
Workshop 5

November 11 2014

1. Let φ ∈ D(R) and assume that φ(0) = φ′(0) = · · · = φ(k)(0). Show that there
is ψ ∈ D(R) with φ(x) = xk+1ψ(x).

Solution: Expanding φ by its Taylor series around 0 we see that the ratio
φ(x)/xk+1 is well defined near the origin. Hence we set ψ(x) = φ(x)

xk+1 . It follows
from Leibnitz rule that ψ ∈ D(R) because xk+1 vanishes only at the origin and
hence ψ’s support is in the support of φ.

2. Show that there is a ψ ∈ D(R) with φ = ψ(k) if and only if
∫ +∞
−∞ P (x)φ(x)dx =

0 for each polynomial P of degree at most k − 1.

Solution: Use integration by parts. Indeed, let us assume that φ = ψ(k) and
show that the integral vanishes. We have after k times integration by parts

∫ +∞

−∞
P (x)φ(x)dx =

∫ +∞

−∞
P (x)ψ(k)(x)dx (1)

= (−1)k
∫ +∞

−∞
P (k)(x)ψ(x)dx = (−1)k

∫ +∞

−∞
0ψ(x)dx = 0.

Now let us prove the converse statement. First assume that k = 2 then we
want to show that if ∫ +∞

−∞
(ax+ b)φ(x)dx = 0

for any real numbers a, b then there is ψ ∈ D(R) such that ψ′′ = φ. Let A > 0
such that suppφ ⊂ [−A,A]. Taking first a = 0, b = 1 and then a = 1, b = 0 we
get

∫ +A

−A
φ(x)dx = 0 (2)∫ +A

−A
xφ(x)dx = 0. (3)
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Define

ψ1(x) =

{ ∫ x
−A φ(t)dt if x ≥ −A,

0 otherwise.

Thanks to (2) we see that ψ1 ∈ D(R). Next we define

ψ(x) =

{ ∫ x
−A ψ1(t)dt if x ≥ −A,

0 otherwise.

Thanks to (3) we see that that ψ ∈ D(R). Observe that ψ′1 = φ, ψ′′ = ψ′1 = φ
and the proof follows. The general case follows by induction.

3. (Homework problem) The principal value of 1
x

is defined as P 1
x
(φ) = lim

ε→0

∫
|x|≥ε

φ(x)
x
dx

• Show that P 1
x

defines a distribution

• Represent P 1
x
(φ) as a double integral.

• Find the primitive of P 1
x

in the sense of distributions.

Solution:
For the first part we have to check that the distribution defined in this form

is continuous because the linearity is obvious. Thus we want to show that for
any compact set KR there is a positive integer k and a constant C(K) > 0 such
that the following holds

|〈φ,P 1

x
〉| ≤ C(K)

k∑
i=0

sup
K
|φ(i)(x)|.

Without loss of generality we will take K = (−R,R) because R = ∪R>0(−R,R).
We have from mean value theorem that the principal value satisfies the following
estimates (vp stands for principal value)

|〈φ,P 1

x
〉| =

∣∣∣∣vp∫ φ(x)

x
dx

∣∣∣∣ =

∣∣∣∣vp∫ R

−R

φ(0) + φ′(x0)x

x
dx

∣∣∣∣ (4)

=

∣∣∣∣limε→0

∫ −ε
−R

+

∫ R

ε

φ(0) + φ′(x0)x

x
dx

∣∣∣∣
≤
∫ R

−R
|φ′(x0)|dx ≤ 2R sup |φ′|

where x0 is some pony in the interval |x| < R. Hence k = 1 and C(K) = 2R.
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As for the second part we note that∫ −ε
−R

+

∫ R

ε

φ(x)

x
dx =

∫ −ε
−R

+

∫ R

ε

φ(x)− φ(0)

x
dx (5)

=

∫ −ε
−R

+

∫ R

ε

1

x

∫ x

0

φ′(y)dydx

=

∫ −ε
−R

+

∫ R

ε

∫ 1

0

φ′(tx)dtdx.

