"Sum'2" — 2012/3/12 — 23:06 — page 1 — #1

Geometry and Calculus of Variations Lecture notes *

March 12, 2012

Abstract

This is the typed version of Dr A.Gilbert's lecture notes. ©

1 Lecture 11

- 1.1 Space Curves
 - Definition: A space curve is a smooth map $\vec{x} : I \mapsto \mathbb{R}^3$, where I is a given interval in \mathbb{R} . We allow $I = \mathbb{R}$.
 - Definition: The following is defined analogously to planar curves: velocity, speed, regular curve, orientation, reparametrization, arc-length, unit tangent, frame.
 - **Example:** Let $\vec{x}(t) = (t, t^2, t^3)^T$ (cubic curve). It is easy to see that $\vec{x}'(t) = (1, 2t, 3t^2)^T$, $v(t) = \sqrt{1 + 4t^2 + 9t^4}$ and for the arclength we have $s(t) = \int_0^t \sqrt{1 + 4u^2 + 9u^4} du$
 - Example: $\vec{x}(t) = (\cos t \cos 4t, \cos t \sin 4t, \sin t)$. Notice that $|\vec{x}(t)| = 1$ i.e. lies on the unit sphere. $\vec{x}(t)$ encircles the x_3 axis while climbing from equator to north pole. By direct computation

 $\vec{x}' = (-\sin t \cos 4t, -\sin t \sin 4t, \cos t)^T + \cos t (-4\sin t, 4\cos t, 0)^T.$

 $v(t) = \sqrt{1 + 16\cos^2 t}$

1.2 Curvature

- Unit tangent $\vec{T} = \vec{x}'/v$ is defined as before.
- **Defn:** Let \vec{x} be a regular space curve. **Curvature** k is defined by

$$k(t) = \frac{1}{v} |\vec{T'}|.$$

Notice that for plane curves $k = \pm \frac{1}{v} |\vec{T'}|$ whereas for space curves $k \ge 0$.

^{*}This is a preliminary version of the notes. It will be updated weekly.

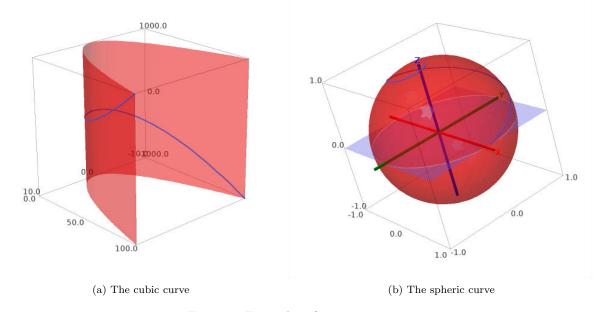


Figure 1: Examples of space curves

1.3 Biregular curves

- We want to define a Frenet frame along \vec{x} , i.e. a group of three mutually orthogonal unit vectors in \mathbb{R}^3 . We can do so if \vec{x} is **biregular**.
- **Definition:** Regular curve, i.e. the unit tangent \vec{T} exists, is **biregular** if $\vec{T'} \neq 0$.
- Next we define the **Unit normal**: unlike plane curves there is a whole plane, called **normal plane** containing vectors perpendicular to \vec{T} . Among the normal vectors we give special names to two particular ones: normal and binormal.

For biregular \vec{x} the **unit normal** is the vector in the direction $\vec{T'}$

$$\vec{N} = \frac{\vec{T}'}{|\vec{T}'|}.$$

Clearly \vec{N} exists, for $\vec{T'} \neq 0$. From the definition it follows that \vec{N} and \vec{T} are orthogonal (to see this differentiate $|\vec{T}(t)|^2 = 1$ by t).

• At each point $\vec{x}(t)$ we now have 2 orthogonal unit vectors \vec{T} and \vec{N} . To complete the Frenet frame we introduce the **binormal** \vec{B} .

 $\vec{B}=\vec{T}\times\vec{N}$

it is the vector product of \vec{T} and \vec{N} .

• The Frenet Frame is the orthogonal set $(3 \times 3 \text{ orthogonal matrix})$ $(\vec{T}, \vec{N}, \vec{B})$ of tangent vectors to \mathbb{R}^3 at $\vec{x}(t)$. Recall that tangent vectors to \mathbb{R}^3 at $\vec{x}(t)$ need not point along curve, but unit tangent vector \vec{T} does.

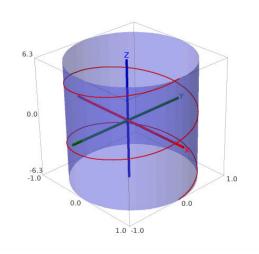


Figure 2: Helix with k = a = 1.

1.4 Formulae for \vec{T} and \vec{N}

Let $\vec{x}(t), t \in I$ be a parametrisation of the curve \vec{x} then differentiating \vec{x} and using definitions of \vec{T}, \vec{N} and k we conclude

$$\vec{x}' = v\vec{T}$$

$$\vec{x}'' = v'\vec{T} + v\vec{T}' = v'\vec{T} + v^2k\vec{N}.$$

In particular if s = t, i.e. the curve is arc length parametrised, then

$$\begin{array}{rcl} \vec{x}' & = & \vec{T} \\ \vec{x}'' & = & \vec{T}' = k \vec{N}, \end{array}$$

So \vec{N} is unit vector orthogonal \vec{T} in plane formed by \vec{x}'' and $\vec{x}' = v\vec{T}$.

Examples: 1) Helix: $\vec{x}(t) = (a \cos t, a \sin t, kt)$. Clearly $\vec{x}''(t) = (-a \cos t, -a \sin t, 0)$ points along \vec{N} . 2) Cubic curve: $\vec{x}(t) = (t, t^2, t^3)^T$ we have at t = 0, $\vec{x}'(0) = (1, 0, 0)$, $\vec{x}''(0) = (0, 1, 0)$.

2 Lecture 12

2.1 Structural equations

We have defined the Frenet frame for a biregular curve \vec{x} as orthogonal 3×3 matrix $(\vec{T}, \vec{N}, \vec{B})$ where

"Sum'2" — 2012/3/12 — 23:06 — page 4 — #4

$$\vec{T} = \frac{\vec{x}'}{v}$$
$$\vec{N} = \frac{\vec{T}'}{|\vec{T}'|}$$
$$\vec{B} = \vec{T} \times \vec{N}$$

We want to derive the structural equations that is to relate $(\vec{T'}, \vec{N'}, \vec{B'})$ to orthogonal 3×3 matrix $(\vec{T}, \vec{N}, \vec{B})$.

