframe

(
0 −k
k 0

)
, ~T (s) = ~x′(s) (3)

and (3) are called the structure equations of arc-length parametrized curve ~x(s).
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5 Lecture 5

Remarks:

• k(s) measures rate of turn of ~T (s). For instance if ~x(s) = s~u+ ~a, i.e. a straight line, where

~a is fixed vector and ~u is an unit vector, then ~x′(s) = ~u = ~T (s). Thus ~T ′(s) = 0 ⇒ k(s) = 0.

Hence |k(s)| = |~T ′(s)| gives a measure of how rapidly the curve pulls away from the tangent
line.

• For circle of radius r we have ~x(t) = r(cos t, sin t)T . Thus ~x′(t) = r(− sin t, cos t)T and the
speed is v(t) = r. By arc-length formula we get that

s =

∫ t

0

v(u)du = rt, ⇒ t =
s

r

(we measure arc-length from (1, 0)). Hence the arc-length parametrisation is ~x1(s) =

r(cos s
r , sin

s
r )

T . Now we differentiate ~x1 by s to get the unit tangent ~T1(s) = (− sin s
r , cos

s
r ).

Finally

~T ′
1(s) = −1

r

[
cos s

r
sin s

r

]
=

1

r

[
− cos s

r
− sin s

r

]
︸ ︷︷ ︸

~N1(s)

Thus k1(s) =
1
r > 0. Notice that for ~x2(s) = r

[
− cos s

r
sin s

r

]
with reversed orientation we have

k2(s) = −1
r .

See Figure 3.

• Since k(s) = ~T ′(s) · ~N(s) ⇒ k(s) > 0 (resp. k(s) < 0) if ~T (s) turns towards (resp. away

from) ~N(s).

5.1 Arbitrary speed curves

Let ~x(t) be a regular curve, then there exists an arc-length parametrization ~x1(s) such that

~x(t) = ~x1(s(t)), s(t) =

∫ t

a

|~x′(u)|du.

Differentiating
d~x(t)

dt
=

d~x1(s(t))

ds︸ ︷︷ ︸
~T1(s(t))

ds

dt︸︷︷︸
v(t)−speed

or

~T1(s(t)) =
~x′(t)

v(t)
≡ ~T (t)

Thus the tangents are identical
~T1(s(t)) = ~T (t).

Next let’s compare the normals
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Figure 3: In the example k > 0 for ~x1(s) and k < 0 for ~x2(s).

Since the unit normal is the 90 degree rotation of tangent we conclude that the normal are identical

~N1(s(t)) = ~N(t).

Finally let’s examine the curvature

We have
d~T (t)

dt
=

d~T1

ds

ds

dt︸︷︷︸
v(t)−speed

Recalling that d~T1(s)
ds = k1(s) ~N1(s) and using the equality for normals and tangents we get

~T ′(t) = k1(s(t)) ~N1(s(t))v(t) =

= k1(s(t)) ~N(t)v(t) =

= k(t) ~N(t)v(t)

where
k(t) = k1(s(t))

This is the definition of the curvature for arbitrary speed curve.

By a similar computation we have

~N ′(t) = −k(t)~T (t)v(t).

Thus the structure equation in the matrix form are

(~T ′(t), ~N ′(t)) = (~T (t), ~N(t))︸ ︷︷ ︸
Frenetframe

(
0 −k(t)v(t)

k(t)v(t) 0

)
, ~x′(t) = v(t)~T (t)
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Conclusions:

• From the definition of Frenet frame (~T , ~N) it follows that Frenet frame does not depend on
the parametrization.

• From the definition of k(t) it follows that curvature does not depend on the parametrization.

The next lemma provides a useful formula for curvature for arbitrary parametrisations:

Lemma 1 For a regular curve ~x(t) we have that

k(t) =
1

v3(t)
~x′′(t) · J~x′(t) =

det(~x′, ~x′′)

v3
.