Hence

lim
ε→0

∫ −ε
−R

+

∫ R

ε

φ(x)

x
dx =

∫ R

−R

∫ 1

0

φ′(tx)dtdx (6)

Finally the third part follows by direct computation using integration by
parts.

4. Find all f ∈ D′(R) with xf(x) = 1.

Solution: If x 6= 0 then f(x) = 1
x
. Extending 1

x
around the origin and using

the previous problem we will get that f(x) = P 1
x
.

5. Compute the following limits in D′(R).

• (a) lim
t→∞

t2x cos tx

• (b) lim
t→∞

t2|x| cos tx

• (c) lim
t→∞

sin tx
x

• (d) lim
t→∞

(cos tx)vp(1/x)

• (e) lim
t→∞

t sin(t|x|)

Solution: The main idea is to use integration by parts. In what follows
φ ∈ C∞0 (R).

(a)

lim
t→∞

∫
t2x cos txφ(x)dx = lim

t→∞

∫
tx(sin tx)′φ(x)dx = − lim

t→∞

∫
sin tx(xφ′(x) + φ(x))tdx

= lim
t→∞

∫
(cos tx)′(xφ′(x) + φ(x)) = − lim

t→∞

∫
cos tx(xφ′′(x) + 2φ′(x))dx =

= − lim
t→∞

∫
1

t
(sin tx)′(xφ′′(x) + 2φ′(x)) = lim

t→∞

∫
1

t
(sin tx)(xφ′′′(x) + 3φ′′(x))dx→ 0
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(b)

lim
t→∞

∫
−∞

t2|x| cos txφ(x)dx = lim
t→∞

{
−
∫ 0

−∞
t2x cos txφ(x) +

∫ ∞
0

t2x cos txφ(x)dx

}
Using partial integration as in the previous problem we get that the limit is
−2φ(0). Hence the limit in D′(R) is −2δ.

(c)
Recall that the Dirichlet integral is

∫∞
0

sinx
x
dx = π

2
. Then we have∫ ∞

−∞

sin tx

x
φ(x)dx = φ(0)

{∫ 0

−∞

sin tx

x
dx+

∫ ∞
0

sin tx

x
dx

}
+

∫ ∞
−∞

[φ(x)− φ(0)]
sin tx

x
dx

= πφ(0) +

∫ ∞
−∞

[φ(x)− φ(0)]
sin tx

x
dx = πφ(0) +

∫ ∞
−∞

[φ(y/t)− φ(0)]
sin y

y
dy → πφ(0)

Thus the limit in D′(R) is πδ.
(d) Let ε > 0 be fixed and small, then∫ −ε

−∞
+

∫ ∞
ε

1

x
cos(tx)φ(x)dx =

∫ ∞
ε

cos tx
φ(x)− φ(−x)

x
dx→ 0

where the last bit follows from Riemann’s lemma because φ(x)−φ(−x)
x

is absolutely
integrable.

(e)
lim
t→∞

t sin(t|x|) = 0 in D′(R). Hint: consider the integral over (−∞, 0) and

(0,+∞) respectively and then use partial integration.

6. Compute in D′(R2 \ {(0, 0)}) :

lim
t→∞

t sin(t|x2 + y2 − 1|)

Does this limit exist in D′(R2)?
Let ft = t sin(t|x2 + y2 − 1|). If φ ∈ C∞0 (R2 \ 0) and φ(x, y) = Φ(r, θ) with

polar coordinates then

〈ft, φ〉 = t

∫ 2π

0

∫ ∞
0

sin(t|r2 − 1|)Φ(r, θ)rdrdθ = t

∫ 2π

0

∫ ∞
−1

sin(t|s|)Φ(
√
s+ 1, θ)rdrdθ/2

Integration by parts for s > 0, s < 0 gives the limit
∫

Φ(1, θ)dθ, that is, ft →
ds, the arc length measure on the unit circle. If we take instead φ = φ(x2 + y2)
where φ ∈ C∞0 ((−1, 1)), then

