
Hilbert spaces

September 3, 2014

1 Introduction

In linear algebra one of the main notions is the concept of a vector space. Geometry
on finite dimensional vector spaces is called Euclidean geometry and is based on the
concept of inner product spaces which brings notions of orthogonality, distance etc.

This semester we will attempt to study linear algebra in infinite dimensions. This
will bring a lot of new features that cannot be seen in finite dimensions such as the
concept of continuity of linear operators (not all linear operators are continuous), com-
pletness and some new metric properties (the relation between closed and compact sets
is more delicate than in finite dimensions).

Recall a well-known theorem from finite dimensions:

Theorem 1.1. Let A be a real symmetric n×n matrix. Then there is an orthonormal
basis {e1, e2, . . . , en} of Rn consisting of eigenvectors of A, i.e.,

Aej = λjej, j = 1, 2, . . . , n.

Hence if x =
∑n

i=1 αjej, then Ax =
∑n

i=1 λjαjej.

One of our main goals this semester will be to establish an analogue of this statement
for infinite dimensional spaces. See section 5.7 for more.

2 Inner product and normed linear spaces

Unless said specifically otherwise all scalars will be assumed to be complex (in C) unless
stated specifically as real (in R).

Definition 2.1. Let X be a vector space over C. If there exists a function 〈., .〉 :
X ×X → C such that

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• 〈λx, y〉 = λ〈x, y〉, λ ∈ C

1



• 〈x, y〉 = 〈y, x〉,

then (X, 〈., .〉) is called a inner product space (i.p.s.).

Examples: 1. Cn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Cn and

〈x, y〉 =
n∑
i=1

xjyj.

2. `2 = {x = (x1, x2, x3, . . . ) ∈ C∞ :
∑∞

i=1 |xi|2 <∞} with inner product

〈x, y〉 =
∞∑
i=1

xjyj.

3. Mn(C) the space of all n× n matrices with complex entries with inner product

〈A,B〉 = tr(B∗A), B∗ = BT .

4. C[0, 1] = {f : [0, 1]→ C : f is continuous on [0, 1]} with

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

5. C1[0, 1] = {f : [0, 1]→ C : f is continuously differentiable on [0, 1]} with

〈f, g〉 =

∫ 1

0

f(x)g(x) dx+

∫ 1

0

f ′(x)g′(x) dx.

Definition 2.2. Let (X, 〈., .〉) be an i.p.s. Then for x ∈ X we define

‖x‖ =
√
〈x, x〉.

The function ‖.‖ : X → [0,∞) is called a norm. It gives the notion of length of a
vector x.

Recall that if x, y ∈ Rn, then ‖x‖ =
√
x21 + x22 + · · ·+ x2n and

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ 1.

Then there exists a unique θ ∈ [0, π] such that cos θ = 〈x,y〉
‖x‖‖y‖ . The number θ is called

an angle between vectors x and y.

Is there an analogue of this in any i.p.s ?

Lemma 2.1. (Cauchy-Schwartz inequality) Let (X, 〈., .〉) be any i.p.s. Then

|〈x, y〉| ≤ ‖x‖‖y‖, for all x, y ∈ X.

Furthermore the equality holds if and only if vectors x, y are linearly dependent.
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Proof. We may assume that y 6= 0 and ‖y‖ = 1. Indeed, the Cauchy-Schwartz
inequality holds when y = 0. If y 6= 0 then z = y/‖y‖ has length 1. So if |〈x, z〉| ≤ ‖x‖
holds then

|〈x, z〉| = |〈x, y〉|
‖y‖

≤ ‖x‖,

from which |〈x, y〉| ≤ ‖x‖‖y‖ follows.
Assume therefore that ‖y‖ = 1. We look at ‖x− 〈x, y〉y‖2.

‖x− 〈x, y〉y‖2 = 〈x− 〈x, y〉y, x− 〈x, y〉y〉 = 〈x, x〉 − 〈x, 〈x, y〉y〉 −
− 〈〈x, y〉y, x〉+ 〈〈x, y〉y, 〈x, y〉y〉 =

= ‖x‖2 − 〈x, y〉〈x, y〉 − 〈x, y〉〈y, x〉+ 〈x, y〉〈x, y〉 =

= ‖x‖2 − |〈x, y〉|2. (2.1)

From this ‖x‖2 − |〈x, y〉|2 ≥ 0, since the lefthand side is nonnegative.
Equality holds if and only if ‖x− 〈x, y〉y‖2 = 0, i.e., x− 〈x, y〉y = 0. So vector x is

a scalar multiple of y and therefore x, y are linearly dependent.

Lemma 2.2. Let (X, 〈., .〉) be an i.p.s. Then ‖x‖ =
√
〈x, x〉 satisfies

• ‖x‖ ≥ 0, with equality if and only if x = 0,

• ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ C,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Proof. The first two are a simple exercises. The triangle inequality holds, since using
Cauchy-Schwartz:

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 + 2Re 〈x, y〉
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2. (2.2)

Lemma 2.3. Let (X, 〈., .〉) be an i.p.s. Then

• (Pythagoras theorem) If 〈x, y〉 = 0, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

• (Parallelogram law) For all x, y ∈ X: ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

• (Polarization identity) For all x, y ∈ X:

〈x, y〉 =
1

4

{
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

}
.

Proof. Exercise, homework.

Definition 2.3. Let X be a vectors space with a function ‖.‖ : X → R such that

• ‖x‖ ≥ 0, with equality if and only if x = 0,
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• ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ C,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The (X, ‖.‖) is called a linear normed space (l.n.s) and function ‖.‖ is called a norm.

Corollary 2.4. Lemma 2.2 implies that any inner product space (X, 〈., .〉) is also a
normed linear space with norm

‖x‖ =
√
〈x, x〉.

Other examples: 1. Cn with norm

‖x‖∞ = max
1≤i≤n

|xi|,

or norm

‖x‖1 =
n∑
i=1

|xi|.

2. C[0, 1] with norms

‖f‖∞ = max
0≤x≤1

|f(x)|, ‖f‖p =

(∫ 1

0

|f(x)|p dx
)1/p

, 1 ≤ p <∞.

Notice that the norm ‖.‖2 comes from an inner product:

‖f‖2 =

(∫ 1

0

|f(x)|2 dx
)1/2

=

√∫ 1

0

f(x)f(x) dx =
√
〈f, f〉.

3. `p for 1 ≤ p <∞, where

`p = {x = (x1, x2, x3, . . . ) : xi ∈ C and
∞∑
i=1

|xi|p <∞}

and

‖x‖p =

(
∞∑
i=1

|xi|p
)1/p

.

One can also define `∞ by

`∞ = {x = (x1, x2, x3, . . . ) : xi ∈ C and sup
i∈N
|xi| <∞},

with
‖x‖∞ = sup

i∈N
|xi|.

Notice that when p = 2 the `2 is and i.p.s. Also `p ⊂ `q for p ≤ q.

Question: When does the norm arise from an inner product? Given n.l.s (X, ‖.‖)
does there exists 〈., .〉 an inner product such that ‖x‖2 = 〈x, x〉.

Claim: A necessary and sufficient condition is that the parallelogram law (Lemma2.3)
holds for all x, y ∈ X:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).
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3 Metric space structure of normed linear spaces

Consider a normed linear space (X, ‖.‖). Then

d(x, y) = ‖x− y‖

is a metric on X, hence X is a metric space! Hence we can talk about continuity of
functions on X.

Exercise: Show that

• x 7→ ‖x‖ is continuous map X → R,

• (x, y) 7→ x+ y is a continuous map X ×X → X,

• (λ, x) 7→ λx is a continuous map R×X → X,

• if in addition X is an i.p.s then (x, y) 7→ 〈x, y〉 is a continuous map X ×X → C.

Note. Recall that convergence on a metric space is defined as follows. If (xn) is a
sequence on X, we say that xn → x (sequence converges to x) if

lim
n→∞

d(xn, x) = lim
n→∞

‖xn − x‖ = 0.

We say that a sequence (xn) is Cauchy if

lim
n,m→∞

d(xn, xm) = lim
n,m→∞

‖xn − xm‖ = 0.

Recall also that every convergent sequence is Cauchy, the reverse is also true if
(X, d) is a complete metric space.

3.1 Closed, open and compact sets on (X, ‖.‖)
Again this is a review from the 3rd year metric spaces course. Let (X, ‖.‖) by any
inner product space.

Definition 3.1. Set Ω ⊂ X is called open if for every x ∈ Ω there is ε > 0 such that

Bε(x) = {y ∈ X; ‖y − x‖ < ε} ⊂ Ω.

Definition 3.2. Set F ⊂ X is called closed if

Ω = X \ F = F c

is open.
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Fact: Set F is closed if and only if for every convergent sequence (xn) ⊂ F we have
that

x = limxn ∈ F.

(We say that F contains all it limit points.)

Definition 3.3. Set K ⊂ X is called compact if for any sequence (xn) ⊂ K there is a
subsequence (xnk

) such that

lim
k→∞

xnk
exists and belongs to the set K.

Recall that:

• Compact set are closed

• whenever dim X <∞ closed balls

Br(x) = {y ∈ X; ‖x− y‖ ≤ r}

are compact

• When dim X =∞ closed balls Br(x) are never compact (last exercise on sheet
2).

Example. This example shows that whether or not a set is closed depends on the
considered norm. Let W be a set consisting of these continuous functions:

fn(x) = nx, on [0, 1/n] fn(x) = 1, on [1/n, 1],

for n = 1, 2, 3, . . . . Then W is a closed set on the space (C[0, 1], ‖.‖∞) but not on
(C[0, 1], ‖.‖1).

Indeed, on (C[0, 1], ‖.‖1) we have that fn → f , where f is a constant function
1 /∈ W .

‖fn − f‖1 =

∫ 1

0

|fn(x)− 1|dx =

∫ 1/n

0

|fn(x)− 1|dx ≤ 2

n
→ 0.

Definition 3.4. Let A ⊂ X, where X is vector space. In what follows we will denote
by lin(A) the linear span of A:

lin(A) =

{
N∑
i=1

αixi; for αi ∈ C and xi ∈ A

}
.

The set lin(A) is the smallest subspace of X containing A.
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Definition 3.5. Let A ⊂ X, where X is a n.l.s. The closure of A denoted by A is the
smallest closed set in X containing A. It can be shown that

A =
⋂

A⊂F, Fclosed

F

and
A = {x ∈ X; there is a sequence (xn) ⊂ A such that xn → x}.

Examples: X = (C[0, 1], ‖.‖∞). Let

A = {xn;n = 0, 1, 2, . . . }.

Then lin(A) is the set of all polynomials on [0, 1]:

lin(A) =

{
n∑
i=0

aix
i; ai ∈ C

}
.

What is lin(A)? Answer: Weierstrass theorem.

lin(A) = C[0, 1].

3.2 Orthogonality in inner product spaces

In this subsection X will be any inner product space. Recall first the well-known
Gram-Schmidt ortogonalization process.

If {y1, y2, . . . , yN} ⊂ X are N linearly independent vectors from X, then we can
find vectors {x1, x2, . . . , xN} that are orthogonal (〈xi, xj〉 = 0 for i 6= j) and

lin({y1, y2, . . . , yN}) = lin({x1, x2, . . . , xN}).