Proof: Since ~x′(t) = ~T (t)v(t) we have from product rule

~x′′(t) = ~T ′(t)v(t) + ~T (t)v′(t) = k ~N(t)v2(t) + ~T (t)v′(t)

Taking the inner product with ~N we get

k =
1

v2
~x′′ · ~N =

1

v2
~x′′ · J ~x′

v
=

1

v3
~x′′ · J~x′.

Example:

• Let

~x(t) =

[
t

f(t)

]
⇒ ~x′(t) =

[
1

f ′(t)

]
, ~x′′(t) =

[
0

f ′′(t)

]
Then the speed is v(t) =

√
1 + (f ′(t))2. Hence

k(t) =
1

(1 + (f ′(t))2)3/2

[
0

f ′′(t)

]
· J
[

1
f ′(t)

]
=

f ′′(t)

(1 + (f ′(t))2)3/2
.

Theorem 2 ~T , ~N, k are all unchanged (resp. reversed) under orientation preserving (resp. reversing)
reparametrization.

We split the proof into 2 parts.
Step 1. Let’s assume that ~x2 is the orientation preserving reparametrization of ~x1, i.e. ~x2 =

~x1 ◦ h. Then if ~x3 is the arc-length parametrization then ~x3(s) = ~x2(H(s)) then it is also an arc-length
parametrization for ~x1 since

~x3(s) = ~x2(H(s)) = ~x1(h(H(s))).

We know that

• ~x1 and ~x3 have the same ~T , ~N, k

• ~x2 and ~x3 have the same ~T , ~N, k

hence so do ~x1 and ~x2.
Step 2. For reversing case it is enough to consider the arc-length parametrization in view of step

1. Let ~x : I 7→ R2. Introduce ~x1(s) = ~x(−s) ⇒ ~x′
1(s) = −~x′(−s) ⇒ ~T1 = −~T ⇒ ~N1 = − ~N . Moreover

~x′′
1(s) = ~x′′(−s). Thus

k1(s) = ~x′′
1 · J~x′

1 = ~x′′ · (J(−~x′)) = −k(−s).

12
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6 Lecture 6

6.1 Rotation index

• Definition. For speed one curve ~x an argument function is a continuous function θ such
that

~T (s) =

[
cos θ(s)
sin θ(s)

]
• θ is unique up to an overall addition of a multiple of 2π.

• Proposition:
dθ

ds
= k.

We have ~T ′ = θ′ ~N but by definition ~T ′ = k ~N . (see also subsection 4.2)

• Note: For arbitrary speed curve θ′ = vk.

• Definition: Curve ~x : R 7→ R2 is closed if ~x is periodic

~x(s+ L) = ~x(s),∀s, L > 0

• The smallest such L is the length of ~x.

• The rotation index γ(~x) of the closed curve ~x is the integer

γ(~x) =
1

2π
(θ(L)− θ(0))

• Interpretation: Regard ~T (s) as position vector ~OP ′ of point P ′ on unit circle. Then γ
measures total number of turns P ′ encircles 0 anticlockwise as ~x is described once, i.e. the
total change of direction anticlockwise measured in whole rotations.

Theorem 3 For closed curve ~x

γ(~x) =
1

2π

∫ L

0

k(s)ds.

We have
1

2π

∫ L

0

k(s)ds =
1

2π

∫ L

0

θ′(s)ds =
1

2π
(θ(L)− θ(0)) = γ(~x).

Example: Consider circle of radius r, then

~x(s) = r

[
cos(s/r)
sin(s/r)

]
then

~T (s) =

[
− sin(s/r)
cos(s/r)

]
=

[
cos(s/r + π/2)
sin(s/r + π/2)

]
so we can take θ(s) = (s/r + π/2).

Now let us consider the following simple example

• k = 1
r

• L = 2πr

13
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(a) γ = 0
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(b) r(θ) = sin(3θ), γ = 2
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(c) r(θ) = sin( 1
2
θ), θ ∈ (0, 4π), γ = 4

Figure 4: Curves with various rotation indeces

• γ = 1

Example: Figure 4 illustrates a curve for which the tangent ~T makes two full rounds, the blue and
red parts, hence the rotation index of the curve is 2.

