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Geometry and Calculus of Variations
Lecture notes *

March 7, 2012

Abstract
This is the typed version of Dr A.Gilbert’s lecture notes. (©)

1 Lecture

1.1 Basic notations
We begin with introducing some basic notations which will be used throughout the notes.

e We work in R" (n = 2,3)

e Points in R™ will be denoted by column vectors

Z1

T2 T
= (z1,22,...,2pn)

T

e The inner product is

n
Ty = Z“clyl
i=1

The magnitude of z € R" is

| =Vz-z=\/2f + a3+ - 422

The distance between x and y, z,y € R™ is

2 —yl=(x1 —y1)2+ (22 —12)2 + - + (B0 — Yn)?

*This is a preliminary version of the notes. It will be updated weekly.
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Figure 1: In this figure I = (0,1).

1.2 Plane Curves (Curves in R?)

Definition:

e A curve 7 in R? is a smooth mapping ¢ — Z(t) = { ﬁlgg } where t € I, 7(t) € R?, I is an interval of R.
2
Here smooth means that 7 is differentiable as often as we like on I.

e t is called the parameter. It is convenient to think of ¢ as time.

e The trace of ¥ is the image set Z(t). The curves are arrowed in direction of increasing ¢.

Examples:
e For semicircle Z(t) = (cost,sint)? t € (0,7) = I.

e The straight line #(t) = @ 4 t@ for some fixed vectors @ and #,t € (—oo, 00).
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1.3 Tangent vectors

Definition:

e A tangent vector to R? is a pair (p, 7), where

e p € R? is the point of application

e 7 € R? is the vector acting at p
e We say that two tangent vectors (p, ¥), (¢, W) are equal if and only if p = ¢ and ¥ = .
e We do the usual vector Algebra with tangent vectors at given point.

e For fixed p the tangent space to R? at p is the set of all tangent vectors at p and is denoted by

T,R?

e A vectorfield V is a function which assigns a tangent vector V(p) = (p, 7(p)) to each p € R2.

e The velocity of a curve Z(t) at time ¢ is the tangent vector

o= [49]

~

at the point Z(t).

e The speed is defined as
v =)

v is the rate with respect to ¢t at which the point #(¢) describes the curve Z.

Interpretation: By definition

The secants passing through #(¢) and Z(t + At) tend to the tangent at Z(t) as At — 0.

Examples: It is clear that for semicircle #(t) = (—sint, cost)” and for straight line #(t) = .

2 Lecture

2.1 Regularity

Definition:
e The curve ¥ : I — R? is

e regular at ¢y if v(¢p) # 0

e regular if v # 0 on I.

e Regularity is used to avoid nasty behaviour: even though # is smooth, the trace of ¥ mayw have
corners or worse.



“Sum’l” — 2012/3/7 — 3:35 — page 4 — #4 EF

Example 1:
S t3
Z(t) = { |t3| :|

This curve is not regular at ¢t = 0. It is easy to see that x1(t) = t3 and zy = |t3] are twice
continuously differentiable. Note that after excluding the parameter ¢ we get that zo = |21].

7(t) = [ ! }

Example 2:

This curve is not regular at ¢ = 0.

2.2 Implicitly defined curves

Definition:

o Let F: R?2 — R. A point p € R? is a regular point of F if VF # 0, i.e.
oF OF
S o) #0
8%1 81’2

e Let F:R? - R and let C' C R? be the zero set of F, i.e.

C = {p e R* F(p) = 0}.

Let C' be nonempty If F is regular at each p € C' then C' is a regular implicitly defined curve.

As the example of

0 if 22 +92 <1
F<x7y)_{x2+y21 1f1'2+y2>1
shows the regularity assumption on the F' is necessary. Note that the zero set of F' is the unit disk-Not
a bit curve-like!

Theorem: A regular implicitly defined curve is locally the trace of a regular (parametrized) curve.

Proof: The key idea is to use the implicit function theorem: if F'(z,y) = 0 defines an implicit curve
C and Fy # 0 on C then then y can be solved in z, i.e. there exists a function f such that C is the
graph of y = f(z). If F, # 0 then z is a function of y, i.e x = g(y).

