Workshop 5

November 11 2014

1. Let $\phi \in \mathcal{D}(\mathbf{R})$ and assume that $\phi(0) = \phi'(0) = \cdots = \phi^{(k)}(0)$. Show that there is $\psi \in \mathcal{D}(\mathbf{R})$ with $\phi(x) = x^{k+1}\psi(x)$.

2. Show that there is a $\psi \in \mathcal{D}(\mathbf{R})$ with $\phi = \psi^{(k)}$ if and only if $\int_{-\infty}^{+\infty} P(x)\phi(x)dx = 0$ for each polynomial P of degree at most k-1.

3. (Homework problem) The principal value of $\frac{1}{x}$ is defined as $\mathcal{P}_{\frac{1}{x}}(\phi) = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} dx$

- Show that $\mathcal{P}\frac{1}{x}$ defines a distribution
- Represent $\mathcal{P}^{\frac{1}{x}}(\phi)$ as a double integral.
- Find the primitive of \mathcal{P}_{x}^{1} in the sense of distributions.
- 4. Find all $f \in \mathcal{D}'(\mathbf{R})$ with xf(x) = 1.
- 5. Compute the following limits in $\mathcal{D}'(\mathbf{R})$.
 - (a) $\lim_{t \to \infty} t^2 x \cos t x$
 - (b) $\lim_{t \to \infty} t^2 |x| \cos tx$
 - (c) $\lim_{t \to \infty} \frac{\sin tx}{x}$
 - (d) $\lim_{t \to \infty} (\cos tx) v p(1/x)$
 - (e) $\lim_{t \to \infty} t \sin(t|x|)$

6. Compute in $\mathcal{D}'(\mathbf{R}^2 \setminus \{(0,0)\})$:

$$\lim_{t \to \infty} t \sin(t|x^2 + y^2 - 1|)$$

Does this limit exist in $\mathcal{D}'(\mathbf{R}^2)$?

7. Is there a distribution on **R**, the restriction of which to $(0, \infty)$ equals $e^{1/x}$?

8. Is there a distribution on **R**, the restriction of which to $(0, \infty)$ equals $e^{1/x} \exp(ie^{1/x})$?

9. (Homework problem) Let f be a function on **R** which is zero for x < 0, continuous for x > 0 and assume that $\int_0^1 x |f(x)| dx < \infty$. Show that f represents a distribution of order at most 1.

10. Solve the following equations in $\mathcal{D}'(\mathbf{R})$: (a) $xf'(x) = \delta(x)$, (b) xf'(x) + f(x) = 0.