For this particular Example we take

6.2 Families of curves

• Defn: A family of curves is a smooth map

~X : (λ, t) 7→ ~X(λ, t) 3 R2

where (λ, t) belongs to some rectangle D in the (λ, t)-plane.

• For each fixed λ define the curve ~xλ(t) by ~xλ : t 7→ ~X(λ, t)

• Regard ~X as the family of all the curves ~xλ.

• Example: Take

~X(λ, t) =

[
λ
λ2

]
+ t

[
1
2λ

]
.

This has form ~X (λ) + t ~X ′(λ) where ~X (λ) is the parabola (λ, λ2)T so ~X is the family of

tangent lines to ~X

14
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Figure 5: This is the family of parabolas ~X(λ, t) =
(t, (t− λ)2)T .
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Figure 6: Families of curves
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7 Lecture 7

7.1 Envelope

• Definition: A curve ~u is an envelope for the family ~X if at each point of ~u it is tangent to a
member of the family ~X but is not a member of the family.

7.2 Enveloping condition

Remark:
Suppose ~u touches ~xλ(t) at some point P (λ) = ~x(tλ) on the curve where tλ = T (λ) (for some

function T ) i.e. at the point P (λ) = ~X(λ, T (λ)). Then P (λ) is a point of trace ~u but this is true

for each λ so ~u has parametrization λ 7→ ~X(λ, T (λ)).

Next we give necessary condition for enveloping.

Theorem:
Jacobian Matrix: If ~u : λ 7→ ~X(λ, T (λ)) is an envelope for ~X then

det

[
∂ ~X

∂λ

∂ ~X

∂t

]
= det

[
∂X1

∂λ
∂X1

∂t
∂X2

∂λ
∂X2

∂t

]
= 0 at (λ, T (λ)).

• Proof: It suffices to prove that ∂ ~X
∂λ and ∂ ~X

∂t are parallel (i.e. are collinear vectors). At the points
where ~u is tangent to a member of the family curve the tangent vectors are colinear.

We have
d~u(λ)

dλ
=

∂ ~X(λ, T (λ))

∂λ
+

∂ ~X(λ, T (λ))

∂t
T ′(λ).

Next ~xλ, at the contact point t = T (λ), has tangent

d~xλ(t)

dt

∣∣∣∣
t=T (λ))

=
∂ ~X(λ, t)

∂t

∣∣∣∣
t=T (λ))

=
∂ ~X(λ, T (λ))

∂t
.

For ~u to be tangent to ~xλ at the contact point P (λ) we require the velocities (which are collinear
to corresponding unit tangents)

d~u(λ)

dλ
= C1

d~xλ(T (λ))

dt

for some constant C1, i.e. the velocities must be linearly dependent!

Summarizing

C1
∂ ~X(λ, T (λ))

∂t
= C1

d~xλ(T (λ))

dt
=

d~u(λ)

dλ
=

∂ ~X(λ, T (λ))

∂λ
+

∂ ~X(λ, T (λ))

∂t
T ′(λ)

or equivalently

(C1 − T ′(λ))
∂ ~X(λ, T (λ))

∂t
=

∂ ~X(λ, T (λ))

∂λ
.

16
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• Note this is a necessary condition for enveloping but we use it to try to locate (recover) envelopes.

Example: Take

~X(λ, t) =

[
λ
λ2

]
+ t

[
1
2λ

]
.

We have
∂ ~X

∂λ
=

[
1
2λ

]
+

[
0
2t

]
,

∂ ~X

∂t
=

[
1
2λ

]
Thus by Theorem we have that

det

[
1 1
2λ 2λ+ 2t

]
= 0 ⇐⇒ t = 0 (This is T (λ)!).

Substituting back into ~X gives envelope as ~u(λ) = ~X(λ, T (λ)) = (λ, λ2)T which is the parabola.

Example: Let r be a given constant and let

~X(λ, t) =

[
λ+ r cos t
r sin t

]
.