• Step 1: Equation for $\vec{T'}$ From the definition of curvature and the unit normal we have

$$\vec{T'} = |\vec{T'}| \vec{N} \qquad k = \frac{|\vec{T'}|}{v}$$

combining these two equations we get that

$$\vec{T}' = kv\vec{N}$$

• Step 2: Equation for $\vec{B'}$. It is quite easy to see that for $\vec{a}(t)$ and $\vec{b}(t)$

$$\frac{d}{dt}(\vec{a}\times\vec{b}) = \vec{a}'\times\vec{b} + \vec{a}\times\vec{b}'$$

recalling the definition of \vec{B} and utilizing this formula we get

$$\vec{B}' = \frac{d}{dt}(\vec{T} \times \vec{N}) = \vec{T}' \times \vec{N} + \vec{T} \times \vec{N}' = \vec{T} \times \vec{N}'$$

since $\vec{T'}$ and \vec{N} are parallel. Thus $\vec{T} \times \vec{N'}$ is parallel to \vec{N} which yields

$$\vec{B}' = -\tau v \vec{N}$$

for some scalar function τ .

• Step 3: Equation for \vec{N}' Notice that $\vec{N} = \vec{B} \times \vec{T}$. Thus

$$\vec{N'} = \vec{B'} \times \vec{T} + \vec{B} \times \vec{T'} = -\tau v \vec{N} \times \vec{T} + \vec{B} \times (kv\vec{N}) = -kv\vec{T} + \tau v \vec{B}$$

• Summarizing we get the structural equations

$$(\vec{T}', \vec{N}', \vec{B}') = (\vec{T}, \vec{N}, \vec{B}) v \begin{bmatrix} 0 & -k & 0\\ k & 0 & -\tau\\ 0 & \tau & 0 \end{bmatrix}$$
(1)

- **Defn:** $\tau: I \mapsto \mathbb{R}$ is the **torsion**.
- **Defn:** The plane determined by the unit tangent vector \vec{T} and the unit normal vector \vec{N} is called the osculating plane.

Theorem: Curvature and torsion are unchanged by reparametrization.

Proof:

Step 1: Velocity and speed Let us take t = g(u), u is the new parameter and $g' \neq 0$ then $\vec{x}_1(u) = \vec{x}(g(u))$ and

$$\vec{x}_1' = \frac{d\vec{x}}{dt}g' \qquad \frac{v}{v_1} = \frac{1}{|g'|}$$

Step 2: Tangent By definition

$$\vec{T}_1 = \frac{\vec{x}_1'}{v_1} \qquad \vec{T} = \frac{1}{v} \frac{d\vec{x}}{dt}$$

thus

$$ec{T}_{1} = rac{ec{x}_{1}'}{v_{1}} = rac{dec{x}}{dt}g'}{v_{1}} = rac{ec{T}vg'}{v_{1}} = rac{ec{T}vg'}{v|g'|} = arepsilonec{T}$$

where $\varepsilon = \frac{g'}{|g'|} = \pm 1$: +1 if g is orientation preserving or -1 orientation reversing. **Step 3:** Curvature The the *u*-derivative of the tangents equality and utilize the structural equations

$$v_1k_1\vec{N}_1 = \frac{d\vec{T}_1}{du} = \varepsilon \frac{d\vec{T}}{dt}g' = \varepsilon vkg'\vec{N}$$

Taknig the magnitude of both sides and noting that both \vec{N}_1 and \vec{N} are unit vectors we conclude

$$v_1k_1 = |\varepsilon|vk|g'| \Rightarrow k_1 = \frac{v}{v_1}k|g'| = k$$

Moreover

$$\vec{N_1} = \frac{\varepsilon v k g'}{v_1 k_1} \vec{N} = \varepsilon \frac{v}{v_1} g' \vec{N} = \varepsilon \frac{g'}{|g'|} = \varepsilon^2 \vec{N} = \vec{N}.$$

Step 4: Torsion Finally we want to show that torsion is unchanged. By definition $\vec{B}_1 = \vec{T}_1 \times \vec{N}_1 = \vec{T}_1 \times \vec$

Differentiating with respect u then $\vec{B}'_1 = \varepsilon \frac{d\vec{B}}{dt}g'$ and using the structural equations

$$\vec{B}_1' = -v_1 \tau_1 \vec{N}_1 = \varepsilon (-v\tau \vec{N})g' = \varepsilon B'g'$$

taking the magnitude

$$\tau_1 = \varepsilon \frac{v}{v_1} g' \tau = \varepsilon \frac{g'}{|g'|} \tau = \varepsilon^2 \tau = \tau$$

and the proof of the Theorem is now complete.

2.2 Interpretation of curvature and Torsion

The trajectory of a particle moving in space produces a curve. The **osculating plane** is formed by unit vectors \vec{T} and \vec{N} . For general space curves the particle tries to escape the osculating plane, for otherwise it is a plane curve.

When k is constantly zero, \vec{T} never changes and the "curve" is a straight line. As the name "curvature" suggests, k measures the rate at which any nonstraight curve tends to depart from its tangent.

When τ is constantly zero, the osculating plane never changes, and we have plane curve, with constant binormal \vec{B} . Thus the torsion measures the rate at which a twisted curve tends to depart from its osculating plane.

Without loss of generality we may take the arc length parametrisation of \vec{x} and assume that $\vec{T}, \vec{N}, \vec{B}$ at $\vec{x}(s_0)$ coincide with the directions of x, y and z-axis. Let \vec{X} be the projection of the curve onto the

€

osculating plane at $\vec{x}(s_0)$. Then

$$\vec{X}(s) = \vec{x}(s) - \vec{x}(s_0) - \vec{B}[(x(s) - x(s_0)) \cdot \vec{B}].$$

Then

$$\vec{X}' = \vec{x}' - \vec{B}(\vec{x}' \cdot \vec{B}),$$
$$\vec{X}'' = \vec{x}'' - \vec{B}(\vec{x}'' \cdot \vec{B})$$

In particular at $s = s_0$, using the fact that \vec{B} is orthogonal to \vec{T} and \vec{N} , we get $\vec{X'} = \vec{x'} = \vec{T}, \vec{X''} = \vec{x''} = k\vec{N}$. Thus the curvature of \vec{X} at $s = s_0$ is $k = \det[\vec{X'}, \vec{X''}]$.

Thus the projection of the curve onto the osculating plane at $\vec{x}(t_0)$ has curvature k.

Now consider the projection onto the **normal plane** passing through $\vec{x}(t_0)$, i.e. formed by $\vec{N}(t_0)$ and $\vec{B}(t_0)$. There the projected curve has Frenet frame (\mathbf{t}, \mathbf{n}) , with $\mathbf{t} = \vec{N}(t_0)$, $\mathbf{n} = \vec{B}(t_0)$ at $t = t_0$ satisfies

$$\mathbf{t}' = \tau \mathbf{n}, \qquad \mathbf{n}' = -\tau \mathbf{t}$$

thus τ measures the rotation in **normal plane** about \vec{T} -axis as we pove along the curve.