Now given (z9,%0) € C and assume that Fy(z,y) # 0 in some rectangular neighbourhood of R =
(xo — a, o + @) X (yo — B,y0 + B),a, B > 0 centered at (zg,yo). Then according the implicit function
theorem C'N R is the graph of some function y = f(z) and clearly as parametrisation we can take

) = { 1t ]

with ¢ = z. When F, # 0 then the parametrisation is

and y = t is the parameter.

Geometric interpretation: Consider surface S : z = F(x,y) and introduce ¢(z,y,z) = z — F(x,y).
Clearly the C curve is the intersection of ¢ = 0 and z = 0. The normal of the surface S is (—Fy, —Fy, 1).
At the points where VF' = 0 allows possibility of zero set line disc since at those points the normal is
parallel to z-axis.
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3 Lecture

3.1 Orientation

In what follows C denotes the curve.

Theorem:

e An orientation of C: of a regular implicitly defined curve with no self-intersection is a choice of direction
in which C' is to be traversed.

e The curve C parametrized by ¢ (i.e.Z(t) is given) is naturally oriented in the z-direction of increasing
t (see Lecture 1).

3.2 Reparametrisation
First lets consider the following example.

e For semicircle we have

.\ | cost
() = [ sint }
t € (0, 7). Introduce a new parameter u :
u
t=— ie. u = 2t.
2

Denote h(u) = u/2, then the composed map

o =X = | o |,

is another parametrization of the semicircle with parameter u € (0, 27).

Hence X (u),u € (0,2n) has exactly the same trace as Z(t), (0, 7) but x with different parameter
u.

e We conclude that different parametrizations can define the same curve!

Now we give the precise definition:

Definition:

o Let Z(t) : I — R? be a curve. If h : J — I is a smooth bijection, with smooth inverse, of an interval .J
onto I then X = & o h is a reparametrization of & by h.

Remarks:

e Recall that bijection is an one-to-one mapping hence the inverse is well-defined.

e if h # 0 and Z is regular (i.e |#(t) # 0) then so is X. Indeed it follows from Chain Rule
X'(u) = & (h()W (), X' (u) = |7 (h(w))||F (u)] # 0.

e If i/ > 0 then X has the same orientation with #. Otherwise if A’ < 0 then X has opposite
orientation with .

h is said to be orientation preserving if A’ > 0 and reversing otherwise.
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x(h(s))

h(s)=t

s t

Figure 2: Reparametrisation through h(s).

Examples: 1) For the reparamatrization of the semicircle ¢ = h(u) = u/2 considered at the
beginning of the subsection we have that h is orientation preserving since b’ = 1/2.

2) If one defines h(u) = 21 — u,u € (m,2n) and ¢t = h(u),t € (0,7) then X (u) = #(h(u)) is a
reparametrization of the upper semicircle which is orientation reversing since h(u) = —1.

3.3 Arc-Length

Definition:

e Let Z be an oriented curve (i.e. we know in which direction it is traversed). The arclength from A = Z(a)
to B = Z(b) is

sty = [ (it = / Ol = / S OF + FhoRd

e The curve C is arc-length parametrized if the parameter s is the arc-length from some point A belongs to
the trace of C' and hence s =0 at A.

e Symbol s is usually reserved for arc-length.

4 Lecture

Theorem:
Parameter s arc length parametrizes C' if and only if

i) v =1 (unit speed)

ii) s =0 at some point A € trace of C.

Proof: = Assume that s is the arc-length then let’s show that i) and i) are satisfied. i) is satisfied
by the definition of the arclength, hence we need to show oly ¢). Assuming that the point A in the
definition of the arc length corresponds to s = 0 we have

s:/ |7 (u)|du
0

differentiation with respect s gives

1= [Z(s)].
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< To prove the converse statement we need to show that i)&ii) imply that curve is arc-length
parametrized. Thus let’s assume that we are given a parametrization ¢ such that |#/(¢)] = 1 and
arc-length is 0 at t = 0. Then we have

t t
t= / du= [ |Z'(u)|du = arc-length.
0 0

Theorem: A regular curve can always be arc length parametrized. I

Proof: Given a regular curve Z(t) then

ds .
/ |7 (u)|du = i |2 (t)| # 0.