Clearly the parametrisation of each member of this family, for fixed λ, is x1(t) = λ+r cos t, x2(t) =
r sin t or equivalently

(x1 − λ)2 + x2
2 = r2 cos2 t+ r2 sin2 t = r2.

Thus for fixed λ ~xλ(t) is a circle centers at (λ, 0) of radius r. The det = 0 condition implies that

r cos t = 0 ⇒ t = ±π
2 . Substituting into ~X we get that the envelope ~u(λ) =

[
λ
±r

]
, i.e. the

envelope consists of a pair of parallel horizontal lines.
See Figure 5.
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Figure 7: Examples of envelopes

7.3 Envelope of implicitly defined curves

• Similarly extend an implicitly defined curve fλ(~x) = 0 to a family of implicitly defined curves
given by

F (~x, λ) = 0

• For each fixed value of λ thus defines an implicitly defined curve fλ(~x) = 0 where

f(~x, λ) = F (~x, λ).

• Enveloping condition: Analysis similar to above shows that a necessary condition for
enveloping is

F (x, y, λ) = 0,
∂F (x, y, λ)

∂λ
= 0,

where we set ~x = (x, y).

• Example: Let F (x, y, λ) = (x−λ)2+ y2− r2 (see the previous example) where r is a given
positive constant. As we have seen each member of this implicit family of curves is a circle.

Now let’s find the envelope. We have
∂F

∂λ
= −2(x − λ) = 0 hence x = λ substituting this

into F (x, y, λ) = 0 we get that y2 − r2 = 0 or y = ±r- a pair of parallel lines.

See Figure 5.

8 Lecture 8

8.1 Calculus of Variations

• Given a functional J [y] (that is a function of y(x), x ∈ [a, b]).

• y satisfies boundary conditions y(a) = u, y(b) = v, the numbers u, v are given.
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• Question: Find y that extremises J [y](i.e. gives max or min value to J .)

Defn:(Extremals) Let J [y] be a functional and y satisfies the boundary conditions as indicated
above. Then y is an extremal of J if

d

dε
J [y + εh]

∣∣∣∣
ε=0

= 0 (1)

for all smooth functions h such that h(a) = h(b) = 0.

Lemma: If y extremises J then y must be an extremal of J (that is (1) is satisfied).

• Proof: Assume that y gives the maximal value of J . Then J [y + εh]leqJ [y] for all functions h as
indicated above. Thus

J [y + εh]− J [y] ≤ 0 (?)

Take ε > 0 and divide the above inequality by ε and send ε to zero

d

dε
J [y + εh] = lim

ε↓0

J [y + εh]− J [y]

ε
≤ 0 (??)

Next take ε < and divide (?) by ε. Since ε < 0 after division we have reversed inequality. Sending
ε to 0 yields

d

dε
J [y + εh] = lim

ε↑0

J [y + εh]− J [y]

ε
≥ 0 (? ? ?)

Combining (??) with (? ? ?) we finish the proof. If y gives minimal value then all inequalities
(?), (??) and (? ? ?) must be reversed.

• Notes: In calculus if f is a function then the analogous condition is f ′(x) to have extreme local
value at x.

If (1) is satisfied then y is said to be a stationary point of J .

(1) is necessary condition but not always sufficient.

The following table links the concepts of Extremum and Extremal of a functional to the customary
concepts of max/min and critical points for the functions

Function f(x) Functional J [y]

A point of absolute max or min at x ∈ [a, b] y is an Extremum of J [y]

x is a critical point f ′(x) = 0 y is an extremal
d

dε
J [y + εh]

∣∣∣∣
ε=0

= 0

• Example:

Let J [y] =
∫ b

a
(1+ (y′(x))2)dx and boundary conditions are y(a) = u, y(b) = v. Then for h such that

h(a) = h(b) = 0 we have
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J [y + εh] =

∫ b

a

[
1 + (y′(x) + εh′(x))2

]
dx

=

∫ b

a

[
1 + (y′(x))2 + 2εy′(x)h′(x) + ε2(h′(x))2

]
dx

=

∫ b

a

[
1 + (y′(x))2

]
dx+ 2ε

∫ b

a

y′(x)h′(x)dx+ ε2
∫ b

a

(h′(x))2dx

Thus

0 =
d

dε
J [y + εh]

∣∣∣∣
ε=0

= 2

∫ b

a

y′(x)h′(x)dx

Use integration by parts to get that∫ b

a

y′(x)h′(x)dx = y′(x)h(x)

∣∣∣∣b
a

−
∫ b

a

y′′(x)h(x)dx = −
∫ b

a

y′′(x)h(x)dx = 0

since h(a) = h(b) = 0 and thus we conclude that∫ b

a

y′′(x)h(x)dx = 0.