2.3 Spherical image and Darboux vector

Let us define the vector

then $|\omega| = v\sqrt{k^2 + \tau^2}$ and

$$\begin{array}{rcl} \vec{T}' &=& \omega \times \vec{T} \\ \vec{N}' &=& \omega \times \vec{N} \\ \vec{B}' &=& \omega \times \vec{B} \end{array}$$

 $\omega = v\tau \vec{T} + vk\vec{B}.$

which can be readily verified. ω is called **Darboux vector**. It is the angular velocity of the particle when the point is moving along the curve.

2.4 Formulae for k and r

Proposition 1 Let \vec{x} be a biregular curve then

$$k = \frac{1}{v^3} |\vec{x}' \times \vec{x}''| \qquad \tau = \frac{(\vec{x}' \times \vec{x}'') \cdot \vec{x}'''}{v^6 k^2}$$

Proof: Let's differentiate \vec{x} three times and use structural equations

$$\begin{aligned} \vec{x}' &= v\vec{T} \\ \vec{x}'' &= v'\vec{T} + v\vec{T}' = v'\vec{T} + v^2k\vec{N}, \\ \vec{x}''' &= v''\vec{T} + v'\vec{T}' + 2vv'k\vec{N} + v^2k'\vec{N} + v^2k\vec{N}', \\ &= v''\vec{T} + v'vk\vec{N} + 2vv'k\vec{N} + v^2k'\vec{N} + v^2k(-kv\vec{T} + \tau v\vec{B}) \end{aligned}$$

Hence $\vec{x}' \times \vec{x}'' = v\vec{T} \times (v'\vec{T} + v^2k\vec{N}) = v^3k\vec{T} \times \vec{N} = v^3k\vec{B}$. Now taking the magnitude of this vector we conclude $k = \frac{1}{v^3}|\vec{x}' \times \vec{x}''|$.

Finally using the fact that \vec{B} is orthogonal to \vec{N} and \vec{T} and taking the scalar product of $\vec{x}' \times \vec{x}''$ with \vec{x}''' we conclude

$$[\vec{x}' \times \vec{x}''] \cdot \vec{x}''' = v^3 k v^3 k \tau = v^6 k^2 \tau$$

and the proof follows.

"Sum'2" — 2012/3/12 — 23:06 — page 7 — #7

3 Lecture 13

3.1 Local behaviour

Theorem 2 If we choose the Frenet frame (the trihedron) such that $\vec{T}(0) = \vec{e_1}, \vec{N}(0) = \vec{e_2}, \vec{B}(0) = \vec{e_3}$ and take the arc-length parametrization then in this coordinates

$$\vec{x}(s) \approx s\vec{e}_1 + \frac{k}{2}s^2\vec{e}_2 + \frac{kr}{6}s^3\vec{e}_3$$

here $\vec{e}_1, \vec{e}_2, \vec{e}_3$ is the standard orthogonal basis in \mathbb{R}^3 .

To see this we use Taylor's expansion

$$\vec{x}(s) = \vec{x}(0) + \vec{x}'(0)s + \frac{\vec{x}''(0)}{2!}s^2 + \frac{\vec{x}'''(0)}{3!}s^3 + \dots$$

and use the structural equations (remember v = 1!)

$$\vec{x}' = \vec{T} \vec{x}'' = \vec{T}' = k\vec{N} \vec{x}''' = k'\vec{N} + k\vec{N}' = k'\vec{N} + k(-k\vec{T} + r\vec{B})$$

Thus assuming that $\vec{x}(0) = 0$ we get

$$\vec{x}(s) = \vec{T}s + \frac{k\vec{N}}{2!}s^2 + \frac{k'\vec{N} + k(-k\vec{T} + r\vec{B})}{3!}s^3 + \dots$$
$$= \vec{T}(s - \frac{k^2}{3!}s^3) + \vec{N}(\frac{k}{2!}s^2 + \frac{k'}{3!}s^3) + \frac{rk}{3!}s^3 + \dots$$

Assuming that s is very small we can ignore the higher powers of s within the coefficients of \vec{T}, \vec{N} and \vec{B} thus

$$\vec{x}(s) = s\vec{e}_1 + \frac{k}{2}s^2\vec{e}_2 + \frac{kr}{6}s^3\vec{e}_3 + \dots = \begin{bmatrix} ss \\ \frac{k}{2}s^2 \\ \frac{k\tau}{6}s^3 \end{bmatrix}$$

And the result follows. Thus locally any biregular curve is cubic!

3.2 Implicitly defined curves

Let f_1, f_2 be functions of three variables, $f_1 : (x, y, z) \mapsto \mathbb{R}, f_2 : (x, y, z) \mapsto \mathbb{R}$. Consider \mathcal{C} the intersection of the zero level sets of f_1 and f_2 , then it is an implicitly defined space curve, provided that it is not empty.

The tangent plane to the graph of f_1 has normal ∇f_1 thus the tangent plane, Π_1 , at (x_0, y_0, z_0) is $\nabla f_1(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$. Similarly Π_2 , given by $\nabla f_2(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$ is the tangent plane to the graph of f_2 at (x_0, y_0, z_0) . If $(x_0, y_0, z_0) \in \mathcal{C}$ then the both Π_1 and Π_2 are tangent tp \mathcal{C} at (x_0, y_0, z_0) . Clearly the tangent vector is collinear to the vector products of the normals of Π_1 and Π_2 , thus

$$\vec{T} = \frac{\nabla f_1(x_0, y_0, z_0) \times \nabla f_2(x_0, y_0, z_0)}{|\nabla f_1(x_0, y_0, z_0) \times \nabla f_2(x_0, y_0, z_0)|}.$$

Defn: An implicitly defined space curve is said to be regular if $\nabla f_1 \times \nabla f_2 \neq 0$.

Clearly the tangent vector is defined for regular implicitly defined space curves.

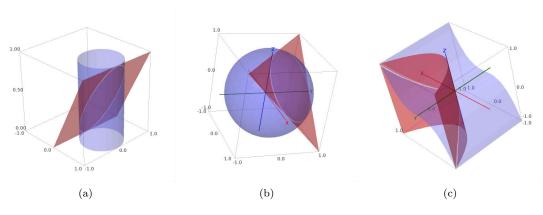


Figure 3: Examples of implicit space curves

3.3 Examples

a) Let $f_1 = x_1^2 + x_2^2 - x_1$ and $f_2 = x_3 - x_1$ b) Let $f_1 = x_1^2 + x_2^2 + x_3^2 - 1$ and $f_2 = x_1 + x_2 + x_3 - 1$. Thus $f_1 = 0$ is the unit sphere and $f_2 = 0$ is a plane so intersection is a circle in \mathbb{R}^3 .

c) Another example is the intersection of $S_1 : x_2 = x_1^2$ and $S_2 : x_3 = x_1^3$.