These vectors are defined inductively by

x1 = y1,

x2 = y2 − 〈y2, x1〉
x1
‖x1‖2

,

. . . . . .

xN = yN −
N−1∑
i=1

〈yN , xi〉
xi
‖xi‖2

.

If required these vectors can be made orthonormal (unit length) by taking zi = xi
‖xi‖ ,

i = 1, 2, . . . , N .
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Definition 3.6. A family (xα)α∈A ⊂ X (A is a set of indices, typically a finite set or
N) in an i.p.s. space X is called orthonormal family if

• 〈xα, xβ〉 = 0, if α 6= β,

• 〈xα, xα〉 = 1, for all α ∈ A.

Examples: In `2 - the space of all square sumable sequences the family (en)n∈N is
othonormal. Here

en = (0, 0, . . . , 1, 0, 0, . . . ), where 1 appears on the n-th position.

The space (C[0, 1], ‖.‖2) has an ON family (einx)n∈N.

Lemma 3.1. (Bessel’s inequality) Let X by any i.p.s. and (ei)
N
i=1 be a finite ON family.

Then
N∑
i=1

|〈x, ei〉|2 ≤ ‖x‖2, for all x ∈ X.

The equality holds if and only if x ∈ lin({e1, e2, . . . , eN}). Then

x =
N∑
i=1

〈x, ei〉ei.

Proof. Clearly:

0 ≤

∥∥∥∥∥x−
N∑
i=1

〈x, ei〉ei

∥∥∥∥∥
2

=

〈
x−

N∑
i=1

〈x, ei〉ei, x−
N∑
j=1

〈x, ej〉ej

〉

= ‖x‖2 −
N∑
i=1

〈x, ei〉〈x, ei〉 −
N∑
j=1

〈x, ej〉〈x, ej〉+
N∑

i,j=1

〈x, ei〉〈x, ej〉〈ei, ej〉.

= ‖x‖2 −
N∑
i=1

|〈x, ei〉|2,

using the orthogonality of ei. From this the claim follows. It also follows that the
equality holds if and only if ∥∥∥∥∥x−

N∑
i=1

〈x, ei〉ei

∥∥∥∥∥
2

= 0,

i.e., x−
∑N

i=1〈x, ei〉ei = 0.
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3.3 Hilbert and Banach spaces

We may ask a legitimate question whether the Bessel’s inequality holds even if the ON
family (ei) is infinite. If so, what is the sum

∞∑
i=1

〈x, ei〉ei ?

It is fairly easy to check that the sequence (sN) if partial sums

sN =
N∑
i=1

〈x, ei〉ei, is Cauchy, i.e.,

lim
n,m→∞

‖sn − sm‖ = 0.

But, if a metric space is not complete it is not true that every Cauchy sequence is
convergent. This leads us to define:

Definition 3.7. Let (X, ‖.‖) be a normed linear space. We call (X, ‖.‖) a Banach
space, if (X, d) with metric d(x, y) = ‖x− y‖ is a complete metric space.
Similarly, an inner product space that is a Banach space is called the Hilbert space.

If follows that in a Hilbert space the sum

∞∑
i=1

〈x, ei〉ei

is a well defined element for any x.

Examples: 1. Rn, Cn with usual inner product are Hilbert spaces

2. Rn, Cn with ‖.‖p norm 1 ≤ p ≤ ∞ are Banach spaces

3. `p, 1 ≤ p ≤ ∞ are Banach spaces, p = 2 is a Hilbert space

4. (C[0, 1], ‖.‖p) is not a Banach space 1 ≤ p < ∞, but when p = ∞ it is a Banach
space.

The reason why (C[0, 1], ‖.‖p) is not a Banach space p < ∞ is simple. Consider a
sequence (fn) if continuous functions defined by

fn(x) = 0 on [0, 1/2), fn(x) = n(x− 1/2) on [1/2, 1/2 + 1/n),

fn(x) = 1, on [1/2 + 1/n, 1].

This is a Cauchy sequence in (C[0, 1], ‖.‖p), p < ∞ (check it!) but it limit is a
discontinuous function f(x) = 0 on [0, 1/2] and f(x) = 1 elsewhere. Hence f /∈ C[0, 1]
and the space is not complete.

An important and interesting question is when a subspace of a Banach space is
itself a Banach space. The complete answer provides the following lemma.

9



Lemma 3.2. Let (X, ‖.‖) be a Banach space and M ⊂M its subspace. Then (M, ‖.‖)
is a Banach space if and only if M is a closed subset of X.

Proof. Suppose that M is closed. Let (xn) be a Cauchy sequence in M . It follows that
(xn) is also a Cauchy sequence in X. As X is complete there is x ∈ X such that

‖xn − x‖ → 0, as n→∞.

Point x is a limit point of set M (since there is a sequence from M converging to it).
But M is a closed set, i.e., it contains all its limit points - in particular it contains x.
Hence xn → x in M and so (M, ‖.‖) is a Banach space.

Conversely, if (M, ‖.‖) is a Banach space and xn → x be a convergent sequence of
points xn ∈ M with limit x ∈ X, then (xn) is a Cauchy sequence in M . Hence by the
assumption, there is y ∈M such that xn → y in M . Clearly, y = x, hence x ∈M and
so the set M is closed.

3.4 Completion of a normed linear space

As we have seen, a very important space (C[0, 1], ‖.‖p), p < ∞ we used in examples
is not a Banach space. Is is therefore a legitimate question to ask whether this can
be “fixed” somehow. To formulate this question mathematically, we ask whether for
any n.l.s (X, ‖.‖) one can find a Banach space (X̃, ‖.‖∗) such that X ⊂ X̃ is a (dense)
subspace and

‖x‖ = ‖x‖∗ for all x ∈ X.

This is indeed the case, the abstract construction if such completion can be found
below.

Theorem 3.3. Let (X, ‖.‖) be a normed linear space. Then there exists a Banach

space (X̃, ‖.‖∗) (called completion of X) such that

• X ⊂ X̃

• X = X̃, where is closure is taken w.r.t ‖.‖∗ norm in X̃

• ‖x‖ = ‖x‖∗ for all x ∈ X.

Proof. The construction of the completion is somewhat standard and you may have
seen it before in different context. The idea of constructing X̃ is the following:

Consider first a set U of all Cauchy sequences in X:

U = {v = (xn)∞n=1; xn ∈ X and the sequence (xn) is Cachy in X.}

We say two sequences v = (xn)∞n=1 and w = (yn)∞n=1 from U are equivalent v ∼ w if
and only if

lim
n→∞

xn − yn = 0.
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Clearly, this is an equivalence relation and it allows us to define

X̃ = U/ ∼= {set of equivalence classes in U under ∼}.

We denote the equivalence class of a sequence v = (xn)∞n=1 by [v]. To make X̃ a vector
space we define

[v] + [w] = [(xn + yn)], for v = (xn)∞n=1 andw = (yn)∞n=1

α[v] = [(αxn)], for a scalar α. (3.3)

One needs to verify that this definition is independent of particular choice of represen-
tatives u and v.

To make X̃ a normed linear space we put

‖[v]‖∗ = lim
n→∞

‖xn‖, where v = (xn)∞n=1.

Again this definition is independent of particular choice of v from the equivalence class
[v].

We want to this about X as being a subset of X̃. We can make it so, by identifying
an element x ∈ X with and equivalence class [(x, x, x, . . . )] ∈ X̃. Clearly,

‖x‖ = ‖[(x, x, x, . . . )]‖∗.

Note also that X is a dense set in X̃. To see this consider any [v] ∈ X̃. Let v = (xn)∞n=1.
Then one can see that

‖xn − [v]‖∗ → 0 as n→∞.

So [v] can be approximated by sequence from the subset X.

Finally we note that (X̃, ‖.‖∗) is a Banach space. Indeed, let ([vn])∞n=1 be a Cauchy

sequence in X̃, i.e.,
lim

n,m→∞
‖[vn]− [vm]‖∗ = 0.

Fix an integer n ∈ N. We have that vn = (xni )∞i=1 is a Cauchy sequence in X. It is
therefore possible to find an index k = k(n) such that

‖xm − xk(n)‖ <
1

n
, for all m ≥ k(n).

Consider now a sequence yn = xk(n), n = 1, 2, 3, . . . . We claim that this is a Cauchy

sequence in X, hence [(yn)] ∈ X̃. Moreover one can check that

‖[vn]− [(yn)]‖∗ → 0, as n→∞.

It follows that [(yn)] is the limit point of the Cauchy sequence ([vn])∞n=1.
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Definition 3.8. For any 1 ≤ p <∞ we will denote by Lp(0, 1) the Banach space that
is the completion of the normed linear space

(C[0, 1], ‖.‖p).

Note: (for students who had measure theory). Equivalently one can define the space
Lp(0, 1) as

Lp(0, 1) = {f : [0, 1]→ C; function f is measurable and

∫ 1

0

|f(x)|p dx <∞},

with norm

‖f‖p =

(∫ 1

0

|f(x)|p dx
)1/p

.

Here we use the Lebesgue integral (which is a generalization of the Riemann integral).
In this definition we also consider two functions f, g : [0, 1] → C to be the same if∫ 1

0
|f − g|p dx = 0.

The space L∞(0, 1) is defined as

L∞(0, 1) = {f : [0, 1]→ C; function f is measurable and essentially bounded},

with norm
‖f‖∞ = ess supx∈[0,1]|f(x)|.

(If you did not have the measure theory, imagine here f to be just bounded and its
norm defined as the supremum of |f(x)|).

As an observation we note that the space C[0, 1] is a proper closed subspace of
L∞(0, 1) w.r.t the norm ‖.‖∞.

3.5 Equivalence of norms

As we have seen before, in many cases such as on Rn or Cn we had a choice of which
norm to use. It did not mattered much however, as it had no effect on convergence
of sequences, sets being open or closed, etc. On the other hand we know that if we
consider the space (C[0, 1], ‖.‖p) for different p the spaces are substantially different,
p = ∞ is a Banach space, p < ∞ is not; also certain sequences convergent for some
value of p do not converge for the other values.

It turn out that this is connected with the notion of equivalence of norms.

Definition 3.9. Let X be a vector space with two norms ‖.‖1 and ‖.‖2. We say these
two norms are equivalent if there is number C > 0 such that

C−1‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1, for all x ∈ X.
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Lemma 3.4. If the norms ‖.‖1 and ‖.‖2 are equivalent on X, then

xn → x w.r.t ‖.‖1 if and only if xn → x w.r.t ‖.‖2.

Corollary 3.5. If two norms ‖.‖1 and ‖.‖2 are equivalent on X, they generate the same
topology on X, that is set that are open(closed) w.r.t one norm are also open(closed)
w.r.t the other norm. Also,

(X, ‖.‖1) is a Banach space if and only if (X, ‖.‖2) is a Banach space.

Examples: 1. All norms on Rn or Cn are equivalent (see below).

2. The norms ‖.‖p on C[0, 1] are not equivalent for different values of p (prove it!).

Theorem 3.6. Let X be finite dimensional vector space. Then all norms on X are
equivalent.