Now choose h(x) = y′′(x)(x− a)(b− x) and substitute into the last equality to obtain∫ b

a

(y′′(x))2(x− a)(b− x)dx = 0

the integrand is nonnegative function thus (y′′(x))2(x − a)(b − x) = 0 ⇐ y′′(x) = 0. Solving the ODE
y′′(x) = 0 with boundary conditions y(a) = u, y(b) = v we have that y is a linear function.

8.2 Euler-Lagrange Equations

• In the previous example the problem of finding extremals was reduced to solving a linear second
order ODE coupled with boundary data. Thus we want to obtain the corresponding ODE for
functionals of general type.

• Theorem: Let J [y] =
∫ b

a
F (x, y(x), y′(x))dx where F (x, y, z) is a smooth function of (x, y, z)

(here z is the dummy variable for y′). Assume that y(a) = u, y(b) = v.

Then extremals of J are the solutions of

∂F (x, y(x), y′(x))

∂y
− d

dx

(
∂F (x, y(x), y′(x))

∂y′

)
= 0 y(a) = u, y(b) = v.

• This theorem says that to find extremals it is enough to solve the corresponding boundary value
problem for the ODE-the Euler -Lagrange equation.

• Sketch of proof: By equation (1) we have

d

dε
J [y + εh] =

d

dε

∫ b

a

F (x, y(x) + εh(x), y′(x) + εh′(x))dx
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Since F is smooth we can interchange integration with differentiation to get

d

dε
J [y + εh] =

∫ b

a

d

dε
F (x, y(x) + εh(x), y′(x) + εh′(x))dx

=

∫ b

a

(
∂F (. . . )

∂y
h(x) +

∂F (. . . )

∂y′
h′(x)

)
dx

here we used the chain rule and we used notation · · · = (x, y(x)+εh(x), y′(x)+εh′(x)) for brevity.
Integration by parts and the condition h(a) = h(b) = 0 imply

∫ b

a

∂F (. . . )

∂y′
h′(x)dx =

∂F (. . . )

∂y′
h(x)

∣∣∣∣b
a

−
∫ b

a

d

dx

(
∂F (. . . )

∂y′

)
h(x)dx

= −
∫ b

a

d

dx

(
∂F (. . . )

∂y′

)
h(x)dx

Using this computation and sending ε to 0 we conclude∫ b

a

[
∂F (x, y(x), y′(x))

∂y
− d

dx

(
∂F (x, y(x), y′(x))

∂y′

)]
h(x)dx = 0

for arbitrary smooth function h such that h(a) = h(b) = 0. If F is thrice continuously differentiable
function of x, y and z, and y is thrice continuously differentiable function of x then we can take

h(x) =

[
∂F (x, y(x), y′(x))

∂y
− d

dx

(
∂F (x, y(x), y′(x))

∂y′

)]
(x− a)(b− a).

Notice that under these conditions h is continuously differentiable function of x.

The general result (i.e. the when F and y are not thrice differentiable) follows from the theorem
of du Bois Reymond.