3.4**Torsion Examples**

Example 1: Biregular plane curve has $\tau = 0$. This is a simple exercise.

The converse statement is also true. A biregular curve with $\tau = 0$ is planar! (Hint: Use structural equations).

Example 2: A helix has constant curvature and torsion. It is staightforward to verify that for helix $\vec{x}(t) = (a\cos t, a\sin t, bt)^T$

$$k = \frac{a}{a^2 + b^2}, \qquad \tau = \frac{b}{a^2 + b^2}.$$

Conversely let us show that if k and τ are constants then \vec{x} is a helix. If $\tau = 0$ then \vec{x} is a plane curve with constant curvature thus it is a circle, for $k = \frac{d\theta}{ds}$, θ is an argument function (Lecture 6) and hence $\theta = ks + C$ where C is an arbitrary constant. Hence $\vec{x}' = \vec{T} = (\cos(kt + C), \sin(kt + C))^T$ implying that $\vec{x} = \frac{1}{k}(\sin(kt + C) + A, -\cos(kt + C)) + B)^T$ which is a circle of radius R = 1/k centered at (A, B).

Thus we assume that $\tau \neq 0$. Let's take the arc length parametrisation of the curve. Then Darboux vector $\omega = \tau \vec{T} + k\vec{B}$ is constant, for $\omega' = \tau \vec{T'} + k\vec{B'} = \tau(k\vec{N}) + k(-\tau\vec{N}) = 0$. Without loss of generality we may assume that ω is collinear to e_3 so $\omega = e_3\sqrt{k^2 + \tau^2}$.

Next $\omega \cdot \vec{T} = (\tau \vec{T} + k\vec{B}) \cdot \vec{T} = \tau$, thus the unit tangent vector makes constant angle α with the e_3 axis and $\cos \alpha = \frac{\tau}{\sqrt{k^2 + \tau^2}}$.

Furthermore

$$\frac{dx_3}{ds} = \frac{d(\vec{x} \cdot \omega)}{ds} = \vec{x}' \cdot \omega = \vec{T} \cdot \omega = \cos \alpha$$

thus $x_3(s) = s \cos \alpha + C$, where C is an arbitrary constant.

Next let us consider the projection of the curve onto the plane orthogonal to $\omega = e_3$, i.e. $\vec{X} =$ $\vec{x} - (\vec{x} \cdot \omega)\omega$. For this plane curve we have

$$\vec{X}' = \vec{x}' - (\vec{x}' \cdot \omega)\omega, \qquad \vec{X}'' = \vec{x}''$$

In particular the speed of \vec{X} is $V = \sqrt{(\vec{x}')^2 - 2(\vec{x}' \cdot \omega)^2 + (\vec{x}' \cdot \omega)^2} = \sqrt{1 - (\vec{x}' \cdot \omega)^2} = \sqrt{1 - \tau^2}$ thus V is constant. If (\mathbf{t}, \mathbf{n}) is the Frenet frame of \vec{X} -the projected curve, then from Frenet equations we have

$$k\vec{N}=\vec{x}^{\prime\prime}=\vec{X}^{\prime\prime}=\frac{d}{ds}(\vec{X}^{\prime})=\frac{d}{ds}(V\mathbf{t})=V\mathbf{t}^{\prime}=Vk_{\vec{X}}\mathbf{n},$$

where $k_{\vec{X}}$ is the curvature of the projected curve \vec{X} . Equating the right and left hand sides and taking the magnitudes gives $k_{\vec{X}} = k/V = const$. Thus \vec{X} is a circle.

4 Lecture 14

4.1 Surfaces

Defn: A local surface in \mathbb{R}^3 is a smooth, injective map $\mathbf{x} : D \to \mathbb{R}^3$ with continuous inverse $\mathbf{x}^{-1} : \mathbf{x}(D) \to D$ where D is a domain (open, connected set) in \mathbb{R}^2 .

$$\mathbf{x}: (u,v) \mapsto \mathbf{x}(u,v)$$

Remarks:

- 1) The assumption of smoothness implies that \mathbf{x} is somewhat distorted version of D
- 2) **x** is injective points of $\mathbf{x}(D)$ are labelled (coordinated) by corresponding points of D
- 3) the inverse mapping \mathbf{x}^{-1} is continuous prevents "near self-intersection"

Under these conditions \mathbf{x} is a homeomorphism, i.e. a bijection with continuous inverse \mathbf{x}^{-1} .

4.2 Surfaces in \mathbb{R}^3

- If local surface \mathbf{x} lies in a set $\Sigma \subset \mathbb{R}^3$ then \mathbf{x} is a local surface in Σ .
- A surface in \mathbb{R}^n is a subset $\Sigma \subset \mathbb{R}^3$ such that for each point p of Σ there exists a local surface in Σ whose image contains a neighborhood N of p in Σ .

4.3 Examples

• **Sphere:** Let us consider

$$\mathbf{x}(u,v) = \begin{bmatrix} \sin u \cos v \\ \sin u \sin v \\ \cos u \end{bmatrix}, \qquad (u,v) \in D = (0,\pi) \times (0,2\pi).$$

The trace of \mathbf{x} is unit sphere excluding semi-circle connecting North and South poles. Line u = const is line of latitude and line v = const is line of longitude.

• Ellipsoid: Let us consider

$$\mathbf{x}(u,v) = \begin{bmatrix} a \sin u \cos v \\ b \sin u \sin v \\ c \cos u \end{bmatrix}, \qquad (u,v) \in D = (0,\pi) \times (0,2\pi).$$

Here a, b, c are non-zero constants. The trace is an ellipsoid with n arc omitted.

"Sum'2" — 2012/3/12 — 23:06 — page 10 - #10

• Graph of function: Now let $f: D \mapsto \mathbb{R}$ be a smooth function. Consider

$$\mathbf{x}(u,v) = \left[\begin{array}{c} u\\ v\\ f(u,v) \end{array}\right]$$

Note that not all surfaces can be represented as graphs. See the example of unit sphere.

