Homework 4

October 27, 2014

(due on Tuesday November 4, 2.10pm, before class starts):

1. Let $L: C[0,1] \to \mathbb{C}$ denote the linear functional defined by

$$L(f) = f(0).$$

- a) Show $L \in (C[0, 1], \|\cdot\|_{\infty})^*$.
- b) Show $L \notin (C[0,1], \|\cdot\|_2)^*$.

Solution: We check that L is bounded as an operator with domain $(C[0,1], \|\cdot\|_{\infty})$. Indeed,

$$||L|| = \sup_{||f||_{\infty} \le 1} |Lf| = \sup_{||f||_{\infty} \le 1} |f(0)| \le \sup_{||f||_{\infty} \le 1} ||f||_{\infty} = 1.$$

It follows that $||L|| \leq 1$.

On the other hand if we consider $(C[0,1], \|\cdot\|_2)$ we want to show that L is unbounded. Consider functions that are $f_n(x) = A_n(1/n - x)$ on [0, 1/n] and 0 elsewhere. Such functions are continuous with norm

$$||f_n||_2^2 = A_n^2 \int_0^{1/n} (x - 1/n)^2 dx = A_n/(3n^3).$$

Choose $A_n = 3n^3$, then $||f_n||_2 = 1$. If follows that

$$||L|| = \sup_{||f||_2 \le 1} |Lf| = \sup_{||f||_2 \le 1} |f(0)| \ge |f_n(0)| = 3n^3/n^2 = 3n.$$

As n can be taken arbitrary large it follows that $||L|| = \infty$, hence L is an unbounded operator.

2 Let H be a Hilbert space and $A: H \to H$ linear self-adjoint operator defined for any $x \in H$. Show that A is continuous. [Hint:] Use Banach-Steinhaus theorem.

Solution: We have for all $x \in H$, $||x|| \le 1$

$$|\langle Ax, y \rangle| = |\langle x, Ay \rangle| \le ||Ay||.$$

and for all $y \in H$. From Riesz representation theorem we have that for all $x \in H$, $||x|| \le 1$ we have $|L(Ax)| \le C(L)$ for any $L \in H^*$ with some constant C(L) depending only on L. Thus from Banach-Steinhaus theorem A^* is bounded, but A is self-adjoint hence A is bounded and, in addition, continuous.