9 Lecture 9

9.1 Special cases of E-L equations

F is independent of y: In this case ∂F
∂y = 0 hence from E-L equation we get

− d

dx

∂F

∂y′
= 0 ⇒ ∂F

∂y′
= k, k is a constant

thus
∂F

∂y′
is constant for extremals y.
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F is independent of x: In this case ∂F
∂x = 0. Let us compute

d

dx

(
F − y′

∂F

∂y′

)
=

∂F

∂y

dy

dx
+

∂F

∂y′
dy′

dx
− dy′

dx

∂F

∂y′
− y′

d

dx

∂F

∂y′

=
∂F

∂y

dy

dx
− y′

d

dx

∂F

∂y′

= y′
(

∂F

∂y
− d

dx

∂F

∂y′︸ ︷︷ ︸
E−L equation

)
= 0

F − y′
∂F

∂y′
= k, k is a constant

9.2 Examples

• J [y] =
∫ b

a
(1 + [y′(x)]2)dx, F (x, y, y′) = 1 + [y′(x)]2 and it’s independent of x and y thus

∂F

∂y
− d

dx

∂F

∂y′
= 0− d

dx
(2y′) = 0

hence y′′ = 0 implying that y is a linear function.

• Arc-length. J [y] =
∫ b

a

√
1 + [y′(x)]2dx, F (x, y, y′) =

√
1 + [y′(x)]2 independent of x and y thus

from E-L equation we get

0 =
∂F

∂y
− d

dx

∂F

∂y′
= 0− d

dx

[
1

2

2y′√
1 + [y′(x)]2

]

thus
y′√

1 + [y′(x)]2
= k

hence y′ is constant and thereby y is a linear function.

• Minimal area of surface of revolution. J [y] =
∫ b

a
2πy

√
1 + [y′(x)]2dx.

F is independent of x hence (as indicated above) F − y′ ∂F∂y′ = k which results

y = k
√
1 + [y′(x)]2

To work out an expression for y′ we square both sides to get

y2 = k2(1 + [y′]2) ⇒ y2

k2
− 1 = [y′]2 ⇒ y′ =

√
y2

k2
− 1

We now solve the ODE

dy

dx
=

√
y2

k2
− 1 ⇒ dy√

y2

k2
− 1

= dx ⇒
∫

dy√
y2

k2
− 1

=

∫
dx
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Figure 8: Catenoid

which gives the inverse of cosh

k cosh−1 y

k
= x− x0

and x0 is an arbitrary constant (the integration constant). Hence

y = k cosh

(
x− x0

k

)
Therefore we obtain a 2-parameter (which are x0 and k) family F of extremals.

9.3 Several dependent variables

Definition: ~x(t) =

[
x1(t)
x2(t)

]
is said to be an extremal of J [~x] if

d

dε
J [~x+ ε~h]

∣∣∣∣
ε=0

= 0 (4)

for all ~h such that on the boundary ~h(a) = ~h(b) = 0
If (4) is satisfied then we say that ~x makes J stationary.
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10 Lecture 10

Theorem: If ~x extremises J then ~x is an extremal. The proof is exactly the same as for the scalar
case.

E-L equations Assume that F (t, ~x, ~x′) is a smooth function of all its arguments and J [~x] =∫ b

a
F (t, ~x, ~x′)dt where ~x : [a, b] 7→ Rn, ~x(t) = (x1(t), x2(t), . . . , xn(t)) with boundary conditions

~x(a) = ~u, ~x(b) = ~v (i.e. x1(a) = u1, . . . , xn(a) = un, . . . )
Then the extremals of J are the solutions of the n-coupled (in general) second order ODE’s

∂F

∂xi
− d

dt

∂F

∂x′
i

= 0, i = 1, 2, . . . , n.

• Proof: Interchanging differentiation with integration we obtain

d

dε
J [~x+ ε~h] =

d

dε

∫ b

a

F (t, ~x(t) + ε~h(t), ~x′(t) + ε~h′(t))dt

=

∫ b

a

d

dε
F (t, ~x(t) + ε~h(t), ~x′(t) + ε~h′(t))dt

=

∫ b

a

n∑
i=1

(
∂F

∂xi
hi +

∂F

∂x′
i

h′
i

)
dt

=
∂F

∂x′
i

hi

∣∣∣∣b
a︸ ︷︷ ︸

is 0 since ~h(a)=~h(b)=0

−
∫ b

a

n∑
i=1

hi

(
∂F

∂xi
− d

dt

∂F

∂x′
i

)
dt

• Example: For Arc-length we have J [~x] =
∫ b

a

√
(x′

1(t))
2 + (x′

2(t))
2dt. Then the E-L equations are

∂F

∂xi
− d

dt

∂F

∂x′
i

= 0 i = 1, 2. ⇒


− x′

1(t)√
(x′

1(t))
2 + (x′

2(t))
2
= k1

− x′
2(t)√

(x′
1(t))