• Surface of revolution: Let $t \mapsto \begin{bmatrix} p(t) \\ q(t) \\ 0 \end{bmatrix}$ be a curve with trace in the (x_1, x_2) plane and rotate it about the x_1 axis to get $\mathbf{x}(u, v) = \begin{bmatrix} p(u) \\ q(v) \cos v \end{bmatrix}$

$$\mathbf{x}(u,v) = \begin{bmatrix} p(u) \\ q(u)\cos v \\ q(u)\sin v \end{bmatrix}.$$

4.4 Regularity

For a surface **x**, the **partial velocities** at $\mathbf{x}(u, v)$ are tangent vectors to \mathbb{R}^3 at $\mathbf{x}(u, v)$ given by

$$\mathbf{x}_{u} = \begin{bmatrix} \frac{\partial x_{1}}{\partial u} \\ \frac{\partial x_{2}}{\partial u} \\ \frac{\partial x_{3}}{\partial u} \end{bmatrix}, \qquad \mathbf{x}_{v} = \begin{bmatrix} \frac{\partial x_{1}}{\partial v} \\ \frac{\partial x_{2}}{\partial v} \\ \frac{\partial x_{3}}{\partial v} \end{bmatrix}$$

Interpretation: The space curves (lines) $u \mapsto \mathbf{x}(u, v_0)$ and $v \mapsto \mathbf{x}(u_0, v)$, for fixed u_0 and v_0 have velocities \mathbf{x}_u and \mathbf{x}_v .

Defn: The local surface is **regular** if \mathbf{x}_u and \mathbf{x}_v are linearly independent at each point of D.

4.5 Displacement and area

Consider a small displacement $\begin{bmatrix} \delta u \\ \delta v \end{bmatrix}$ at each the point $p_0 = (u_0, v_0) \in D$. Then it is mapped by the matrix $[\mathbf{x}_u, \mathbf{x}_v]$ to $[\mathbf{x}_u, \mathbf{x}_v] \begin{bmatrix} \delta u \\ \delta v \end{bmatrix}$. The regularity implies that \mathbf{x}_u and \mathbf{x}_v have distinct directions at each $p_0 \in D$. Hence a small rectangle $(u_0 + \delta u) \times (v_0 + \delta v)$ in (u, v) space is approximately mapped, by \mathbf{x} to the parallelogram with sides $\mathbf{x}_u \delta u, \mathbf{x}_v \delta v$.

If $\mathbf{x}_u, \mathbf{x}_v$ are linearly independent then the matrix $[\mathbf{x}_u, \mathbf{x}_v]$, which approximates \mathbf{x} , defines an invertible linear transformation between above rectangle and parallelogram.

The Inverse Function Theorem says that the same holds for the exact map \mathbf{x} : Around each point $p_0 \in D$, there exists a neighborhood \mathbf{u} on which \mathbf{x} is a smooth bijection between N and $\mathbf{x}(N)$, where N is a neighborhood of $\mathbf{x}(p_0)$.

4.6 Regularity of previous examples

The sphere is a regular local surface since \mathbf{x}_u and \mathbf{x}_v are linearly independent. Similarly it follows that ellipsoid is regular too.

5 Lecture 15

5.1 Regular implicitly defined surfaces

Defn: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function and $c \in \mathbb{R}$ be such that the level set $\Sigma = \{\mathbf{x} \in \mathbb{R}^3 : f(\mathbf{x}) = c\}$ is non-empty.

If $\nabla f \neq 0$, $\forall \mathbf{x} \in \Sigma$ then Σ is a regular implicitly defined surface.

Theorem: A regular implicitly defined curve surface is a surface in \mathbb{R}^3 .

Geometric inperpretation: ∇f is the normal to Σ , if $\frac{\partial x_3}{\partial x_3}$ surface contains no vertical directions surface locally graph of $x_3(x_1, x_2)$.

Examples:

- $f(\mathbf{x}) = |\mathbf{x}|^2 1$
- $f(\mathbf{x}) = x_3^2 x_1^2 x_2^2$
- Quadric surface $k_1 x_1^2 + k_2 x_2^2 + k_3 x_3^2 = 1$

6 Lecture 16

6.1 Curve in a surface

The curves lying in a surface provide important information about the surface.

Defn: Let Σ be a surface. The curve $\alpha : I \to \mathbb{R}^3$ is a curve in Σ if $\alpha(I) \subset \Sigma$.

When $\Sigma = \mathbf{x}(D)$ is a local surface we can pull back α to D, since it is much easier to work out in D than in $\mathbf{x}(D)$

Lemma Let α be a curve in Σ , Then there exists a unique smooth curve $\mathbf{w}: I \to D$ so that

$$\alpha(t) = \mathbf{x}(\mathbf{w}(t)).$$

Proof: Define $\mathbf{w} = \mathbf{x}^{-1} \circ \alpha : I \to D$, so $\alpha = \mathbf{x} \circ (\mathbf{x}^{-1} \circ \alpha)$. **Example:** $D = (0, 2\pi) \times (0, \infty), \mathbf{x}(u, v) = (\cos u, \sin u, v)^T$. Take

• $\mathbf{w}_1(t) = (2t, \pi/t)^T, \mathbf{x}(\mathbf{w}_1(t)) = (\cos 2t, \sin 2t, \pi/4)^T$

•
$$\mathbf{w}_2(t) = (\pi/2, t)^T, \mathbf{x}(\mathbf{w}_2(t)) = (0, 1, t)^2$$

• $\mathbf{w}_3(t) = (2t, t)^T, \mathbf{x}(\mathbf{w}_3(t)) = (\cos 2t, \sin 2t, t)^T$

6.2 Tangent space to surface Σ

Recapitulating: $T_p \mathbb{R}^3$, the tangent space to \mathbb{R}^3 at p, is space of all tangent vectors (p, v) to \mathbb{R}^3 at p.

Defn: Let $p \in \Sigma$. A tangent vector **v** to \mathbb{R}^3 at p is a **tangent to** Σ if **v** is the velocity at p of some curve in Σ .

The set of all such tangent vectors to Σ at p is the tangent space (plane) to Σ at p, written $T_p\Sigma$. Next we charcterise of tangent space:

Lemma Let $\mathbf{x}(D)$ be a local surface in Σ and let $p = \mathbf{x}(w_0) \in \mathbf{x}(D)$. Then $T_p\Sigma$ is the subspace of $T_p\mathbb{R}^3$ spanned by $\mathbf{x}_u(\mathbf{w}_0)$ and $\mathbf{x}_v(\mathbf{w}_0)$.

Proof: Step1: $T_p \Sigma \subset \text{Span}(\mathbf{x}_u, \mathbf{x}_v)$. Let $t \mapsto \mathbf{w}(t)$ be a curve in D, such that $\mathbf{w}(0) = \mathbf{w}_0$. Then $t \mapsto \mathbf{x}(\mathbf{w}(t))$ is a curve in $\mathbf{x}(D)$, passing through p when t = 0, and its velocity at p is

$$\frac{d}{dt}[\mathbf{x}(\mathbf{w}(t))]_{t=0} = \mathbf{x}_u(\mathbf{w}_0)u'(0) + \mathbf{x}_v(\mathbf{w}_0)v'(0).$$

By definition the velocity is in $T_p\Sigma$.