Proof. Let dim X = n and find a basis (e1, e2, . . . , en) for X. Let us consider the norm

‖x‖∞ = max
1≤i≤n

|xi|, for x =
n∑
i=1

xiei.

Let ‖.‖ be ANY other norm on X. We claim that ‖x‖ ≤ C0‖x‖∞, for C0 =
n (max1≤i≤n ‖ei‖). Indeed, by triangle inequality (for x =

∑n
i=1 x

iei):

‖x‖ ≤
n∑
i=1

|xi|‖ei‖ ≤
(

max
1≤i≤n

‖ei‖
) n∑

i=1

|xi| ≤ n

(
max
1≤i≤n

‖ei‖
)
‖x‖∞.

Furthermore we claim that there is C > 0 such that

‖x‖∞ ≤ C‖x‖ for all x ∈ X. (3.4)

If (3.4) is true, then indeed ‖.‖ and ‖.‖∞ are equivalent. From this it follows that all
norms on X must be equivalent. To see (3.4) consider the set

S = {x ∈ X; ‖x‖∞ = 1}.

This set is compact, as it is closed and it is a subset of the set

B = {x ∈ X; ‖x‖∞ ≤ 1}

which is compact by to following argument:
Set B is a continuous image of the compact set

{(x1, x2, . . . , xn) ∈ Cn; |xi| ≤ 1}

13



by a map (x1, x2, . . . , xn) 7→
∑n

i=1 xiei.

Having this we see that

‖x‖ =

∥∥∥∥‖x‖∞ x

‖x‖∞

∥∥∥∥ = ‖x‖∞
∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≥ (inf
y∈S
‖y‖
)
‖x‖∞,

since x
‖x‖∞ ∈ S. If we prove that α = infy∈S ‖y‖ > 0 we are done as (3.4) follows.

We prove it by contradiction. Assume that α = 0. It follows that there is a sequence
(yn) ⊂ S such that

‖yn‖∞ = 1, and ‖yn‖ → 0.

As the set S is compact (see above), there is a subsequence (ynk
) such that

ynk
→ y ∈ S w.r.t ‖.‖∞, i.e., lim

k→∞
‖ynk

− y‖∞ = 0.

But, we already now that ‖ynk
− y‖ ≤ C0‖ynk

− y‖∞, hence ynk
→ y w.r.t ‖.‖ as well.

It follows that
‖y‖ = lim

k→∞
‖ynk
‖ = 0, i.e., y = 0.

But this is impossible, as y = 0 /∈ S ! So we have a contradiction.

Corollary 3.7.

• Any two norms on finite dimensional vector space are equivalent

• Any normed linear space (X, ‖.‖) such that dim X <∞ is a Banach space

• Any subspace Y ⊂ X of a n.l.s X such that dim Y <∞ is closed.

4 Geometry of Hilbert spaces

4.1 Orthogonal projection

Let H be a Hilbert space and M ⊂ H its closed subspace. We are looking for a function
P : H →M with the following properties (we set Q = I − P ):

• x = Px+Qx

• Px⊥Qx, i.e. 〈Px,Qx〉 = 0

• ‖x‖2 = ‖Px‖2 + ‖Qx‖2

• ‖Qx‖ = dist(x,M) = infy∈M ‖x− y‖

Such function (if exists) is called an orthogonal projection onto M .

14



Case 1: dim M <∞.

In this case we can construct P directly. Take any ON basis {e1, e2, . . . , en} for M
(use G-S to achieve this). We claim that the function

Px =
n∑
i=1

〈x, ei〉ei

does the job! To see this we first establish the following:

Claim: ‖x− Px‖ = ‖x−
∑n

i=1〈x, ei〉ei‖ = infy∈M ‖x− y‖.

Indeed:

inf
y∈M
‖x− y‖ = inf

α1,α2,...,αn∈C

∥∥∥∥∥x−
n∑
i=1

αiei

∥∥∥∥∥
∥∥∥∥∥x−

n∑
i=1

αiei

∥∥∥∥∥
2

=

〈
x−

n∑
i=1

αiei, x−
n∑
i=1

αiei

〉
= (4.5)

= 〈x, x〉 −
n∑
i=1

αi〈x, ei〉 −
n∑
i=1

αi〈x, ei〉+
n∑

i,j=1

αiαj〈ei, ej〉

= ‖x‖2 − 2 Re
n∑
i=1

αi〈x, ei〉+
n∑
i=1

|αi|2.

We note that
|αi − 〈x, ei〉|2 = |αi|2 − 2 Re αi〈x, ei〉+ |〈x, ei〉|2,

hence ∥∥∥∥∥x−
n∑
i=1

αiei

∥∥∥∥∥
2

= ‖x‖2 +
n∑
i=1

|αi − 〈x, ei〉|2 −
n∑
i=1

|〈x, ei〉|2. (4.6)

It follows that (4.6) is minimized when αi = 〈x, ei〉, for all i = 1, 2, . . . , n.
The fact that P satisfies the other properties can be easily checked. For example:

〈Qx, ej〉 = 〈x− Px, ej〉 =

〈
x−

n∑
i=1

〈x, ei〉ei, ej

〉
= 〈x, ej〉 −

n∑
i,j=1

〈x, ej〉〈ei, ej〉 = 0

hence Qx⊥ej for all j = 1, 2, . . . , n. From this Qx⊥Px as Px is a linear combination
of vectors ej.

Exercise: Find

min
a,b,c∈R

∫ 1

−1
|x3 − a− bx− cx2| dx.
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Hint of a solution: Denote by M = {all polynomials of degree ≤ 2}. Then

min
a,b,c∈R

∫ 1

−1
|x3 − a− bx− cx2| dx = inf

g∈M
‖x3 − g‖

where the norm ‖.‖ is defined using the standard inner product:

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx.

Hence the minimum is equal to ‖x3 − P (x3)‖, where P is the orthogonal projection
onto M . It remains to find and orthonomal basis of M and the problem is solved.

Case 2: dim M is arbitrary (finite or infinite).

Definition 4.1. For any x ∈ H we define

x⊥ = {y ∈ H; 〈x, y〉 = 0}

and for any subset A ⊂ H we define

A⊥ = {y ∈ H; 〈x, y〉 = 0 for all x ∈ A}.

Note that A ∩ A⊥ = {0}. We claim that

Proposition 4.1. A⊥ is a closed subspace of H.

Proof. Clearly,

A⊥ =
⋂
x∈A

x⊥.

Hence if we prove that x⊥ is a closed subspace of H we are done, as any intersection
of subspaces is a subspace and any intersection of closed sets is again a closed set. We
leave it to the reader that x⊥ is a subspace. To see it is closed we consider a convergent
sequence (yn)n∈N ⊂ x⊥ such that yn → y. We want to see that y ∈ x⊥. We know that
〈yn, x〉 = 0, hence

0 = lim
n→∞
〈yn, x〉 = 〈 lim

n→∞
yn, x〉 = 〈y, x〉.

From this y ∈ x⊥.

Remark. Notice that the function Q defined is a map Q : H →M⊥.

Definition 4.2. Let X be a vector space and C ⊂ X. We say the set C is convex if
for any two points x, y ∈ C we have that

tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1.
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Examples:

• Subspaces are convex sets

• In a n.l.s B1(0) = {x; ‖x‖ < 1} and B1(0) = {x; ‖x‖ ≤ 1} are convex.

• If C is convex then also the set C − x = {y − x; y ∈ C} is convex.

Theorem 4.2. Let C be a nonempty close and convex set in a Hilbert space H. Then
C contains a unique element of smallest norm, that is there exists unique x0 ∈ C such
that

‖x0‖ ≤ ‖x‖, for all x ∈ C.

Proof. For any x, y ∈ C using parallelogram law we know that∥∥∥x
2
− y

2

∥∥∥2 +
∥∥∥x

2
+
y

2

∥∥∥2 = 2

[∥∥∥x
2

∥∥∥2 +
∥∥∥y

2

∥∥∥2] .
As C is convex, x

2
+ y

2
∈ C, hence

‖x− y‖2 = 2[‖x‖2 + ‖y‖2]− 4
∥∥∥x

2
+
y

2

∥∥∥2
≤ 2[‖x‖2 + ‖y‖2]− 4δ2, (4.7)

where by δ we denote
δ = inf

x∈C
‖x‖.

It follows that if there are two points x, y ∈ C such that δ = ‖x‖ = ‖y‖, then
necessary by (4.7):

‖x− y‖2 ≤ 2[δ2 + δ2]− 4δ2 = 0.

From this x = y. This show uniqueness.

For existence, consider a sequence of points (yn)n∈N ⊂ C such that ‖yn‖ → δ as
n→∞. We claim this sequence is Cauchy. Indeed, by (4.7) we see that

‖yn − ym‖2 ≤ 2[‖yn‖2 + ‖ym‖2]− 4δ2 → 0 as m,n→∞.

Hence there is y ∈ C such that y = limn→∞ ‖yn‖. It follows that ‖y‖ = limn→∞ ‖yn‖ =
δ.

Corollary 4.3. Let E be a nonempty closed convex set in a Hilbert space H and let
y0 /∈ E. Then there exists unique x0 ∈ E such that

‖x0 − y0‖ = inf
x∈E
‖x− y0‖.

Proof. Apply the previous theorem to the set C = E − y0. Note that C is a nonempty
closed convex set.
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Theorem 4.4. (On orthogonal projection) Let M be a closed subspace of a Hilbert
space H. Then the following holds:

(i) Every x ∈ H has a unique decomposition x = Px + Qx where Px ∈ M and
Qx ∈M⊥.

(ii) Px is the nearest point to x on M and Qx is the nearest point to x on M⊥.

(iii) The mappings P : H →M and Q : H →M⊥ are linear.

(iv) ‖x‖2 = ‖Px‖2 + ‖Qx‖2.

The mappings P and Q are called orthogonal projections onto M (M⊥), respectively.

Proof. Uniqueness: Suppose that x = x′ + y′ = x′′ + y′′, where x′, x′′ ∈ M and
y′, y′′ ∈M⊥. Then

M 3 x′ − x′′ = y′′ − y′ ∈M⊥.

But M ∩M⊥ = {0}, hence x′ − x′′ = y′′ − y′ = 0. From this x′ = x′′ and y′ = y′′ so
uniqueness follows.

Existence: Choose any x ∈ H. Note that M is a closed nonempty convex set, hence
by Corollary 4.3 there exists a unique point x0 such that

‖x− x0‖ = dist(x,M) = inf
y∈M
‖x− y‖.

We denote by Px this point x0, i.e., we set Px = x0. Clearly, P : H → M . Let
Qx = x− Px. We claim that

Qx ∈M⊥, i.e., 〈Qx, y〉 = 0 for all y ∈M.

Indeed, consider any y ∈M such that ‖y‖ = 1. Then for any α ∈ C:

‖Qx‖2 = ‖x− Px‖2 ≤ ‖x− Px− αy‖2 = 〈Qx− αy,Qx− αy〉
= ‖Qx‖2 − α〈Qx, y〉 − α〈y,Qx〉+ |α|2. Hence:

0 ≤ −α〈Qx, y〉 − α〈y,Qx〉+ |α|2. (4.8)

Take α = 〈Qx, y〉. We get that

0 ≤ −|〈Qx, y〉|2.