Hence s is strictly increasing function of ¢, and by inverse function theorem ¢ = h(s) and h is arc-length
reparametrizes T.

e Remark: Slnce :>0 = X and 7 have the same orientation.
e Example: Let arc length reparametrize the following curve
- 3t . 3
Z(t) = [ 0r3/2 ] = 7(t) = { 341/ ] , t>0

Then v(t) = 3v/1 + ¢ and for the arc-length we have s(t) = 3f(;5 VIFtdt =2[(1+t)*? —1]. Now from
this formula express t as a function of s:

Wit
Wt

=2[(1+t)%?-1], = §+1:(1+t)3/27 - (2+1) — 14t t= (2+1> 1

hence h(s) = (§+1)%/3 — 1.
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X1

4.1 Frenet Frame

Definition:
e Let & be a regular curve. The unit tangent vector is

Note that if t = s-arclength then T = 7.
The unit normal vector is N = JT where .J is the 90° anticlockwise rotation

| ()

Frenet frame at #(t) is (T(t), N(t)): is an orthogonal 2 x 2 orthogonal matrix i.e. its columns are unit

o
vectors which are mutually orthogonal.

In the example above with
I(t) =

it is easy to see that

Rate of change of T

4.2
First we notice that if @(t) is a unit vector then 2d(t) - a@'(¢t) = 0. Indeed if

} = a}(t) + a3(t) = 1, differentiating = 0 = 2(aja} + agab) = 2a - a

since T is the unit tangent vector then the computation above implies that T LT

introduce A(t) inclination of T to Ox; direction, then
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=] o | Fo=| i

e Next differentiating this we get

T (t) = [ _stnefg? ]of(t) — N®)o'(t)

e Thus ¢'(t) measures the rate of change of direction but depends on parametrization. To deal with
this we first take the arc length parametrization.

Definition: Let & : J — R? be a regular curve parametrized by arc-length. The curvature k is
the coefficient k in the equation

T' = kN (1)

e Remark 1: Since N is a unit vector we have after taking the inner product of N and 7" and
using equation (1) we get k =T"- N. k can be interpreted as the rate with respect to distance at
which T turns towards T".

e Remark 2: Next we want to show that
N' = —kT (2)
Indeed by definition N = JT which after differentiation and using equation (1) yields
N'=JT' = JkN = JkJT = kJ*T = —kT
where the last line follows from
J2:<0 —1)(0 —1>:_<1 0)
1 0 1 0 0 1
e Combining equations (1) and (2) we get the structure equations of the arc-length parametrized
curve

Definition:
The equations (1) and (2) are equivalent to

/A N 7A N = AT 0 -k o
T= @8 () ) Te=7e )

Frenetframe

and (3) are called the structure equations of arc-length parametrized curve Z(s).
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5 Lecture 5

Remarks:

e k(s) measures rate of turn of T'(s). For instance if Z(s) = si@ + @, i.c. a straight line, where
d is fixed vector and 4 is an unit vector, then @'(s) = @ = T'(s). Thus T77(s) = 0 = k(s) = 0.
Hence |k(s)| = |T"(s)| gives a measure of how rapidly the curve pulls away from the tangent
line.

e For circle of radius r we have #(t) = r(cost,sint)’. Thus #(t) = r(—sint,cost)? and the
speed is v(t) = r. By arc-length formula we get that

t
s:/ v(u)du = rt, = t=-—
0

r

(we measure arc-length from (1,0)). Hence the arc-length parametrisation is #1(s) =
r(cos £,sin 2)7. Now we differentiate #; by s to get the unit tangent T3 (s) = (—sin £, cos 2).

Finally
T"(s) _ 1 cos? _ 1 —cos?
1 r | sin f r | —sin f
—_——
Ni(s)
— cos &
Thus k1(s) = 1 > 0. Notice that for Z(s) =r { .COSS’“ } with reversed orientation we have
. S P
;.

ka(s) = —
See Figure 3.

—

e Since k(s) = T'(s) - N(s) = k(s) > 0 (resp. k(s) < 0) if T(s) turns towards (resp. away
from) N(s).