Step2: Span $(\mathbf{x}_u, \mathbf{x}_v) \subset T_p \Sigma$ For any $\lambda, \mu \in \mathbb{R}$:

$$\lambda \mathbf{x}_u(\mathbf{w}_0) + \mu \mathbf{x}_v(\mathbf{w}_0) = \frac{d}{dt} [\mathbf{x}(\mathbf{w}_0 + t(\lambda, \mu)^T)]_{t=0}$$

is a velocity of a curve in $\mathbf{x}(D)$.

Summariging $\text{Span}(\mathbf{x}_u, \mathbf{x}_v) = T_p \Sigma$.

7 Lecture 17

Vector fields on a surface 7.1

Defn: A vector field Z on a surface Σ is an assignment to each $p \in \Sigma$ of a tangent vector $\mathbf{Z}(p)$ to \mathbb{R}^3 at p.

A unit normal vector field **N** is a vector field on Σ such that at each $p \in \Sigma$: $|\mathbf{N}(p)| = 1, \mathbf{N}(p) \perp T_p \Sigma$ On regular local surface \mathbf{x} , a smooth unit normal field is given by

$$\mathbf{N} = \frac{\mathbf{x}_u \times \mathbf{x}_v}{|\mathbf{x}_u \times \mathbf{x}_v|}$$

where as for regular implicitly defined surface $\mathbf{N} = \frac{\nabla f}{|\nabla f|}$. **Example:** The normal vector field of the sphere $\mathbf{x}(u, v) = \mathbf{N}$ and for the graph of function z = g(x, y)it is $\mathbf{N} = \frac{\nabla f}{|\nabla f|} = \frac{(-g_x, -g_y, 1)}{\sqrt{1+g_x^2+g_y^2}}$.

7.2First Fundamental form of Surface

Definition: Let $p: \mathbf{x}(\vec{w}_0)$ be a point in a regular surface Σ . The first fundamental form is a symmetric bilinear form on $T_p\Sigma$ defined by

$$I_p(\mathbf{X}, \mathbf{Y}) = \mathbf{X} \cdot \mathbf{Y}, \qquad \forall \mathbf{X}, \mathbf{Y} \in T_p \Sigma$$

The matrix that defines this bilinear form is

$$\left[\begin{array}{cc} E & F \\ F & G \end{array}\right]$$

where

$$E = \mathbf{x}_u \cdot \mathbf{x}_u, \qquad F = \mathbf{x}_u \cdot \mathbf{x}_v, \qquad G = \mathbf{x}_v \cdot \mathbf{x}_v.$$

7.3Examples

- Sphere
- Cylinder
- Graph
- Surface of revolution

8 Lecture 18

8.1 Arclength

Let $\vec{z}(t) = \mathbf{x}(\vec{w}), \vec{w}(t) = \begin{bmatrix} u(t) \\ v(t) \end{bmatrix}$ be a regular curve lying in Σ . Its velocity is $\vec{z}'(t) = (\mathbf{x}_u \mathbf{x}_v) \begin{bmatrix} u'(t) \\ v'(t) \end{bmatrix}$

Hence the arclength of \vec{z} from $\vec{z}(a)$ to $\vec{z}(b)$ is

$$\int_{a}^{b} |\vec{z}'(t)| dt = \int_{a}^{b} (E(u')^{2} + 2Fu'v' + G(v')^{2})^{1/2} dt.$$

Example 1: For the sphere $\begin{bmatrix} E & F \\ F & G \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \sin^2 u \end{bmatrix}$. Take $\mathbf{w}(t) = (\pi - t, 2t), t \in (o, \pi)$. $\mathbf{w}'(t) = (-1, 2)$ hence $s = \int_0^{\pi} [1 + 4\sin^2 t]^{1/2} dt$.

Example 2: For the cylinder $\begin{bmatrix} E & F \\ F & G \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. For $\mathbf{w}(t) = (t,t)^T, t \in (0,2\pi) \Rightarrow \mathbf{w}'(t) = (1,1)^T$ hence $s = \int_0^{2\pi} \sqrt{1^2 + 1^2} dt = 2\sqrt{2\pi}$.

8.2 Reparametrisation

We can reparametrise as usual: if $s \mapsto \mathbf{z}(s)$, lying in Σ , is arclength parametrised then its unit speed and $I(\mathbf{z}', \mathbf{z}') = 1$

Example: Cone has parametrisation $\mathbf{x}(u, v) = \begin{bmatrix} u \cos v \\ u \sin v \\ u \end{bmatrix}$ and $\begin{bmatrix} E & F \\ F & G \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & u^2 \end{bmatrix}$. Let $\vec{w}(t) = (t, \sqrt{2} \ln t), t \in (0, \infty)$. Then $\mathbf{w}' = (1, \frac{\sqrt{2}}{t})$ and hence $s(t) = \int_0^t 2 = 2t$ so arc length parametrisation is $\mathbf{z}_1(s) = \mathbf{x}(\mathbf{w}_1(s))$, where $\mathbf{w}_1(s) = (\frac{s}{2}, \sqrt{2} \ln(\frac{s}{2}))^T$.

8.3 Isometry

Defn: If S_1 and S_2 are surfaces, a smooth map $\phi : S_1 \to S_2$ is called a **local isometry** if it takes any curve in S_1 to a curve of the same length in S_2 . If a local isometry ϕ exists we say S_1 and S_2 are locally isomorphic.

Theorem: A smooth $\phi: S_1 \to S_2$ is a local isometry if and only if the matrices of first fundamental forms are equal.

Example: Plane (u, v, 0) and cyliner $(\cos u, \sin u, v)$ are isomorphic sonce $\begin{bmatrix} E & F \\ F & G \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

8.4 Geodesics

Motivation Look for analogue in surface Σ of straight lines in plane. Straight lines are characterised by: zero acceleration and distance minimising between two points.

Definition: A curve \vec{z} in $\Sigma \subset \mathbb{R}^3$ is a geodesic of Σ if its acceleration \vec{z}'' is always normal to Σ .

Since \vec{z}'' is normal to Σ we get $\vec{z}'' \cdot \vec{z}'$ (as \vec{z}' is tangent to Σ) thus $\frac{d|\vec{z}'|^2}{dt} = 2\vec{z}'' \cdot \vec{z}' = 0$ implying that $|\vec{z}'| = const$. Hence we conclude that geodesics have constant speed.

"Sum'2" — 2012/3/12 — 23:06 — page 14 - #14

9 Lecture 19

Let us find the geodesics of the sphere and cylinder.