Hence 〈Qx, y〉 = 0, or Qx ∈M⊥.

To see that P,Q are linear we consider any x, y ∈ H and α, β ∈ C. We know that
x = Px+Qx, y = Py +Qy and αx+ βy = P (αx+ βy) +Q(αx+ βy). This gives

α(Px+Qx) + β(Py +Qy) = P (αx+ βy) +Q(αx+ βy),

or
M 3 P (αx+ βy)− αPx− βPy = αQx+ βQy −Q(αx+ βy) ∈M⊥.

Again, using the fact that M ∩M⊥ = {0} we see that P (αx + βy) − αPx − βPy =
αQx+ βQy −Q(αx+ βy) = 0 from which linearity follows.

The remaining parts of the theorem are easy to show and are left to the reader.
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Corollary 4.5. If M is a closed subspace and M 6= H, then there is y 6= 0 such that

〈x, y〉 = 0, for all x ∈M.

Hence the subspace M⊥ contains at least one nonzero vector.

Proof. Since M 6= H there is x ∈ H \M . Consider Qx ∈ M⊥. As Qx = x − Px we
see that Qx 6= 0, since x /∈ M but Px ∈ M . So y = Qx is the nonzero vector we were
looking for.

4.2 Orthogonal projection on an infinite dimensional subspace

In this section we consider the following specific situation. Let (en)n∈N be an infinite
ON family from a Hilbert space H and let

M = lin({en}∞n=1).

By previous section we know that there exists orthogonal projection P : H →M . We
ask the following question:

Is it true that Px =
∑∞

n=1〈x, en〉en ?

To answer this question we need to deal with several issues. First we look at infinite
sums in a Hilbert (or Banach) spaces.

Definition 4.3. An infinite sequence (xn)n∈N ⊂ H in a Hilbert space is said to be
summable if the sequence of partial sums

sN =
N∑
n=1

xn

converges to an element x ∈ H. In this case we write:

x =
∞∑
n=1

xn.

Remark. Sequence (xn)n∈N ⊂ H is summable if and only if the sequence (sN)N∈N is
Cauchy.

Lemma 4.6. (Extension of Pythagoras theorem) Let (un)n∈N be an orthogonal sequence
in a Hilbert space H (〈un, um〉 = 0 for n 6= m). Then sequence (un)n∈N is summable if
and only if

∞∑
n=1

‖un‖2 <∞.

In this case ∥∥∥∥∥
∞∑
n=1

un

∥∥∥∥∥
2

=
∞∑
n=1

‖un‖2.
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Proof. If sN =
∑N

n=1 un, then

‖sN − sM‖2 =

∥∥∥∥∥
N∑

n=M+1

un

∥∥∥∥∥
2

=

〈
N∑

n=M+1

un,

N∑
m=M+1

um

〉
=

N∑
n,m=M+1

〈un, um〉

=
N∑

n=M+1

‖un‖2.

It follows that (sN) is a Cauchy sequence if and only if the sum
∑∞

n=1 ‖un‖2 is finite.
In that case, let x =

∑∞
n=1 un. Since ‖sN − x‖ → 0 we see that

‖x‖2 = lim
N→∞

‖sN‖2 = lim
N→∞

N∑
n=1

‖un‖2.

Here we used previously derived formula for ‖sN − sM‖2 with M = 0.

Now we are ready to answer the question posed at the beginning of this section.

Lemma 4.7. (Extension of Bessel’s inequality) Let (en)n∈N be an ON family in a
Hilbert space H and set

M = lin({en}∞n=1).

Then for a any x ∈ H

(i)
∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2.

(ii) Sequence (〈x, en〉en)∞n=1 is summable and its sum is

Px =
∞∑
n=1

〈x, en〉en,

where P : H →M is the orthogonal projection of H onto M .

(iii) Equality holds in (i) if and only if x ∈M . In this case

x =
∞∑
n=1

〈x, en〉en.

Proof. (i) For any integer N , Bessel’s inequality (Lemma 3.1) implies that

N∑
n=1

|〈x, en〉|2 ≤ ‖x‖2, for all x ∈ H.
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Taking the limit N →∞ we obtain

∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2, for all x ∈ H.

(ii) By Lemma 4.6 applied to un = 〈x, en〉en we know that (〈x, en〉en)∞n=1 is summable
if and only if

∞∑
n=1

‖un‖2 =
∞∑
n=1

‖〈x, en〉en‖2 =
∞∑
n=1

|〈x, en〉|2 <∞.

But we know that this holds by (i). Hence

lim
N→∞

N∑
n=1

〈x, en〉en =
∞∑
n=1

〈x, en〉en

exists and belongs to M as M is closed. Let

y = x−
∞∑
n=1

〈x, en〉en

and note that for all em we have:

〈y, em〉 = 〈x, em〉 −

〈
lim
N→∞

N∑
n=1

〈x, en〉en, em

〉

= 〈x, em〉 − lim
N→∞

N∑
n=1

〈x, en〉〈en, em〉 = 〈x, em〉 − 〈x, em〉 = 0. (4.9)

It follows that
〈y, z〉 = 0, for all z ∈ lin({en}∞n=1),

hence also
〈y, z〉 = 0, for all z ∈M = lin({en}∞n=1).

This implies that y ∈M⊥. So we can write

x =
∞∑
n=1

〈x, en〉en + y, where:
∞∑
n=1

〈x, en〉en ∈M and y ∈M⊥.

Hence by part (i) of Theorem 4.4 we see that Qx = y and

Px =
∞∑
n=1

〈x, en〉en.

(iii) The second part of Lemma 4.6 implies that

‖Px‖2 =
∞∑
n=1

‖〈x, en〉en‖2 =
∞∑
n=1

|〈x, en〉|2,

so if equality holds in (i) then ‖Px‖2 = ‖x‖2 from which ‖Qx‖2 = ‖x‖2 − ‖Px‖2 = 0.
It follows that Qx = 0, hence x = Px. But Px ∈M , hence x ∈M .
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Definition 4.4. In a Hilbert space H if there is an ON sequence (en)n∈N such that

H = lin({en}∞n=1),

then the sequence (en)n∈N is called an orthonormal (ON) basis of H.

Note: In this case

x =
∞∑
n=1

〈x, en〉en, for all x ∈ H,

by the previous lemma.

Definition 4.5. In a Hilbert space H an ON family (uα)α∈A ⊂ H is called a maximal
ON family if

〈x, uα〉 = 0, for all α ∈ A =⇒ x = 0.

Theorem 4.8. Let (en)n∈N be an ON sequence of vectors in a Hilbert space H. Then
the following statements are equivalent:

(i) (en)n∈N is maximal ON family.

(ii) H = lin({en}∞n=1).

(iii) (Parseval’s equality)
∞∑
n=1

|〈x, en〉|2 = ‖x‖2 for all x ∈ H.

(iv)
∞∑
n=1

〈x, en〉〈y, en〉 = 〈x, y〉 for all x, y ∈ H.

Proof. (i) =⇒ (ii) Suppose that H 6= lin({en}∞n=1). Then there is u ∈ M⊥, ‖u‖ = 1.
Hence we have that

〈u, en〉 = 0, for all n ∈ N,

but u 6= 0, hence the family (en)n∈N is not maximal - contradiction.

(ii) =⇒ (iii) Lemma 4.7.

(iii) =⇒ (iv) Polarization identity.

(iv) =⇒ (iii) Trivial, set x = y.

(iii) =⇒ (i) If (en)n∈N is not maximal, then there is u 6= 0 such that 〈u, en〉 = 0 for all
n. But by (iii)

‖u‖2 =
∞∑
n=1

|〈u, en〉|2 = 0,

hence u = 0 which is a contradiction.
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Example 1: L2(0, 2π) = C[0, 2π] with inner product 〈f, g〉 =
∫ 2π

0
fg dx. Then{

1√
2π
,
sinnx√

π
,
cosnx√

π

}∞
n=1

is an ON sequence.

Theorem 4.9. This family is maximal.

Theorem 4.10. (Stone-Weierstrass) Let X ⊂ Rn be compact and A ⊂ C(X,R) (or
C(X,C)) be an algebra of functions, that is

f, g ∈ A =⇒ αf + βg ∈ A, f.g ∈ A.

If A contains constant functions and separates points, that is

∀x, y ∈ X, x 6= y ∃f ∈ A : f(x) 6= f(y),

then A = C(X,R) (or A = C(X,C)).

Proof of Theorem 4.9. The linear span of ON family is the set of all trigonometric
polynomials:

A = {a0 +
N∑
n=1

(an cosnx+ bn sinnx); an, bn are scalars and N an integer}.

Using Stone-Weierstrass we get that

A = C[0, 2π], w.r.t. ‖.‖∞ norm.

Since
C[0, 2π] = L2(0, 2π) w.r.t. ‖.‖2 norm

and ‖.‖2 ≤ C‖.‖∞ we get that

A = L2(0, 2π) w.r.t. ‖.‖2 norm.

This shows maximality of the ON family.

Example 2: `2 with ON basis (en)n∈N, where en = (0, 0, . . . , 1, 0, . . . ) with 1 on the
n-th position.

Definition 4.6. A Hilbert space H is called separable if there exists a countable basis
of H, that is there are vectors r1, r2, r3, . . . from H such that

H = lin{r1, r2, r3, . . . }.

Theorem 4.11. Every separable Hilbert space is isomorphic to `2.
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Proof. Indeed, if H is a separable Hilbert space one can find (using Gram-Schmidt ON
process) a countable ON basis {u1, u2, u3, . . . } of H. Then the map

x ∈ H 7→ (〈x, u1〉, 〈x, u2〉, 〈x, u3〉, . . . ) ∈ `2

is the sought isomorphism.

Example 3 (Nonseparable Hilbert space): The space of almost periodic functions
AP (R) is defined as a completion of the space X:

X =

{
N∑
n=1

cjusj(t); cj ∈ C and sj ∈ R

}
,

where
us(t) = eist, for s, t ∈ R.

Then (us)s∈R is an ON family w.r.t the inner product

〈f, g〉 = lim
T→∞

1

2T

∫ T

−T
f(t)g(t) dt, for f, g ∈ X. (4.10)

Exercises: 1. Show that (4.10) defines an inner product on X.

2. Show that (us)s∈R is an uncountable ON family w.r.t this inner product.

Example 4: Periodic functions f : R → C with period 2π (f(t + 2π) = f(t) for all
t ∈ R). Alternatively, we can think about these functions as functions S1 → C, where
S1 = {z ∈ C; |z| = 1}. Indeed, F : S1 → C ⇐⇒ f : R→ C, 2π-periodic, via

F (eit) = f(t).

Pure harmonics are called the functions en(t) = eint, n ∈ Z (Fn(z) = zn). Let

X = lin{en;n ∈ Z} = {
N∑

n=−N

cne
int; cn ∈ C}.

Then X is an i.p.s.(not complete !) with inner product

〈f, g〉 =
1

2π

∫ π

−π
f(t)g(t) dt.