5.1 Arbitrary speed curves

Let Z(t) be a regular curve, then there exists an arc-length parametrization Z(s) such that

H(t) = Bi(s(),  s(t) = / 12 ()| du.

Differentiating
dz(t) _ dzi(s(t)) ds
dt ds L
—
Ty (s(t)) v(t)—speed
or
l Z'(t -

Thus the tangents are identical

Next let’s compare the normals

10
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Figure 3: In the example k > 0 for #1(s) and k < 0 for Z5(s).

Since the unit normal is the 90 degree rotation of tangent we conclude that the normal are identical

Ni(s(t)) = N(t).

Finally let’s examine the curvature

We have . .
AT _dfy ds
dt — ds _dt
—
v(t)—speed
Recalling that % = kl(s)]\_fl (s) and using the equality for normals and tangents we get
T'(t) = ka(s()Ni(s(t)v(t) =

= Fa(s(t)N(t)o(t) =

= k(@)N(t)o(t)
where

E(t) = k1(s(t))

This is the definition of the curvature for arbitrary speed curve.

By a similar computation we have

N'(t) = —k(t)T(t)v(t).

Thus the structure equation in the matrix form are

w050 =gw o ( Oy 0. Ew =

Frenetframe

11
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Conclusions:

e From the definition of Frenet frame (T, N) it follows that Frenet frame does not depend on
the parametrization.

e From the definition of k(¢) it follows that curvature does not depend on the parametrization.

The next lemma provides a useful formula for curvature for arbitrary parametrisations:

Lemma 1 For a reqular curve Z(t) we have that

det (&, &)
V3 :

z'(t)- JT(t) =

Proof: Since #(t) = T(t)v(t) we have from product rule
() = T (t)o(t) + T(£)' (t) = kN ()3 (t) + T(t)v' (t)

Taking the inner product with N we get

1 - 1 T 1
k=@ N=—i - J" = 3" J7.

V2 v?2 v v

Example:

o Let

Theorem 2 7_",]\7, k are all unchanged (resp. reversed) under orientation preserving (resp. reversing)

reparametrization.

We split the proof into 2 parts.
Step 1. Let’s assume that &y is the orientation preserving reparametrization of ¥y, i.e. Zy =
Z1 o h. Then if #3 is the arc-length parametrization then Z3(s) = Z2(H (s)) then it is also an arc-length

parametrization for &y since

We know that
e 71 and ¥3 have the same f N k
e 75 and Z3 have the same f N,k

hence so do 71 and Z5.
Step 2. For reversing case it is enough to consider the arc-length parametrization in view of step

1. Let Z: I — R2. Introduce #(s) = #(—s) = & (s) = -2 (—s) = Ty = =T = N; = —N. Moreover
2/ (s) = 2" (—s). Thus

ki(s)=2-Jz, =3" - (J(=7)) = —k(—s).

12
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6 Lecture 6

6.1 Rotation index

e Definition. For speed one curve ¥ an argument function is a continuous function 6 such

that .
T(s) = [ sin (s) }

e 0 is unique up to an overall addition of a multiple of 27.
e Proposition: 0
T k
We have T/ = ¢'N but by definition 77 = kN. (see also subsection 4.2)
e Note: For arbitrary speed curve 6’ = vk.
e Definition: Curve 7 : R — R? is closed if & is periodic

Z(s+ L) =Z(s),Vs, L >0

e The smallest such L is the length of 7.
e The rotation index ~(Z) of the closed curve Z is the integer

1

5 (6(1) = 0(0))

v(7) =

e Interpretation: Regard T'(s) as position vector OP’ of point P’ on unit circle. Then v
measures total number of turns P’ encircles 0 anticlockwise as Z is described once, i.e. the
total change of direction anticlockwise measured in whole rotations.