〈ft, φ〉 = 2πt

∫ 1

0

sin(t(1− r2))φ(r2)rdr = πt

∫ 1

0

sin(ts)φ(1− s)ds

= π[−cos(ts)φ(1− s)]10 − π
∫ 1

0

cos(ts)(φ′(1− s)ds = −π(φ(0) cos t+ o(1).
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If φ(0) 6= 0 the oscillation as t→ 0 shows that there is no limit in D′(R2).

7. Is there a distribution on R, the restriction of which to (0,∞) equals e1/x ?
Solution: The answer is no. To see this let us argue towards the contradic-

tion. If such distribution, say f , exists then we must have

〈f, φ〉 =

∫
e

1
xφ(x)dx.

Pick φ0 ∈ D such that such that φ(x) = 0 if x < 1 or x > 2, φ0 ≥ 0,
∫ 2

1
φ0 = 1.

Define the sequence

φk(x) = e−
k
2 kφ0(kx)→ 0

as k →∞ in D. Then we have

〈f, φk〉 =

∫
e

1
xφk(x)dx =

∫ 2

1

ek(
1
y
− 1

2
)φ0(y)dy ≥

∫ 2

1

φ0(y)dy = 1 (7)

Which means that f is not continuous in D′, hence contradiction.

8. Is there a distribution on R, the restriction of which to (0,∞) equals e1/xexp(ie1/x)?
Solution:
The answer is yes. Denote f = e

1
x , g = feif and define the distribution u as

follows

〈u, φ〉 = i

∫ ∞
0

eif(x)
(
f(x)φ(x)

f ′(x)

)′
dx

where φ ∈ D(R). Clearly u and g agree on (0,+∞). Computing the derivative

explicitly
(
f(x)φ(x)
f ′(x)

)′
one can easily see that the integral is convergent around 0

and hence u is continuous in D′(R). Indeed, note that f ′ = − 1
x2
e

1
x , f

f ′
= −x2 and

ff ′′

(f ′)2
= 1 + 2x. Combining these we get(

f(x)φ(x)

f ′(x)

)′
= φ+ φ′

f

f ′
− ff ′′

(f ′)2
= φ− x2φ′ − (1 + 2x)

and the continuity of u follows.

9. (Homework problem) Let f be a function on R which is zero for x < 0,

continuous for x > 0 and assume that
∫ 1

0
x|f(x)|dx <∞. Show that f represents

a distribution of order at most 1.
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Solution:
Note that f(x) = 0 if x ∈ (−∞, 0). Hence suppf ⊂ [0,+∞). Now take

φ ∈ C∞0 [0,+∞) (in particular φ(0) = 0). Suppose suppφ ⊂ [0, R] for some
R > 1, we have∣∣∣∣∫ R

0

f(x)φ(x)dx

∣∣∣∣ =

∣∣∣∣∫ R

0

f(x)

(∫ x

0

φ′(t)dt

)
dx

∣∣∣∣ ≤
≤ sup |φ′|

{∫ 1

0

x|f(x)|dx+

∫ R

1

x|f(x)|dx
}
.

Note that the second integral in the last line is finite because f is continuous in
[1, R] and hanse f is bounded on [1, R].

10. Solve the following equations in D′(R):
(a) xf ′(x) = δ(x),
(b) xf ′(x) + f(x) = 0.

Solution:
(a) Consider xf ′(x) = δ(x). We have that
φ(0) = 〈f ′(x)x, φ(x)〉 = 〈f ′(x), xφ(x)〉 = −〈f(x), xφ′(x) + φ(x)〉
Therefore f = −δ is a solution.

(b) Observe that xf ′(x) + f(x) = (xf(x))′ hence we must have that f = cP 1
x

where c is any constant.
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