The completion of X is called L2(S1) - the Hilbert space of square summable inte-
grable functions. Hence (en)n∈Z is an ON basis for L2(S1).
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5 Linear functionals and operators.

5.1 Dual of an inner product space and Riesz representation
theorem

Definition 5.1. Let H be an inner product space. A linear map L : H → C is called
a linear functional.

If in addition L is continuous, we say that L belongs to the dual of H (denoted by
H∗). Hence

H∗ = {L : H → C;L is linear and continuous}.

Example: For any y ∈ H consider Ly : H → C to be defined by

Lyx = 〈x, y〉.

Note that Ly ∈ H∗.

Theorem 5.1. (Riesz representation theorem) Let H be a Hilbert space. For any
L ∈ H∗ there exists a unique y ∈ H such that

Lx = 〈x, y〉, for all x ∈ H.

Proof. If L = 0 we just take y = 0. If L 6= 0 then the set

M = Ker L = {x ∈ H;Lx = 0} 6= H

is a closed subspace of H not equal to the whole space. Hence by Corollary 4.5 there
exists z ∈ H, ‖z‖ = 1 such that z ∈M⊥.

Consider any x ∈ H and set

u = (Lx)z − (Lz)x.

Clearly, Lu = 0, hence u ∈M . It follows that

0 = 〈u, z〉 = 〈(Lx)z − (Lz)x, z〉 = Lx〈z, z〉 − Lz〈x, z〉.

But 〈z, z〉 = 1, hence
Lx = Lz〈x, z〉 = 〈x, Lz z〉.

Hence choosing y = Lz z does the job.

Uniqueness: Suppose that there are y1, y2 ∈ H such that

Lx = 〈x, y1〉 = 〈x, y2〉, for all x ∈ H.

Clearly this means that

〈x, y2 − y1〉 = 0, for all x ∈ H.
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In particular, if x = y2 − y1 we get that ‖y2 − y1‖2 = 0. Hence y1 = y2.

We notice that the Riesz representation theorem implies that the dual H∗ can be
identified with H via the map

Λ : H → H∗ defined by: y 7→ Ly.

The map Λ is 1-1 (by uniqueness part of Theorem 5.1) and onto (by the existence part
of Theorem 5.1). Moreover Λ is conjugate linear, i.e.:

• T (y1 + y2) = Ty1 + Ty2

• T (αy) = αTy

We can also define an inner product on H∗ via

〈Ly1 , Ly2〉 = 〈y2, y1〉.

Check for yourself that this makes H∗ a Hilbert space. Moreover,

‖Ly‖ = ‖Λy‖ = ‖y‖, for all y ∈ H,

hence the map Λ is an isometry.

Proposition 5.2. Let H be a Hilbert space and Ly : H → C the linear functional
x 7→ 〈x, y〉. Then

‖Ly‖ = sup
‖x‖≤1

|Lyx| = sup
‖x‖≤1

|〈x, y〉|.

Proof. Let S = sup‖x‖≤1 |〈x, y〉|. Since ‖Ly‖ = ‖y‖ it suffices to show that S = ‖y‖.
Indeed,

S = sup
‖x‖≤1

|〈x, y〉| ≤ sup
‖x‖≤1

‖x‖‖y‖ = ‖y‖,

by Cauchy-Schwartz. On the other hand,

S = sup
‖x‖≤1

|〈x, y〉| ≥
∣∣∣∣〈 y

‖y‖
, y

〉∣∣∣∣ = ‖y‖.

5.2 Bounded linear maps

The Proposition 5.2 motivates the following generalization to linear maps.

Definition 5.2. A linear map L : X → Y between two n.l.s (X, ‖.‖X) and (Y, ‖.‖Y ) is
said to be bounded if the number

‖L‖ = sup
‖x‖X≤1

‖Lx‖Y

is finite. The number ‖L‖ is called the operator norm of L.
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Remark. If we denote by Br(a) = {x : ‖x − a‖ ≤ r} the closed ball of radius r with
centre at a, then L is bounded if

L(B1(0)) ⊂ BR(0), where R = ‖L‖.

Lemma 5.3. Let L : X → Y be a linear map between n.l.s. Then the following
statements are equivalent:

(i) L is bounded

(ii) L is continuous

(iii) L is continuous at a point in X.

Proof. (i) =⇒ (ii). We have:

‖Lx1 − Lx2‖ = ‖L(x1 − x2)‖ =

∥∥∥∥L( x1 − x2
‖x1 − x2‖

)∥∥∥∥ ‖x1 − x2‖ ≤ ‖L‖‖x1 − x2‖.
Hence if xn → x in X (i.e. ‖xn − x‖ → 0), then

‖Lxn − Lx‖ ≤ ‖L‖‖xn − x‖ → 0, as n→∞.

This shows that L is continuous at x for all x ∈ X.

(ii) =⇒ (iii). Trivial.

(iii) =⇒ (i). Suppose that L is continuous at x0 ∈ X, i.e., for all ε > 0 there is δ > 0
such that

‖x− x0‖ < δ =⇒ ‖Lx− Lx0‖ < ε.

Hence if ‖x‖ < δ, then

‖Lx‖ = ‖L(x0 + x)− Lx0‖ < ε.

It follows that for any x ∈ X, ‖x‖ ≤ 1 we have that ‖ δ
2
x‖ < δ, so by the previous line

δ
2
‖Lx‖ = ‖L( δ

2
x)‖ < ε.

Hence

‖Lx‖ ≤ 2ε

δ
, for all ‖x‖ ≤ 1.

So L is bounded and its operator norm is at most 2ε
δ

.

We introduce the following notation. By L(X, Y ) we denote the set of all bounded
linear operators from n.l.s. X to Y . Hence:

L(X, Y ) = {L : X → Y ; L is a bounded and linear operator from X → Y }.

We denote by L(X) = L(X,X). Notice that

X∗ = L(X,C).
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Proposition 5.4. L(X, Y ) is a normed linear space with norm

‖L‖ = sup
‖x‖≤1

‖Lx‖, for L ∈ L(X, Y ).

Proof. Exercise.

Proposition 5.5. If X is a n.l.s and Y a Banach space, then L(X, Y ) is a Banach
space.

Proof. Exercise.

Corollary 5.6. For any n.l.s X, the dual X∗ = L(X,C) is a Banach space.

Examples: 1. L(Cn,Cm) = Mm,n(C) where Mm,n(C) is the set of all m× n complex
matrices. Indeed, every matrix A ∈Mm,n(C) corresponds to one linear operator Cn →
Cm defined by

z 7→ Az, where z is the column vector with n entries.

Using Cauchy-Schwartz inequality one can show that

‖Az‖2 ≤

(∑
i,j

|aij|2
)1/2

‖z‖2,

hence

‖A‖ ≤

(∑
i,j

|aij|2
)1/2

.

2. Shift operators on `p, 1 ≤ p ≤ ∞. For x = (x1, x2, x3, . . . ) ∈ `p we define the
left-shift Sx by

Sx = (x2, x3, x4, . . . )

and the right-shift Rx by
Rx = (0, x1, x2, x3, x, . . . ).

Clearly,

‖Sx‖p =

(
∞∑
n=2

‖xn‖p
)1/p

≤

(
∞∑
n=1

‖xn‖p
)1/p

= ‖x‖p.

So, ‖S‖ ≤ 1. Since ‖Se2‖ = ‖e1‖ = 1 = ‖e2‖ it follows that ‖S‖ = 1. Similarly,
‖R‖ = 1, in fact R is an isometry, i.e., ‖Rx‖ = ‖x‖ for all x ∈ `p. Also S is not 1-1
but is onto, R is 1-1 but not onto.

3. Integral operators. Let X = (C[0, 1], ‖.‖p) and K be a continuous function of 2
variables, i.e., K ∈ C([0, 1]× [0, 1]). Consider

Tf(s) =

∫ 1

0

K(s, t)f(t) dt, for all s ∈ [0, 1].
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Clearly, T : X → X is linear. What is its norm ?

p =∞.

|Tf(s)| ≤
∫ 1

0

|K(s, t)||f(t)| dt ≤
(∫ 1

0

|K(s, t)| dt
)
‖f‖∞.

Hence

‖Tf‖ = sup
s∈[0,1]

|Tf(s)| ≤

(
sup
s∈[0,1]

∫ 1

0

|K(s, t)| dt

)
‖f‖∞.

If follows that

‖T‖ ≤ sup
s∈[0,1]

∫ 1

0

|K(s, t)| dt.

Exercise: Prove that ‖T‖ = sups∈[0,1]
∫ 1

0
|K(s, t)| dt.

p = 1.

|Tf(s)| ≤
∫ 1

0

|K(s, t)||f(t)| dt,

hence

‖Tf‖1 ≤
∫ 1

0

∫ 1

0

|K(s, t)||f(t)| dt ds =

∫ 1

0

(∫ 1

0

|K(s, t)| ds
)
|f(t)| dt

≤

(
sup
t∈[0,1]

∫ 1

0

|K(s, t)| ds

)∫ 1

0

|f(t)| dt =

(
sup
t∈[0,1]

∫ 1

0

|K(s, t)| ds

)
‖f‖1.

If follows that

‖T‖ ≤ sup
t∈[0,1]

∫ 1

0

|K(s, t)| ds.

Exercise: Prove that ‖T‖ = supt∈[0,1]
∫ 1

0
|K(s, t)| ds.

p = 2.

|Tf(s)|2 ≤
(∫ 1

0

|K(s, t)||f(t)| dt
)2

≤
∫ 1

0

|K(s, t)|2dt×
∫ 1

0

|f(t)|2dt,

by the Cauchy-Schwartz inequality. Hence

‖Tf‖2 =

(∫ 1

0

|Tf(s)|2ds
)1/2

≤
(∫ 1

0

∫ 1

0

|K(s, t)|2ds dt
)1/2

‖f‖2.

If follows that

‖T‖ ≤
(∫ 1

0

∫ 1

0

|K(s, t)|2ds dt
)1/2

.

Exercise: Find T such that ‖T‖ <
(∫ 1

0

∫ 1

0
|K(s, t)|2ds dt

)1/2
, showing that here we

do not have always equality.
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5.3 Extensions of linear operators

In the last example - integral operators we defined them on the spaceX = (C[0, 1], ‖.‖p).
The problem with this space is that for p < ∞ it is not a Banach space. Therefore it
is a natural thing to ask if we can instead consider them on the Lp(0, 1) space (which
was defined as a completion of continuous function w.r.t ‖.‖p norm). This is indeed
the case

Proposition 5.7. Let (X, ‖.‖) be a n.l.s and (Y, ‖.‖) a Banach space. Suppose that
M ⊂ X is a subspace such that M = X. Let T ∈ L(M,Y ). Then there exists a unique

operator T̃ ∈ L(X, Y ) such that

(i) T̃ x = Tx for all x ∈M

(ii) ‖T̃‖ = ‖T‖.

The operator T̃ is called the extension operator of T onto X.

Proof. Uniqueness. Suppose there are two such operators, say T1, T2 ∈ L(X, Y ) such
that

T1x = T2x = Tx, for all x ∈M.