Theorem 3 For closed curve ¥

We have . _ .
k(s)ds /0 0'(s)ds = - (0(L) — 0(0)) = ~(7).

o J, =5

Example: Consider circle of radius r, then

then
T(s) = —sin(s/r) | | cos(s/r+7/2)
| cos(s/r) | | sin(s/r+7/2)
so we can take 0(s) = (s/r +7/2).
Now let us consider the following simple example

.k:%

o L =27r

13
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0.5F

-0.5 0.5

L0.5F

(a)y=0 (b) r(0) = sin(30),y = 2 (c) r(0) = sin(%@),@ € (0,4m),y =4

Figure 4: Curves with various rotation indeces

Example: Figure 4 illustrates a curve for which the tangent T makes two full rounds, the blue and
red parts, hence the rotation index of the curve is 2.
For this particular Example we take

6.2 Families of curves

e Defn: A family of curves is a smooth map
X :(\t) = X(\t) > R?
where (A, t) belongs to some rectangle D in the (A, t)-plane.
e For cach fixed \ define the curve Zx(t) by @y : t — X (), )

e Regard X as the family of all the curves Ty.

e Example: Take

> A 1
This has form 2 (\) + t2()\) where 2 ()) is the parabola (A, A2)T so X is the family of
tangent lines to 2

14
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Figure 5: This is the family of parabolas X(A,t) =
(t, (t =27
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(a) A gull
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-1000Q

-20000

(b) A tiger

Figure 6: Families of curves

15
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7 Lecture 7

7.1 Envelope

e Definition: A curve u is an envelope for the family X if at each point of # it is tangent to a
member of the family X but is not a member of the family.

7.2 Enveloping condition

Remark:
Suppose @ touches Z)(t) at some point P(A Z(tx) on the curve where ty = T(X\) (for some

) =
function T') i.e. at the point P(A) = X (X, T(\)). Then P(\) is a point of trace @ but this is true
for each A so @ has parametrization A — X (A, T'(\)).

Next we give necessary condition for enveloping.

Theorem: . .
Jacobian Matrix: If @ : A — X (A, T(A)) is an envelope for X then

8x?  9x?
22\ ot

X X ax'  ox!
det [3)(3);] = det [ I ot ] =0 at (N T(N)).

e Proof: It suffices to prove that % and %—)E are parallel (i.e. are collinear vectors). At the points

where 4 is tangent to a member of the family curve the tangent vectors are colinear.

We have

di(\)  oX(\T(\)  dX(\T(N),,
ax )\ - o L

Next &), at the contact point ¢ = T'(\), has tangent

dZx(t) _ 0X (A1) OX(\,T(N)

dt |i—pony 7 PSS B ot

For @ to be tangent to Z) at the contact point P(\) we require the velocities (which are collinear
to corresponding unit tangents)

di) _ , dBr(T()
ax Tt at
for some constant C7, i.e. the velocities must be linearly dependent!
Summarizing
0X(\,T(N) dEA(T(N) _ da(\) | 0XA\T(N) | 0X(\TO) .,
= = = (A
R G ax o o @)

or equivalently

16 s
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e Note this is a necessary condition for enveloping but we use it to try to locate (recover) envelopes.

Example: Take
> A 1

We have

Thus by Theorem we have that

1 1

det[ 2\ 2X\ + 2t

] =0<=1t=0 (This is T(M\)).

Substituting back into X gives envelope as @(\) = X (X, T(\)) = (A, A2)T which is the parabola.

Example: Let r be a given constant and let
> A+ rcost
X\ t) = [ rsint }

Clearly the parametrisation of each member of this family, for fixed A, is 21(¢) = A+rcost, xs(t) =
rsint or equivalently

(#1 — N2 + 22 =r?cos’t + r’sin®t = r?.

Thus for fixed A Z)(t) is a circle centers at (A, 0) of radius . The det = 0 condition implies that

rcost = 0 = t = +7. Substituting into X we get that the envelope 4(\) = [ ji\r ], i.e. the
envelope consists of a pair of parallel horizontal lines.

See Figure 5.