Sphere: First consider the sphere S of radius r, $\mathbf{x} \cdot \mathbf{x} = r^2$. If \vec{z} is a geodesic then $\vec{z}''(t)$ is collinear to the normal of S at $p = \vec{z}(t)$ i.e. to $\vec{z}(t)$ since \vec{z} is collinear to the normal. Using this observation we compute

$$\frac{d}{dt}(\vec{z}'\times\vec{z})=\vec{z}'\times\vec{z}'+\vec{z}''\times\vec{z}.$$

Clearly $\vec{z}' \times \vec{z}' = 0$. But \vec{z}'' is collinear to the normal, by the definition of geodesic, and \vec{z} is collinear to the normal hence $\vec{z}'' \times \vec{z} =$. Combining we get

$$\frac{d}{dt}(\vec{z}' \times \vec{z}) = 0.$$

This identity, in particular, implies that the plane Π passing through 0 and formed by the vectors \vec{z}' and \vec{z} has constant normal \vec{N} (idependent of t). Since $\vec{z} \in \Pi$ it implies that

$$\vec{N} \cdot \vec{z}(t) = 0$$

Thus the geodesics are the great circles.

Cylinder: It is a simple exercise. See also Lecture 20.

9.1 Distance minimisation

Theorem: Let $\Sigma = \mathbf{x}(D)$ be a regular, local surface and $\vec{z} = \mathbf{x} \circ \vec{w}$ a regular curve connecting $A = \vec{z}(a), B = \vec{z}(b)$. Then the arclength of \vec{z}

$$I[\vec{z}] = \int_{a}^{b} \left(\vec{z}'(s) \cdot \vec{z}'(s)\right)^{1/2} ds$$

is stationary implies that \vec{z} is a geodesic.

We want to show that the acceleration \vec{z}'' is collinear to **n**. Let \vec{z} be a curve for which the minimum is realised. Without loss of generality we may assume that \vec{z} is of speed one, i.e. $\vec{z}' \cdot \vec{z}' = 1$ or equivalently $\sqrt{E(u')^2 + 2Fu'v' + G(v')^2} = 1$ where $\vec{z}(t) = \mathbf{x} \circ \mathbf{w}(t)$ and $\mathbf{w}(t) = (u(t), v(t)), t \in (a, b)$ is a curve in domain D. Introduce $\vec{z}(t, \varepsilon) = \mathbf{x}(\mathbf{w} + \varepsilon \mathbf{h})$ where $\varepsilon > 0$ is small and $\mathbf{h}(a) = \mathbf{h}(b) = 0$ thus $\vec{z}(t, \varepsilon)$ leaves the points A, B on the surface unchanged.

Using Taylor's expansion in ε at $\varepsilon = 0$, it is easy to see that

$$\vec{z}(t,\varepsilon) = \vec{z}(t,0) + \varepsilon \frac{d\vec{z}}{d\varepsilon}(t,0) + \varepsilon^2(\dots)$$

By definition $\frac{d\vec{z}}{d\varepsilon}(t,\varepsilon) = \frac{d}{d\varepsilon}\mathbf{x}(\mathbf{w}+\varepsilon\mathbf{h}) = \frac{\partial\mathbf{x}}{\partial u}h_1 + \frac{\partial\mathbf{x}}{\partial v}h_2$ where $\mathbf{h} = (h_1, h_2)$. Hence at $\varepsilon = 0$ we have $\frac{d\vec{z}}{d\varepsilon}(t,0) = \mathbf{x}_u(\mathbf{w}(t))h_1(t) + \mathbf{x}_v(\mathbf{w}(t))h_2(t)$ - linear combination of partial velocities hence $\frac{d\vec{z}}{d\varepsilon}(t,0) \in T_p\Sigma$. Denote this tangent vector by $\mathbf{T} = \frac{d\vec{z}}{d\varepsilon}(t,0) = \mathbf{x}_u(\mathbf{w}(t))h_1(t) + \mathbf{x}_v(\mathbf{w}(t))h_2(t)$. Thus $\vec{z}(t,\varepsilon) = \vec{z} + \varepsilon\mathbf{T} + \varepsilon^2(\dots)$ and $z'(t,\varepsilon) = \vec{z}'(t) + \varepsilon\mathbf{T}' + \varepsilon^2(\dots)$. It follows that

$$\vec{z}'(t,\varepsilon) \cdot \vec{z}'(t,\varepsilon) = [\vec{z}'(t) + \varepsilon \mathbf{T}' + \varepsilon^2(\dots)] \cdot [\vec{z}'(t) + \varepsilon \mathbf{T}' + \varepsilon^2(\dots)] = \vec{z}'(t) \cdot \vec{z}'(t) + 2\vec{z}(t) \cdot \mathbf{T}' + \varepsilon^2(\cdot)$$

therefore

$$\frac{d}{d\varepsilon} \int_{a}^{b} \sqrt{\vec{z'}(\tau,\varepsilon) \cdot \vec{z'}(\tau,\varepsilon)} d\tau = \int_{a}^{b} \frac{d}{d\varepsilon} \sqrt{\vec{z'}(\tau,\varepsilon) \cdot \vec{z'}(\tau,\varepsilon)} d\tau = \int_{a}^{b} \frac{2\mathbf{T'} \cdot \vec{z'}(\tau,\varepsilon) + \varepsilon(\dots)}{2\sqrt{\vec{z'}(\tau,\varepsilon) \cdot \vec{z'}(\tau,\varepsilon)}} d\tau$$

at $\varepsilon = 0$ we get

$$\int_{a}^{b} \frac{\mathbf{T}' \cdot \vec{z}'}{\sqrt{\vec{z}'(\tau) \cdot \vec{z}'(\tau)}} = 0$$

Since \vec{z} is of speed one, i.e. $\vec{z}'(\tau) \cdot \vec{z}'(\tau) = 1$, we conclude after integration by parts

$$0 = \int_a^b \mathbf{T}' \cdot \vec{z}' d\tau = [\mathbf{T}(b)\vec{z}'(b) - \mathbf{T}(a)\vec{z}(a)] - \int_a^b \mathbf{T} \cdot \vec{z}'' d\tau = -\int_a^b \mathbf{T} \cdot \vec{z}'' d\tau$$

for $\mathbf{T}(b) = \mathbf{T}(a) = 0$ (recall that $\mathbf{T} = \mathbf{x}_u(\mathbf{w}(t))h_1(t) + \mathbf{x}_v(\mathbf{w}(t))h_2(t)$ and $\mathbf{h}(a) = \mathbf{h}(b) = 0$).

Decompose vector $\vec{z}'' = \vec{z}''_n + \vec{z}''_T$ where z_n is collinear to normal **n** and $\vec{z}''_T \in T_p\Sigma$ -the tangential component. Then

$$0 = \int_{a}^{b} \mathbf{T} \cdot \vec{z}'' = \int_{a}^{b} \mathbf{T} \cdot [\vec{z}''_{\mathbf{n}} + \vec{z}''_{T}] = \int_{a}^{b} \mathbf{T} \cdot \vec{z}''_{T}$$

Since $\mathbf{T} \in T_p \Sigma$ is an arbitrary tangent vector, for **h** is arbitrary, we may choose $\mathbf{T} = \vec{z}_T''$ so that

$$\int_{a}^{b} [\vec{z}_T'']^2 d\tau = 0$$

thus the tangential component of \vec{z}'' vanishes and thus \vec{z}'' is collinear to the normal **n**.