Consider S = T1 − T2. Then Sx = 0 for all x ∈ M . However, since S is continuous
and M is a dense subset of X it follows that Sx = 0 for all x ∈ M . Hence S = 0 and
T1 = T2.

Existence. We need to define T̃ . Take any x ∈ X. Then there exists and sequence
(xn)n∈N ⊂M such that xn → x. We define

T̃ x = lim
n→∞

Txn.

To see this is well defined we need to show that (Txn)n∈N ⊂ M is a Cauchy (hence
convergent - Y is a Banach space) sequence. Indeed,

‖Txn − Txm‖ = ‖T (xn − Txm)‖ ≤ ‖T‖‖xn − xm‖ → 0, as m,n→∞.

It is also prudent to check that T̃ x does not depend on the choice of sequence (xn)n∈N ⊂
M , but that trivial. We also note that

‖T̃ x‖ = lim
n→∞

‖Txn‖ ≤ ‖T‖ lim
n→∞

‖xn‖ = ‖T‖‖x‖.

This show that ‖T̃‖ ≤ ‖T‖. The opposite inequality is trivial as the norm of T̃ must

be at least as large as that of T , since T̃ is the extension of T .

Remark. Applying this theorem the the case of integral operators, we see that M =
C[0, 1] and X = Y = Lp(0, 1). It follows that the integral operator

Tf(s) =

∫ 1

0

K(s, t)f(t) dt

extends to L(Lp(0, 1)), with norm estimates being same as in the Example 3 of the
previous section.
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What if the M is not dense in the whole space? Does there exist and extension
operator? As we shall see, the answer is yes, but the operator might not be unique.

Proposition 5.8. Let (X, ‖.‖) be a n.l.s and (Y, ‖.‖) a Banach space. Suppose that
M ⊂ X is a closed subspace of X. Let T ∈ L(M,Y ). Then there exists an operator

T̃ ∈ L(X, Y ) such that

(i) T̃ x = Tx for all x ∈M

(ii) ‖T̃‖ = ‖T‖.

The operator T̃ is called the extension operator of T onto X.

Proof. (Only for the case X = Y is a Hilbert space). The general proof is complicated
and uses Zorn’s lemma (axiom of choice). We well therefore establish only Hilbert
space version of it.

Since X is a Hilbert space, it can be written as X = M ⊕M⊥. Let P : X →M be
the orthogonal projection. We define

T̃ x = T (Px), for all x ∈ X.

Clearly, T̃ x = Tx on M as Px = x on M . Also

‖T̃ x‖ = ‖T (Px)‖ ≤ ‖T‖‖Px‖ ≤ ‖T‖‖x‖,

as ‖Px‖ ≤ ‖x‖ for all x ∈ X. Hence ‖T̃‖ ≤ ‖T‖. The opposite inequality is again
trivial.

5.4 Uniform boundedness principle

Theorem 5.9. (Banach-Steinhaus) Let (X, ‖.‖) be a Banach space and (Y, ‖.‖) a
normed linear space. Assume that

{Tα; α ∈ A}

is a collection of bounded linear operators from L(X, Y ). Then either

(i) supα∈A ‖Tα‖ <∞, or

(ii) supα∈A ‖Tαx‖ =∞ for all x belonging to a dense subset of X.

We present this theorem without proof.

Corollary 5.10. (Pointwise convergence of Fourier series). For any t ∈ R the Fourier
series

∞∑
n=−∞

〈f, ein.〉eint,

is divergent for f from a dense subset of continuous function.
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Proof. For simplicity let us choose the point t = 0. Consider the Banach space
X = (C[−π, π], ‖.‖∞). For each N we denote ny TNf the partial sum of the Fourier
series

TN =
N∑

n=−N

〈f, en〉ein0 =
N∑

n=−N

〈f, en〉.

Here en(t) = eint. We see that

TNf =
∑
|n|≤N

1

2π

∫ π

−π
f(t)e−intdt =

1

2π

∫ π

−π
f(t)

∑
|n|≤N

e−int

 dt.

We denote by DN(t) =
∑
|n|≤N e

−int. A simple calculation (it is a sum of geometric

series) shows that

DN(t) =
sin(N + 1

2
)t

sin t/2
.

Therefore

‖Tnf‖ ≤
1

2π

∫ π

−π
|f(t)||DN(t)|dt ≤

(
1

2π

∫ π

−π
|DN(t)|dt

)
‖f‖∞.

It follows that TN ∈ L(X,C) and

‖TN‖ ≤
1

2π

∫ π

−π
|DN(t)|dt.

Exercise. Show that ‖TN‖ = 1
2π

∫ π
−π |DN(t)|dt. (See the assignment sheet).

We will show that ‖TN‖ → ∞ as N →∞. Indeed,

‖TN‖ =
1

2π

∫ π

−π
|DN(t)|dt ≥ 1

π

∫ π

0

sin(N + 1/2)t

t/2
dt,

using the fact that DN is an even function and that | sinx| ≤ |x| for all x. Using the
substitution s = (N + 1/2)t we get:

=
2

π

∫ (N+1/2)π

0

| sin s|
s

ds ≥ 2

π

N∑
k=0

∫ kπ

(k−1)π

| sin s|
s

ds ≥ 2

π2

N∑
k=0

1

k

∫ kπ

(k−1)π
| sin s|ds

=
4

π2

N∑
k=0

1

k
→∞ as N →∞.

Hence supN∈N ‖TN‖ =∞. Therefore, using Banach-Steinhaus theorem we see that

sup
N∈N
‖TNf‖ = sup

N

∣∣∣∣∣
N∑

n=−N

〈f, en〉

∣∣∣∣∣ =∞,

for f is some dense subset of C[−π, π]. Hence for such f the Fourier series does not
converge.
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5.5 Adjoint operators.

Let X, Y be any n.l.s. and T ∈ L(X, Y ). Then for any L ∈ Y ∗ the composition LoT
belongs to X∗. We call this mapping an adjoint operator.

Definition 5.3. For T ∈ L(X, Y ) the linear map

T ∗ : Y ∗ → X∗

defined by
T ∗L = LoT

is called the adjoint of T .

Lemma 5.11. T ∗ ∈ L(Y ∗, X∗) and ‖T‖ = ‖T‖∗.

Proof. The fact that T ∗ is linear is trivial. We check boundedness of T ∗.

‖T ∗L‖ = sup
‖x‖≤1

‖T ∗Lx‖ = sup
‖x‖≤1

‖L(Tx)‖ ≤ ‖L‖ sup
‖x‖≤1

‖Tx‖ = ‖L‖‖T‖,

for all L ∈ Y ∗. Hence ‖T ∗‖ ≤ ‖T‖.
The reverse direction relies on the following fact:

‖x‖ = sup
L∈X∗, ‖L‖≤1

|Lx|, for all x ∈ X.

Showing this in a Hilbert space is trivial, the Banach case is considerably harder.
Taking this for granted we see that

‖Tx‖ = sup
L∈Y ∗, ‖L‖≤1

|LTx| = sup
L∈Y ∗, ‖L‖≤1

‖T ∗Lx‖ ≤ sup
‖L‖≤1

‖T ∗L‖‖x‖ = ‖T ∗‖‖x‖,

for all x ∈ X. This implies that ‖T‖ ≤ ‖T ∗‖.

Examples. 1. Hilbert space adjoints (most important example). If T ∈ L(H), where
H is a Hilbert space, then apriori adjoint is an operator on L(H∗). However, by Riesz
representation theorem we know that H and H∗ are isomorphic via the map

Λ : H → H∗, y 7→ Ly,

where (Ly)x = 〈x, y〉 for all x ∈ X. In this case it is therefore possible to this about
T ∗ as an operator on L(H), not just L(H∗). Let us work out what is this operator.
Choose any y ∈ H. Then Ly ∈ H∗, and T ∗LY is a linear operator

x 7→ 〈Tx, y〉.

By Riesz theorem there exists a unique ∈ H such that 〈Tx, y〉 = 〈x, z〉. This element
z represents the linear map T ∗LY and so we put T ∗z = y. So T ∗ ∈ L(H) is defined by
the property:

〈Tx, y〉 = 〈x, T ∗y〉, for all x, y ∈ H. (5.11)
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2. H = Cn. In this case L(Cn) = Mn(C) - the set of all n × n complex matrices.
Given a matrix A ∈ Mn(C) let us compute its adjoint matrix defined by (5.11). We
are looking for a matrix A∗ such that

〈Ax, y〉 = 〈x,A∗y〉.

We observe that 〈x, y〉 = yTx, hence

〈Ax, y〉 = yTAx = (yTAx)T = xTATy = xTA
T
y = 〈ATy, x〉 = 〈x,ATy〉.

We see that
A∗ = A

T
.

3. Shift operators on `2. Recall that for x = (x1, x2, x3, . . . ) ∈ `2 we defined

Sx = (x2, x3, x4, . . . ), to the the left shift

and
Rx = (0, x1, x2, . . . ), to the the right shift.

What are their adjoints? A simple computation gives us for x, y ∈ `2:

〈Sx, y〉 =
∞∑
n=1

(Sx)nyn =
∞∑
n=1

xn+1yn =
∞∑
n=2

xnyn−1 =
∞∑
n=2

xn(Ry)n = 〈x,Ry〉.

It follows that S∗ = R, and similarly R∗ = S.

4. Integral operators. Recall that these operators on L2(0, 1) are defined by

Tf(s) =

∫ 1

0

K(s, t)f(t), dt,

for a reasonable function K. What is T ∗ ?

〈Tf, g〉 =

∫ 1

0

Tf(s)g(s)ds =

∫ 1

0

∫ 1

0

K(s, t)f(t)g(s)dt ds =

=

∫ 1

0

f(t)

(∫ 1

0

K(s, t)g(s)ds

)
dt =

∫ 1

0

f(t)

∫ 1

0

K(s, t)g(s)dsdt = 〈f, T ∗g〉,

where:

T ∗g(s) =

∫ 1

0

K(t, s)g(t) ds.

We see that T ∗ is also an integral operator, with kernel:

K∗(s, t) = K(t, s).

Definition 5.4. Let H be a Hilbert space and T ∈ L(H). We say that T is self-adjoint
if T ∗ = T .
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5.6 Compact, finite rank and Hilbert-Schmidt operators

A well-known theorem from linear algebra is saying that for a complex n × n matrix

A such that A∗ = A
T

there exists an ON basis of Cn consisting of eigenvectors of A.
We are interested in generalizing this theorem to infinite dimensional Hilbert spaces.

Let H be a Hilbert space and T ∈ L(H) a self-adjoint operator. Following the
argument in the previous paragraph, we ask whether it is true that there exists an ON
basis of H consisting of eigenvectors (or eigenfunctions) of T? A simple example shows
that this in such generality is false.

Example. Let H = L2(0, 1) and Tf(x) = xf(x). Clearly, T is linear and bounded,
since

‖Tf‖22 =

∫ 1

0

x2|f(x)|2dx ≤
∫ 1

0

|f(x)|2dx = ‖x‖22.