17
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//NWW>
XA/

Figure 7: Examples of envelopes

7.3 Envelope of implicitly defined curves

e Similarly extend an implicitly defined curve fy(Z) = 0 to a family of implicitly defined curves
given by
F(Z M) =0

e For each fixed value of A\ thus defines an implicitly defined curve fy(Z) = 0 where

f(@ XN = F(Z,\).

e Enveloping condition: Analysis similar to above shows that a necessary condition for

enveloping is
OF (x,y,)

F(z,y,\) =0, 3

= 07
where we set Z = (,y).

e Example: Let F(x,y,)\) = (x — \)?+y? —r? (see the previous example) where r is a given
positive constant. As we have seen each member of this implicit family of curves is a circle.
oF
Now let’s find the envelope. We have o —2(z — A\) = 0 hence = A substituting this
into F(x,y,\) = 0 we get that y?> — 172 = 0 or y = £r- a pair of parallel lines.

See Figure 5.

8 Lecture 8

8.1 Calculus of Variations

e Given a functional J[y] (that is a function of y(x),z € [a, b]).

e y satisfies boundary conditions y(a) = u, y(b) = v, the numbers u, v are given.

18
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e Question: Find y that extremises J[y](i.e. gives max or min value to J.)

Defn:(Extremals) Let J[y] be a functional and y satisfies the boundary conditions as indicated
above. Then y is an extremal of J if

d
—Jy +€h]

de =0 S

e=0

for all smooth functions h such that h(a) = h(b) = 0.

Lemma: If y extremises J then y must be an extremal of J (that is (1) is satisfied).

e Proof: Assume that y gives the maximal value of J. Then J[y + eh]leqJ[y] for all functions h as
indicated above. Thus
Jly+eh] = Jy <0 (%)

Take € > 0 and divide the above inequality by € and send ¢ to zero

Jly +eh] — J[y]

d

%J[y +eh] = 151%1 <0 (%%)
Next take ¢ < and divide (%) by €. Since € < 0 after division we have reversed inequality. Sending
€ to 0 yields

Jly +eh] — J[y]

>
. >0 (% % %)

d .
%J[y +eh] = 151%1

Combining (#%) with (x * %) we finish the proof. If y gives minimal value then all inequalities
(%), (%) and (x x %) must be reversed.

e Notes: In calculus if f is a function then the analogous condition is f’(x) to have extreme local
value at x.
If (1) is satisfied then y is said to be a stationary point of J.
(1) is necessary condition but not always sufficient.

The following table links the concepts of Extremum and Extremal of a functional to the customary
concepts of max/min and critical points for the functions

Function f(z) Functional J[y]
A point of absolute max or min at x € [a, b] y is an Extremum of J[y]
Ny L o : d
x is a critical point f/(z) =0 y is an extremal d—][y + eh] =0
e

e Example:

Let Jy] = f;(l + (y'(x))?)dx and boundary conditions are y(a) = u,y(b) = v. Then for h such that
h(a) = h(b) = 0 we have

19 s
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b
Jly+eh] = / 1+ (v (z) +eh/(2))?] dz

b
[+ @)+ 2oy @ @) + 20 (@)7] e

b b b
/ [+ (@))% de + 22 / Y ()W (2)dz + £ / (W (2))2dz

d b
0=—Jy+eh] = 2/ y' (z)h (x)dz
de c—0 o

Use integration by parts to get that

since

b

b b b
/ y (@)W (@)dz = o (@)h(z)| - / " (2)h(e)dz = — / o (@)h(x)dz = 0

a

h(a) = h(b) = 0 and thus we conclude that

b
/ y"(z)h(x)dz = 0.

Now choose h(z) = 3" (x)(x — a)(b — x) and substitute into the last equality to obtain

b
/ (" (z))*(x —a)(b—z)dz =0

the integrand is nonnegative function thus (y”(x))?(x — a)(b — x) = 0 < y"(z) = 0. Solving the ODE
y"'(x) = 0 with boundary conditions y(a) = u, y(b) = v we have that y is a linear function.

8.2

Euler-Lagrange Equations

In the previous example the problem of finding extremals was reduced to solving a linear second
order ODE coupled with boundary data. Thus we want to obtain the corresponding ODE for
functionals of general type.

Theorem: Let J[y] = f: F(x,y(z),y (x))dx where F(x,y,2) is a smooth function of (x,y, z)
(here z is the dummy variable for ¢'). Assume that y(a) = u, y(b) = v.