10 Lecture 20

10.1 Energy

The energy functional of curves in Σ is

$$E[\vec{z}] = \int_a^b g(\vec{z}'(\tau))d\tau = \int_a^b \vec{z}'(\tau) \cdot \vec{z}'(\tau)d\tau$$

where we set $g(\vec{z}'(\tau)) = \vec{z}'(\tau) \cdot \vec{z}'(\tau)$.

The derivation of this statement is similar to the one for the arc length function J (see lecture 19). As above we take $\vec{z}(t,\varepsilon) = \mathbf{x}(\mathbf{w}(t) + \varepsilon \mathbf{h}(t))$. Then

$$\frac{d}{d\varepsilon} \int_{a}^{b} g(\vec{z}'(\tau,\varepsilon)) d\tau = \int_{a}^{b} \nabla_{\vec{z}'} g(\vec{z}'(t,\varepsilon)) \cdot \frac{d}{d\varepsilon} \vec{z}(\tau,\varepsilon) d\tau$$

thus at $\varepsilon = 0$ we have that

$$\int_{a}^{b} \nabla_{\vec{z}'} g(\vec{z}'(\tau)) \cdot \mathbf{T}' d\tau = 0.$$

Noting that $\nabla_{\vec{z}'} g(\vec{z}') = \vec{z}'$ we conclude, after integration by parts that

$$0 = \int_{a}^{b} \vec{z}' \cdot \mathbf{T}' = -\int_{a}^{b} \vec{z}'' \cdot \mathbf{T}$$

hence the tangential component of the acceleration \vec{z}'' vanishes and \vec{z}'' is collinear to the normal **n**.

In other words if $E[\vec{z}]$ is stationary on curves then $\frac{d}{d\tau}(\nabla g)$ is normal to Σ . Now $\nabla g = 2\vec{z}'$ hence E stationary also implies that \vec{z}'' is normal to Σ i.e. extremals of E are also geodesics of Σ .

Remark: For the arclength we have to impose the constraint $|\vec{z}'| = 1$ otherwise we get the traces of geodesics. Plus the awkward $\sqrt{}$ term. For *E* the constant speed condition comes automatically and no awkward terms are present.

"Sum'2" — 2012/3/12 — 23:06 — page 16 — #16

10.2 Surfaces of revolution

The question of finding the geodesics of a given surface may be very complicated. However if some additional properties of surface is known it can be reduced to a system of ODE's which may be solved explicitly. Such example is a surface of revolution. For convenience we take (θ, z) as independent variables

$$\mathbf{x}(\theta, z) = \begin{bmatrix} R(z)\cos\theta \\ R(z)\sin\theta \\ z \end{bmatrix}$$

Here z is the height of the point and R(z) > 0 is a given function. The partial velocities and the first fundamental form are

$$\mathbf{x}_{\theta}(\theta, z) = \begin{bmatrix} -R(z)\sin\theta\\ R(z)\cos\theta\\ 0 \end{bmatrix}, \qquad \mathbf{x}_{z}(\theta, z) = \begin{bmatrix} R'(z)\cos\theta\\ R'(z)\sin\theta\\ 1 \end{bmatrix}$$
$$E = R^{2}, \qquad F = 0, \qquad G = (R')^{2} + 1$$

hence the energy functional is

$$E = \int_{a}^{b} R^{2}(\theta')^{2} + (R'^{2} + 1) z'^{2}$$

Consider the Euler-Lagrange equations (remember that the unknown functions are $\theta(t), z(t)$)

$$\frac{d}{dt}(2R^2\theta') = 0$$
$$\frac{d}{dt}(2(R'^2+1)z') - \frac{d}{dz}(R^2(\theta')^2 + (R'^2+1)z'^2) = 0$$

Unlike the first equation the second one is very complicated. Instead of simplifying it we concentrate on the first one and $R^2(\theta')^2 + (R'^2 + 1) z'^2 = 1$ (since the speed of geodesic is constant). Thus

$$\frac{d}{dt}(2R^2\theta') = 0$$
$$R^2(\theta')^2 + (R'^2 + 1) \ z'^2 = 1$$

The first equation means that $R^2\theta' = C, C$ is a constant.

If C = 0 then $\theta = k$ -constant giving the meridians as geodesics. Notice that z = 0 is not necessarily a geodesic.

If $C \neq 0$ then $\theta' = \frac{C}{R^2}$, then after dividing the second equation by θ'^2 we get

$$R^{2} + (R'^{2} + 1)\left(\frac{z'}{\theta'}\right)^{2} = \frac{1}{(\theta')^{2}} = \frac{R^{4}}{C^{2}}$$

or equivalently

$$\left(\frac{z'}{\theta'}\right)^2 = \left[\frac{R^4}{C^2} - R^2\right] \frac{1}{(R'^2 + 1)}$$

Now assume that z is a function of θ , i.e. in the domain D of (θ, z) -coordinates, z can be represented as a graph over θ -axis, then by chain rule we have

$$\frac{dz}{dt} = \frac{dz}{d\theta}\frac{d\theta}{dt}$$

or equivalently

$$\frac{z'}{\theta'} = \frac{dz}{d\theta}$$

after substituting into the equation above results

$$\left(\frac{dz}{d\theta}\right)^2 = \left[\frac{R^4}{C^2} - R^2\right] \frac{1}{(R'^2 + 1)}$$

This is an ODE with unknown function $z = z(\theta)$ and any solution of this equation represents a geodesic in (θ, z) -plane (the domain D).

10.3 Cylinder

An interesting case is when $R(z) = \rho$ -constant which corresponds to the cylinder. Then R' = 0 and the ODE is

$$\left(\frac{dz}{d\theta}\right)^2 = \frac{\rho^2}{C^2} \left[\rho^2 - C^2\right] = A$$

Using the first Euler-Lagrange equation we deduce $\theta' = \frac{C}{\rho^2}$ -constant thus $\theta(t) = \frac{C}{\rho^2}t + D$ where D is an arbitrary constant. Thereby $z = A\theta + B = \frac{AC}{\rho^2}t + AD + B$ where A, B are constants. Thus

$$\vec{z}(t) = \begin{bmatrix} \rho \cos(\frac{C}{\rho^2}t + D) \\ \rho \sin(\frac{C}{\rho^2}t + D) \\ \frac{AC}{\rho^2}t + AD + B \end{bmatrix}$$

is the general form of the geodesic for cylinder. It is helix if $C \neq 0, A \neq 0$, vertical line if $C = 0, A \neq 0$ and circle if $C \neq 0, A = 0$.