So ‖T‖ ≤ 1. Also T is self-adjoint. Indeed,

〈Tf, g〉 =

∫ 1

0

Tf(x)g(x)dx =

∫ 1

0

xf(x)g(x)dx =

∫ 1

0

f(x)xg(x)dx = 〈f, Tg〉.

Finally, we us find eigenfunctions of T . We need,

Tf(x) = xf(x) = λf(x), for some λ ∈ C.

But (x − λ)f(x) = 0 meas that f = 0 everywhere (except possibly the point x = λ).
Hence ‖f‖2 = 0, so f is not an eigenfunction. This proves that T has no eigenfunction,
in particular it follows that H does not have ON basis consisting of eigenfunctions of
T .

It turns out that the missing ingredient for the statement to be true is that T is
self-adjoint and compact. In what follows we define what this means.

Definition 5.5. Let X, Y be n.l.s and T ∈ L(X, Y ). We say that the operator T is
compact if the set

T (B(0, 1)) = {Tx; ‖x‖ ≤ 1}

is compact in Y . We denote by K(X, Y ) the set of all comact operators from X to Y .

Examples: 1. Finite rank operators. We say that T ∈ L(X, Y ) is a finite rank
operator if

dim T (X) = dim({Tx; x ∈ X}) <∞.

Indeed, if T is a finite rank operator, then T (B(0, 1)) is a closed bounded set in a
finite dimensional vector space T (H). Hence this set is compact.

Corollary 5.12. L(X, Y ) = K(X, Y ), provided either X or Y are finite dimensional,
as in such case any bounded linear operator is of finite rank.
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2. Identity. Consider Ix = x on L(X). Then I is compact if and only if the set

I(B(0, 1)) = {x; ‖x‖ ≤ 1} = B(0, 1) is compact.

However, the closed unit ball is compact if and only if dim X <∞.

3. Integral operators on L2(0, 1). This will be shown a bit later.

Proposition 5.13. Let X, Y be a n.l.s and T ∈ L(X, Y ). Then

(i) T is compact if and only if for every bounded sequence (xn) ⊂ X the sequence
(Txn) ⊂ Y has a convergent subsequence.

(ii) K(X, Y ) is a subspace of L(X, Y ).

(iii) If also S ∈ L(Y, Z) and either T or S is compact, then T oS is in K(X,Z).

Proof. Exercise.

If X = Y is a Hilbert space another class of operators can be defined.

Definition 5.6. Let H be Hilbert space and T ∈ L(H). We say that the operator T is
a Hilbert-Schmidt operator (HS) if for some ON basis (en) of H the number∑

n

‖Ten‖2 <∞.

If that happens, we denote by ‖T‖HS the Hilbert-Schmidt norm of T defined by

‖T‖HS =

√∑
n

‖Ten‖2.

Note that this definition leaves open the question whether the number ‖T‖HS de-
pends on the choice of ON basis for H. We settle this question now.

Lemma 5.14. 1. T is HS operator if and only if T ∗ is an HS operator and

‖T‖HS = ‖T ∗‖HS.

2. If (en) and (um) are two ON basis of H, then∑
n

‖Ten‖2 =
∑
m

‖Tum‖2.
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Proof. We do the following calculation. Each Ten can be expanded in the ON basis
(um):

Ten =
∑
m

〈Ten, um〉um.

If follows that
‖Ten‖2 =

∑
m

|〈Ten, um〉|2.

Hence∑
n

‖Ten‖2 =
∑
n

∑
m

|〈Ten, um〉|2 =
∑
n

∑
m

|〈en, T ∗um〉|2 =
∑
m

∑
n

|〈T ∗um, en〉|2

Now we recognize that
∑

n |〈T ∗um, en〉|2 is just ‖T ∗um‖2 by Parseval’s equality (The-
orem 4.8). Hence ∑

n

‖Ten‖2 =
∑
m

‖T ∗um‖2.

From this (i) follows by choosing en = um, proving that
∑

n ‖Ten‖2 =
∑

n ‖T ∗en‖2.
For (ii) we see that ∑

n

‖Ten‖2 =
∑
m

‖T ∗um‖2 =
∑
m

‖Tum‖2.

Examples: 1. Integral operators on L2(0, 1). Consider

Tf(s) =

∫ 1

0

K(s, t)f(t) dt.

We have liberty to choose ON basis of L2(0, 1) hence let us take (en)n∈Z, where en(t) =
e2πit. Then

Ten(s) =

∫ 1

0

K(s, t)e2πintdt = 〈Ks, e−n〉, where: Ks(t) = K(s, t).

It follows that

‖Ten‖2 =

∫ 1

0

|〈Ks, e−n〉|2ds,

hence

‖T‖2HS =
∑
n∈Z

‖Ten‖2 =

∫ 1

0

(∑
n∈Z

|〈Ks, e−n〉|2
)
ds,

by exchanging the sum and integral. However again by Parseval’s equality we recognize
that

∑
n∈Z |〈Ks, e−n〉|2 = ‖Ks‖2. This gives

‖T‖2HS =

∫ 1

0

‖Ks‖2ds =

∫ 1

0

∫ 1

0

|K(s, t)|2dtds.
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Hence

‖T‖HS =

√∫ 1

0

∫ 1

0

|K(s, t)|2dtds.

2. Operators of finite rank. Let T ∈ L(H) be of finite rank. Then T is a HS operator.

Indeed, We claim that since T (H) is finite dimensional it is closed and hence we
can write H = Ker T ∗ ⊕ T (H). This can be seen by proving that Ker T ∗ = T (H)⊥.
To see this consider any x ∈ Ker T ∗. Then T ∗x = 0, hence for any y ∈ H:

0 = 〈T ∗x, y〉 = 〈x, Ty〉.

So x⊥Ty for all y, hence x⊥T (H) from which x ∈ T (H)⊥ follows. Conversely, if
x ∈ T (H)⊥, then

0 = 〈x, Ty〉 = 〈T ∗x, y〉,

for all y ∈ H. So T ∗x = 0.

Having this, we may pick ON basis of H as follows. Since dim T (H) = k < ∞
we find any ON basis {e1, e2, . . . , ek} of T (H) and a basis {fn}n∈A of Ker T ∗. Putting
these two together gives us an ON basis of H. It follows that

‖T‖2HS = ‖T ∗‖2HS =
k∑
i=1

‖T ∗ei‖2 +
∑
n∈A

‖T ∗fn‖2 =
k∑
i=1

‖T ∗ei‖2,

as T ∗fn = 0 for all n. However we now see that the sum of the right-hand side is a
finite sum of real numbers, so it is itself a real number (finite). This gives that the HS
norms of T and T ∗ operators are finite.

Lemma 5.15. Let H be a Hilbert space and T ∈ L(H) a HS operator. Then

‖T‖ ≤ ‖T‖HS.

Proof. We can write Tx as

Tx =
∑
n

〈Tx, en〉en, so:

‖Tx‖2 =
∑
n

‖〈Tx, en〉en‖2 =
∑
n

|〈Tx, en〉|2 =
∑
n

|〈x, T ∗en〉|2 ≤
∑
n

‖x2‖‖T ∗en‖2.

If follows that

‖Tx‖ ≤

(∑
n

‖T ∗en‖2
)1/2

‖x‖ = ‖T ∗‖HS‖x‖ = ‖T‖HS‖x‖.

From this ‖T‖ ≤ ‖T‖HS.
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Proposition 5.16. Let X be a n.l.s and Y a Banach space. Then K(X, Y ) is a closed
subspace of L(X, Y ).

Hence, for any sequence of operators (Tn)n∈N ⊂ K(X, Y ) such that Tn → T ∈
L(X, Y ) (i.e., ‖Tn − T‖ → 0) we have that T ∈ K(X, Y ).

Proof. The proof is a classical diagonalization argument. We have to show that for
any bounded sequence (xn) ⊂ X, ‖xn‖ ≤ 1 the sequence (Txn) ⊂ Y has a convergent
subsequence.

Let us use first the fact that T1 is compact. It follows that one can find indices
n1
1 < n1

2 < n1
3 < . . . such that (T1xn1

i
)i∈N is convergent. Now we use compactness of

T2. Let n2
1 < n2

2 < n2
3 < . . . be a subset of {n1

1, n
1
2, n

1
3, . . . } such that (T2xn2

i
)i∈N is

convergent. We proceed inductively and define indices nji , i, j ∈ N. Now we set

mi = nii, i = 1, 2, 3, . . . .

Obviously, for each j = 1, 2, 3, . . . the sequence

Tjxm1 , Tjxm2 , Tjxm3 , Tjxm4 , . . . is convergent,

as m1 < m2 < m3 < . . . (with exception of first few terms) is a subsequence of
nj1 < nj2 < nj3 < . . . for which (Tjxnj

i
)i∈N converges. Consider now the sequence

Txm1 , Txm2 , Txm3 , Txm4 , . . . .

We want to prove this sequence is Cauchy. Choose any ε > 0. We find an index j such
that ‖Tj − T‖ < ε/3. Using the convergence of (Tjxmi

)i∈N we see that there is N > 0
such that for all k, l ≥ N

‖Tjxml
− Tjxmk

‖ < ε/3.

It follows that for all k, l ≥ N

‖Txml
− Txmk

‖ ≤ ‖(T − Tj)xml
‖+ ‖Tjxml

− Tjxmk
‖+ ‖(Tj − T )xmk

‖

≤ ‖T − Tj‖+ ‖Tjxml
− Tjxmk

‖+ ‖Tj − T‖ < ε/3 + ε/3 + ε/3 = ε.

So, the sequence is Cauchy and since Y is a Banach space it converges.

Proposition 5.17. Let H be Hilbert space and T ∈ L(H) a HS operator. Then T is
compact.

Proof. We know that

Tx =
∞∑
n=1

〈Tx, en〉en.

Consider

T kx =
k∑

n=1

〈Tx, en〉en, for k = 1, 2, 3, . . . .
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Clearly each T k is a finite rank (hence compact) operator, since

T k(H) ⊂ lin{e1, e2, . . . , ek}.

If we prove that ‖T − T k‖ → 0 we are done, as by Proposition 5.16 T is compact.
Indeed, for any x ∈ H

‖(T − T k)x‖2 = ‖
∞∑

n=k+1

〈Tx, en〉en‖2 =
∞∑

n=k+1

‖〈Tx, en〉en‖2 =
∞∑

n=k+1

|〈x, T ∗en〉|2 ≤

(
∞∑

k=n+1

‖T ∗en‖2
)
‖x‖2.

Hence

‖T − T k‖ ≤

(
∞∑

k=n+1

‖T ∗en‖2
)1/2

→ 0 as k →∞.

We now look at a special class of operators called diagonal operators. These are
the operators whose eigenvectors form an ON basis of appropriate Hilbert space.

Definition 5.7. Let H be a Hilbert space and T ∈ L(H) a bounded operator. Let (en)
be an ON basis of H. We say that T is diagonal with respect to the ON basis (en) if

Ten = λnen, for all n ∈ N,

and (λn) ⊂ C.