Then extremals of J are the solutions of

OF (z,y(x),y' ()  d <3F(5€,y(w),y’(w))> 0 yla) = u,y(b) =
oy = y(a) = u,y(b) = v.

dy dx

This theorem says that to find extremals it is enough to solve the corresponding boundary value
problem for the ODE-the Euler -Lagrange equation.

Sketch of proof: By equation (1) we have

b
d%_J[y+5h] _ d% / Fla,y(2) + eh(z), ' (z) + £k (2))d

20
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Since F' is smooth we can interchange integration with differentiation to get

d
— h
dej[y+€ ]

b
[ P sta) + eho).yf (@) + et () da

/ab <8F3((;Jn)h($) N aFa(z./..)h,(x)> i

here we used the chain rule and we used notation - - - = (z, y(x) +eh(x),y' () +eh/(x)) for brevity.
Integration by parts and the condition h(a) = h(b) = 0 imply
YOF(...) AF(...) o d (OF(..)
. Ty/h (z)dl’ = Ty/h(x) . — i % Ty/ h(l’)dﬂ;
b
d (OF(...)
= — — h(x)d
/a dfv( Ay’ ) (o)
Using this computation and sending € to 0 we conclude

/b [Py 0) (O WD) 0, -

y Cdo oy’

for arbitrary smooth function A such that h(a) = h(b) = 0. If F is thrice continuously differentiable
function of x,y and z, and y is thrice continuously differentiable function of x then we can take

W) = [W(:&yéz)’y’(@) B % (8F(w7ya(§/),y’(m))>} (2 — a)(b—a).

Notice that under these conditions h is continuously differentiable function of z.

The general result (i.e. the when F' and y are not thrice differentiable) follows from the theorem
of du Bois Reymond.

Lecture 9

9.1 Special cases of E-L equations

F' is independent of y: In this case g—F = 0 hence from E-L equation we get
Yy

d@FZO oF

dz 0y = a—y, =k, k is a constant

oF .
thus — is constant for extremals y.

oy’
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F' is independent of z: In this case g—i = 0. Let us compute
(poy2) - Ul O dyor 4o
dx oy’ Oy dr Oy dx  dx Oy dz Oy’
_ OF dy , d OF
T oyde Vdwoy
_ /< 3j _ i@i > =0
Y oy dxoy )
E—L equation
F— y’a—F =k, kis a constant
ay’

9.2 Examples
o Jy] = f:(l + [y (2))2)dz, F(x,y,y') = 1 + [y/(2)]? and it’s independent of z and y thus

oF d OF d
_ =0— —(2¢) =
dy  dx Oy 0 dx(y) 0

hence ¢/ = 0 implying that y is a linear function.

e Arc-length. J[y] = fab V14 [y (x)]2dx, F(z,y,y') = /14 [y/(z)]? independent of x and y thus
from E-L equation we get

_oF_doF _,_ 4|l %y
dy  dx oy dr | 2\/1+ [y (z)]?
thus ,
¥y  _
L+ [y (z)]?

hence 3’ is constant and thereby y is a linear function.

e Minimal area of surface of revolution. J[y] = f; 2ry/1 + [y (x)]?dx.

F is independent of x hence (as indicated above) F' — ¢/ gf, = k which results

y=kv1+[y (o)

To work out an expression for 3’ we square both sides to get

2*k2(1+[/]2) = yf,]_f[’]Q = /o yizfl
y - y k2 - y y - k2
We now solve the ODE
d 2 d d
W _ %71 = Y9 =dz = /75/ :/dx
dx k Y2 Y2
k2 k2
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24
74

Figure 8: Catenoid

which gives the inverse of cosh

kcosh™! y_ T — g

k

and zg is an arbitrary constant (the integration constant). Hence

r — X
= kcosh
Yy COSs ( 2 )

Therefore we obtain a 2-parameter (which are g and k) family F of extremals.

9.3 Several dependent variables

Definition: Z(t) =

v ] is said to be an extremal of J[Z] if
3 (t)

iJ[f +eh]] =0
de P

for all A such that on the boundary h(a) = h(b) = 0
If (4) is satisfied then we say that & makes J stationary.
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10 Lecture 10

Theorem: If ¥ extremises J then Z is an extremal. The proof is exactly the same as for the scalar
case.

