Workshop 3

October 28, 2014

- 1. Let H be a Hilbert space and $x_0 \in H$. If M be a closed subspace of H, show that $\min\{||x - x_0|| : x \in M\} = \max\{|\langle x_0, y \rangle| : y \in M^{\perp}, ||y|| = 1\}.$
- 2. Compute

$$\min_{a,b,c \in \mathbf{R}} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx$$

and find $\max \int_{-1}^{1} x^3 g(x) dx$ where $g \in C[-1, 1]$ is subject to the restrictions

$$\int_{-1}^{1} g(x)dx = \int_{-1}^{1} xg(x)dx = \int_{-1}^{1} x^{2}g(x)dx = 0; \quad \int_{-1}^{1} |g(x)|^{2}dx = 1.$$

Homework Assignment

- 3. Suppose that M is a closed subspace of a Hilbert space H.
 - a) Show that $M = (M^{\perp})^{\perp}$.
 - b) Is there a similar statement for subspaces M which are not necessarily closed?

4. Consider C[0,1] with two different norms, $\|\cdot\|_1$ and $\|\cdot\|_\infty$ (recall $\|f\|_1 = \int_0^1 |f(x)| dx$ and $\|f\|_\infty = \sup_{0 \le x \le 1} |f(x)|$). Show that $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are not equivalent norms on C[0,1].

Additional problem for self-study

5. Compute

$$\min_{a,b,c\in\mathbf{R}}\int_{0}^{\infty}|x^{3}-a-bx-cx^{2}|^{2}\mathrm{e}^{-x}dx.$$

State and solve the corresponding maximum problem, as in Exercise 1.

6. Let L be a continuous linear functional on a Hilbert space H (i.e., $L \in H^*$). If $L \neq 0$ and $M = \{x \in H : Lx = 0\}$, show that dim $M^{\perp} = 1$.

7. Let H be a Hilbert space, M a closed subspace of H and let $P : H \to M$ be the orthogonal projection onto M. Prove that P is bounded and calculate its norm. Observe that there are two cases, $M = \{0\}$ and dim $M \ge 1$.

8. Let *H* be a Hilbert space and let $L \in H^*$. Show that there exists an $x \in H$, ||x|| = 1 such that |L(x)| = ||L||.