Proposition 5.18. Let H be Hilbert space, (en) an ON basis of H and T : H → H a
linear operator such that

Ten = λnen, for all n ∈ N,

and (λn) ⊂ C. Then

(i) T is bounded if and only if supn |λn| < ∞. Also ‖T‖ = supn |λn|. (see the last
exercise sheet)

(ii) T is compact if and only if |λn| → 0. (see Proposition 5.19)

(iii) T is HS if ‖T‖HS =
√∑

n |λn|2 <∞.

(iv) T is of finite rank if and only if only finitely many numbers λn are nonzero.

Proposition 5.19. Let H be Hilbert space and T ∈ L(H) be a diagonal operator w.r.t
ON basis (en) (Ten = λnen). Then T is compact of and only if

lim
n→∞

|λn| = 0.

40



Proof. Assume first that |λn| → 0. We prove that T is compact. Since

x =
∞∑
n=1

〈x, en〉en, it follows that: Tx =
∞∑
n=1

〈x, en〉Ten =
∞∑
n=1

λn〈x, en〉en.

Consider

T kx =
k∑

n=1

λn〈x, en〉en.

Each of these operators is of finite rank (hence compact) as T k(H) ⊂ lin{e1, e2, . . . , ek}.
It remains to show that ‖T − T k‖ → 0. Clearly,

‖(T − T k)x‖2 ≤

∥∥∥∥∥
∞∑

n=k+1

λn〈x, en〉en

∥∥∥∥∥
2

=
∞∑
k+1

‖λn〈x, en〉en‖2 =
∞∑

n=k+1

|λn|2|〈x, en〉|2 ≤

(
sup
n≥k
|λn|

)2 ∞∑
n=k+1

|〈x, en〉|2 ≤
(

sup
n≥k
|λn|

)2 ∞∑
n=1

|〈x, en〉|2 =

(
sup
n≥k
|λn|

)2

‖x‖2.

Hence

‖T − T k‖ ≤
(

sup
n≥k
|λn|

)
→ 0, as k →∞.

Conversely, assume that T is compact, but there is a subsequence ‖Tenk
‖ = |λnk

| ≥
ε > 0. Then using compactness of T we see that there is a convergent subsequence of
the sequence (Tenk

)k∈N which we denote by (Tenkl
)l∈N (notice the double index). Let

y = liml→∞ Tenkl
. If follows that

‖y‖ = lim ‖Tenkl
‖ ≥ ε.

On the other hand, let us expand T ∗y into a Fourier series. We see by Parseval’s
equality that

‖T ∗y‖ =
∞∑
n=1

|〈T ∗y, en〉|2 =
∞∑
n=1

|〈y, Ten〉|2,

hence 〈y, Ten〉 → 0. In particular 〈y, Tenkl
〉 → 0 as l→∞. But

‖y‖2 = 〈y, y〉 = lim
l→∞
〈y, Tenkl

〉 = 0,

which is a contradiction as ‖y‖ ≥ ε.

5.7 Spectral theorem for compact self-adjoint operators.

In this final section we show that compact self-adjoint operators are diagonal w.r.t some
ON basis (consisting of eigenvectors of the operator). Let us note here, that there are
diagonal operators that are neither compact nor self-adjoint, hence being compact and
self-adjoint is a sufficient condition for being diagonal, but not necessary.
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Theorem 5.20. (Spectral theorem) Let H be a Hilbert space and T ∈ L(H) a compact,
self-adjoint operator on H. Then there exist an ON basis on H, which we denote by
(en) such that

Ten = λnen, for all n and some λn ∈ R.

It follows that T is a diagonal operator w.r.t (en). Moreover, for all x ∈ H:

Tx =
∑
n

λn〈x, en〉en.

We split the proof into small steps, each formulated as a lemma.

Lemma 5.21. Let T ∈ L(H) a self-adjoint operators and λ 6= µ its two nonzero
eigenvalues, i.e., there are f, g ∈ H, f 6= 0, g 6= 0 such that

Tf = λf, Tg = µg.

Then

(i) λ, µ are real numbers

(ii) f, g are orthogonal, i.e. 〈f, g〉 = 0.

Proof. We have the following:

λ〈f, g〉 = 〈λf, g〉 = 〈Tf, g〉 = 〈f, Tg〉 = 〈f, µg〉 = µ〈f, g〉.

Hence
(λ− µ)〈f, g〉 = 0.

Let us choose first λ = µ and f = g. Then this gives us that (λ − λ)〈f, f〉 = 0, from
which we get that λ = λ, as f 6= 0. So λ is real (same argument works for µ). Having
this in mind, if λ, µ are different we see that

(λ− µ)〈f, g〉 = (λ− µ)〈f, g〉 = 0,

from which 〈f, g〉 = 0 follows as λ 6= µ.

Lemma 5.22. If T is self adjoint (T = T ∗) then

‖T‖ = sup
‖x‖=1

|〈Tx, x〉|. (5.12)

Proof. We denote by m the sup

m = sup
‖x‖=1

|〈Tx, x〉|. (5.13)

We expand 〈T (x± y), x± y〉.

〈T (x± y), x± y〉 = 〈Tx, x〉+ 〈Ty, y〉 ± 〈Tx, y〉 ± 〈Ty, x〉 =

= 〈Tx, x〉+ 〈Ty, y〉 ± 2Re 〈Tx, y〉. (5.14)
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After we take the difference we obtain:

4Re 〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉.

By (5.13): ‖〈T (x± y), x± y〉‖ ≤ m‖x± y‖2. Hence:

4|Re 〈Tx, y〉| ≤ m(‖x+ y‖2 + ‖x− y‖2) = 2m(‖x‖2 + ‖y‖)2,

the last equality follows from the parallelogram law. We claim this must also hold
without ”Re”. Indeed, 〈Tx, y〉 can be written as eiθ|〈Tx, y〉|. If follows that

|〈Tx, y〉| = e−iθ〈Tx, y〉 = 〈T (e−iθx), y〉

Now, since 〈T (e−iθx), y〉 is real we can use the previous estimate to get

|〈Tx, y〉| = 〈T (e−iθx), y〉 ≤ m

2
(‖e−iθx‖2 + ‖y‖2) =

m

2
(‖x‖2 + ‖y‖2).

We apply this to y = ‖x‖
‖Tx‖Tx. We get

‖Tx‖‖x‖ ≤ m

2
(‖x‖2 + ‖x‖2) = m‖x‖2.

This yields ‖Tx‖ ≤ m‖x‖, or ‖T‖ ≤ m. On the other hand proving that m ≤ ‖T‖ is
trivial (Cauchy-Schwartz inequality).

Lemma 5.23. If T is self adjoint (T = T ∗) and compact then either ‖T‖ or −‖T‖ is
an eigenvalue of T .

Proof. It follows from (5.12) that there is a sequence of unit vectors so that

|〈Txn, xn〉| → ‖T‖.

Since 〈Txn, xn〉 is real (as T is self-adjoint) we can remove the absolute value and
assume that for a subsequence

〈Txn, xn〉 → L, where L = ±‖T‖.

Now,

‖Txn − Lxn‖2 = 〈Txn − Lxn, Txn − Lxn〉 = ‖Txn‖2 − 2L〈Txn, xn〉+ L2‖xn‖2

≤ 2L2 − 2L〈Txn, xn〉 → 0 as n→∞. (5.15)

Since T is compact, there is a subsequence (which for convenience we will denote again
(xn)) such that Txn → y. By (5.15) this implies that Lxn → y. So we see that
LTxn → Ty but also LTxn → Ly, hence Ty = Ly. This means y is an eigenvector,
provided y 6= 0. Note however, that

‖y‖ = lim
n→∞

‖Lxn‖ = |L| > 0.
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Lemma 5.24. If M is a closed subspace and T (M) ⊂M , then T ∗(M⊥) ⊂M⊥.

Proof. Indeed, it is enough to show that 〈T ∗x, y〉 = 0 for all y ∈M , provided x ∈M⊥.
But

〈T ∗x, y〉 = 〈x, Ty〉
Here Ty ∈ T (M) ⊂M and x ∈M⊥, hence this inner product is indeed zero.

Lemma 5.25. If T is self adjoint (T = T ∗) and compact then the set of nonzero
eigenvalues is either finite, or an infinite sequence with limit zero.

Proof. If the set of eigenvalues is infinite and not tending to zero, then there is δ > 0
and many distinct eigenvalues λn so that |λn| ≥ δ. If (en) is the sequence of associated
unit vectors, then

‖Ten − Tem‖2 = ‖λnen − λmem‖2 = |λn|2 + |λm|2 ≥ 2δ2.

This contradicts the assumption that T is compact.

Proposition 5.26. Let T be a compact, self-adjoint operator on a Hilbert space H.
Then there is a finite or infinite sequence of eigenvectors of T with corresponding
eigenvalues λn 6= 0 such that

Tx =
∑
n

λn〈x, en〉en, for all x ∈ H.

If follows that the Hilbert space H has an ON basis consisting of eigenvectors of T .

Proof. By Lemma 5.23 the number λ1 = ±‖T‖ is an eigenvalue of T . If λ1 = 0 there
is nothing else to do, else let e1 be a unit length eigenvector corresponding to λ1. Let
H2 = lin {e1}⊥, i.e. H2 is the orthogonal complement of linear span of e1.

By Lemma 5.24 T (H2) ⊂ H2, hence T2 = T
∣∣
H2

is a compact self-adjoint operator

on H2. Let λ2 = ±‖T2‖ is an eigenvalue of T2 (hence of T ) with eigenvector e2.
Inductively, we produce a sequence e1, e2, . . . of ON eigenvectors of T so that for

each n: Hn = lin{e1, e2, . . . , en}⊥ and Tn = T
∣∣
Hn

is a compact, self-adjoint operator on

Hn and λn = ±‖Tn‖ is an eigenvalue of Tn (and hence also of T ).
This construction stops if for some n: Tn = 0, then for all x ∈ H:

x−
n−1∑
j=1

〈x, ej〉ej ∈ Hn,

which implies that

Tx =
n−1∑
j=1

λj〈x, ej〉ej, since Tn = 0.

Or, if Tn 6= 0 for all n ∈ N, then we denote by yn the difference

yn = x−
n−1∑
j=1

〈x, ej〉ej ∈ Hn.
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By the theorem of Pythagoras

‖x‖2 = ‖yn‖2 +
n−1∑
j=1

|〈x, ej〉|2.

Hence ‖yn‖ ≤ ‖x‖. Also

‖Tyn‖ = ‖Tnyn‖ ≤ |λn|‖x‖ → 0,

since |λn| → 0 by Lemma 5.25. Hence

T

(
x−

n−1∑
j=1

〈x, ej〉ej

)
→ 0 as n→∞.

From this the claim follows.
To see that H has an ON basis consisting of eigenvectors we need to take all vectors

(ei) we found above. Let
T = lin{e1, e2, . . . }.

Since Tx =
∑

n λn〈x, en〉en it follows that Tx ∈ T . It also implies that if x ∈ T ⊥, then
Tx = 0, i.e. x ∈ Ker T . This means that Ker T = T ⊥. Let (vm) be any ON basis of
Ker T . All vm vectors are eigenvectors (for eigenvalue zero). It follows that

{e1, e2, . . . } ∪ {vm}

is an ON basis of H consisting of eigenvectors of T .
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