2 + (x′
2(t))

2
= k2

If we assume that x′
1 = 0 then the first constant k1 = 0 and hence x1 is constant substituting this

into the second equation gives that x2 is linear.

Now assume that x′
1 6= 0 then

x′
2

x′
1

=
k2
k1

= constant

hence the curve has constant slope ⇒ it is line.

10.1 Special cases

• F is independent of ~x: In this case ∂F
∂xi

= 0 hence from E-L equation we get

− d

dt

∂F

∂x′
i

= 0 ⇒ ∂F

∂x′
i

= ki, i = 1, 2, . . . , n, ki is a constant

thus
∂F

∂x′
i

is constant for extremals ~x.
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• F is independent of t: In this case ∂F
∂t = 0. Let us compute

d

dt

(
F −

n∑
i=1

x′
i

∂F

∂x′
i

)
=

n∑
i=1

(
∂F

∂xi

dxi

dt
+

∂F

∂x′
i

dx′
i

dt
− dx′

i

dt

∂F

∂x′
i

− x′
i

d

dt

∂F

∂x′
i

)

=
n∑

i=1

(
∂F

∂xi

dxi

dt
− x′

i

d

dt

∂F

∂x′
i

)

=
n∑

i=1

x′
i

(
∂F

∂xi
− d

dt

∂F

∂x′
i︸ ︷︷ ︸

E−L equation

)
= 0

F −
n∑

i=1

x′
i

∂F

∂x′
i

= k, k is a constant

10.2 Application to Mechanics

• Particle of mass m moves in a force field with potential energy V (~x). Then the force acting on
the particle is −∇xV (~x). From Newton’s second law we have

m~x′′(t) = −∇xV (~x).

• Hamolton’s principle: ~x(t) is the extremal of the action functional

J [~x] =

∫ b

a

 1

2
m(x′(t))2︸ ︷︷ ︸

kinetic energy

− V (~x(t))︸ ︷︷ ︸
potential energy

 dt

• Proof: From E-L equations for F = 1
2m(x′(t))2 − V (~x(t)) we have that

∂V

∂xi
− d

dt
(mx′

i) = 0

which gives Newton’s second law.

• Conservation of energy F is independent of t thus (see above) we have

1

2
m(x′(t))2 − V (~x(t))−

n∑
i=1

x′
imx′

i = −(
1

2
m(x′(t))2 + V (~x(t))) = constant

Thus the energy is independent of t.

• Polar coordinates Express ~x in terms of the polar coordinates r(t) and θ(t).

~x(t) =

[
x1(t)
x2(t)

]
=

[
r(t) cos θ(t)
r(t) sin θ(t)

]
~x′(t) = r′(t)

[
cos θ(t)
sin θ(t)

]
+ r(t)θ′(t)

[
− sin θ(t)
cos θ(t)

]
|~x′(t)|2 = (r′)2 + r2(θ′)2
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Then the action functional takes form

J [r, θ] =

∫ b

a

1

2
[(r′)2 + r2(θ′)2]− V (r, θ)dt

and E-L equations are

∂F

∂r
− d

dt

∂F

∂r′
= 0 (5)

∂F

∂θ
− d

dt

∂F

∂θ′
= 0

10.3 Central Field and conservation of angular momentum
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Figure 9: Lemniscate

A central field has V depending only on distance
r measured from some center (e.g. gravity force
directed only to earth’s center) thus V = V (r)
and F is independent of θ implying (by second E-
L equation) that ∂F

∂θ′ = constant or equivalently

mr2θ′ = constant

In mechanics this is interpreted as Conservation
of Angular Momentum.
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