—

E-L equations Assume that F(t,Z,7') is a smooth function of all its arguments and J[Z]
ff F(t,#,2)dt where T : [a,b] — R™, Z(t) = (z1(¢t),z2(¢),...,2,(t)) with boundary conditions
Z(a) =4, Z(b) =0 (ie. z1(a) =ug,...,2n(a) = Up,...)

Then the extremals of J are the solutions of the n-coupled (in general) second order ODE’s

OF _d0F
Ox;  dt 0z,

=0, i=12...,n

e Proof: Interchanging differentiation with integration we obtain

ij[mgﬁ] _ 4 bF(t Z(t) + eh(t), & (t) + k' (t))dt
de de /, ’ ’
_ / ’ d%F(t, F(t) + eh(t), 7 (1) + eh (1)) dt

b n
oF  OF ,
= /a ; (a,’lj,LhZ + a.’I}{LhZ> dt
b

OF b OF d OF
h - hi | =— — —=— ) dt
" /a ; (ami dt@x%)
0

?

a ox! "
———

is 0 since h(a)=h(b)=

e Example: For Arc-length we have J[Z] = fb V(@ (t))2 + (24(t))2dt. Then the E-L equations are

a

- 2 (1) .
OF _ dOF _ - VEOR+ @02
o, d@ow, 0 ThEZ wh(t) h

V(@ ()2 + (25(1))?
If we assume that 27 = 0 then the first constant k; = 0 and hence x; is constant substituting this
into the second equation gives that zo is linear.
Now assume that z} # 0 then
1'/2 k2
— = —— = constant
A kl

hence the curve has constant slope = it is line.

10.1 Special cases

e F is independent of z: In this case % = 0 hence from E-L equation we get
d OF OF
—— = = — =k;,t=1,2,...,n, k; is a constant
dt 83’/‘; ax; (3 ) ) ) ) 1

oF . o
thus — is constant for extremals 7.

!
oz,
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e [ is independent of ¢: In this case %—1; = 0. Let us compute

d ~ OF\

NE

6Fdxi+8idx;_ or
Ox; dt ~ Oxj dt dt ox; dt oz

(aF dz; ,d 8F>

d} OF  ,d 8F)

i=1

I
NE

2 \ow @~ ator]

_ 3;,<8F d@F)ZO

2%\ go " dtox
=1 \ )

=~
~

N

E—L equation

—~ ,OF
F— Z:c;% =k, kisa constant

=1

10.2 Application to Mechanics

e Particle of mass m moves in a force field with potential energy V(Z). Then the force acting on
the particle is —V,V(Z). From Newton’s second law we have

mi’(t) = —V, V().

e Hamolton’s principle: Z(t) is the extremal of the action functional

b
J[7] = / %m(w’(t))Q — V@) | de
a N ) g

. . tential
kinetic energy potentras energy

e Proof: From E-L equations for F' = $m(2/(t))* — V(Z(t)) we have that

oV d ,
oz, a(mxz) =0

which gives Newton’s second law.

e Conservation of energy F is independent of ¢ thus (see above) we have

—m(a'(t))? = V(Z(t)) — Zz;mz; = —(%m(:c'(t))2 + V(Z(t))) = constant

Thus the energy is independent of ¢.

e Polar coordinates Express Z in terms of the polar coordinates r(¢) and 0(t).

. xz1(t) | | r(t)cosO(t)

(t) = {@(t) } = r(t)sin&(t)}

) = () [ g’jzg? } +r(t)0'(¢) [ ZEISHQ?S) }
‘f’(t)|2 _ (7’/)24’7“2(9/)2
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Then the action functional takes form

J[r, 0] = /b 1[(r’)2 +1r2(0)?] = V(r,0)dt

2

and E-L equations are

=0

=0

OF _doF _
or  dtor’
oF dor
00  dt oy

10.3 Central Field and conservation of angular momentum

A central field has V' depending only on distance
r measured from some center (e.g. gravity force
directed only to earth’s center) thus V = V(r)
and F is independent of # implying (by second E-

L equation) that gg, = constant or equivalently

mr20" = constant

In mechanics this is interpreted as Conservation
of Angular Momentum.

26
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