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1. Introduction

1.1. Problem setting. Our aim is to prove the existence of solutions ðu;�Þ for
the free boundary problem

Lu ¼ �
P

cj�xj in �;
u ¼ 0 on @�;
jruj ¼ 1 on @�;

8<: ð1:1Þ

where fxjgkj¼1 �� �, cj> 0 and �xj is the Dirac measure with support at point xj.
Two types of operators will be considered. Operators L of the first type are
quasilinear uniformly elliptic operators defined as divðfpðruÞÞ, where f ðpÞ ¼
Fðjpj2Þ and fp ¼ rf ðpÞ for p2Rn with convex function F satisfying to Fð0Þ ¼
0 and F0> 0. The case FðtÞ ¼ t, that is when L is the Laplace operator, was
studied in [8] in connection with existence of quadrature surfaces with respect
to measure � ¼ c1�1 þ � � � þ ck�k, in general a signed measure compactly sup-
ported in �, which have a specific interest. However, in the present study we only
deal with the existence of solutions of the problem (1.1) and regularity of free
boundary @�. The operator of second type is the so-called s-Laplacian defined as

�su :¼ divðjrujs�1ruÞ; s> 1:
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and was supported by the G€ooran Gustafsson foundation.



The first type of operators are related to a variational free boundary problem,
discussed in [2]. The analogous problem for second type operators was recently
treated in [3], where similar results are obtained. In what follows we will for-
mulate our results and present proofs for operators of the first type restricting
ourselves on giving only sketches of the proofs of corresponding statements for
�s.

We will use the existence of solutions to the free boundary problem Lum ¼ 0
in �m n

S
Dm;j, um ¼ ajm in Dm;j, um ¼ 0 on @�m, jrumj ¼ 1 Hn�1 � a:e: on @�m

(see ([2]) where the existence of free boundaries was discussed from the varia-
tional point of view) and establish the main properties of the free boundary. Here
the domain Dm;j is the componenet of the set fv> ajm

n�2g containing point xj and
v is the solution Lv ¼ �c1�1 � � � � � ck�k (see Appendix).

We prove that outside of any neighborhood of the points xj this sequence of
solutions has a subsequence converging to a function u. Finally we will show
that the function u and domain � :¼ fu> 0g solve the above problem in a weak
sense.

The problem (1.1) naturally arises in the study of electromagnetic flux con-
finement and dynamics of quantized gauge fields theory describing the interaction
between elementary particles by considering particles to be quantized field. In this
context the PDE governs the equilibrium field configuration made by classical
charges in inhomogeneous environment. It has a very simple meaning: if u is
the potential, ru ¼ E and D ¼ fpðEÞ is field’s displacement vector then divD is
spatial distribution of the total charge (see [1]).

1.2. Notation. Let us introduce some notations. For an open A � Rn C2;1ðAÞ is
the space of twice continuously differentiable functions, whose second derivatives
are Lipschitz continuous inA. W1;sðAÞ denotes the Sobolev space of functions which
belong together with their derivatives to Ls, s> 1. W

1;s
0 ðAÞ is denoted as the closure,

by W1;5 norm, of the continuously differentiable functions with compact supports
contained in A, s> 1. W

1;s
locðAÞ is the space of functions belonging together with their

derivative to LsðKÞ for each compact K � A.
The reduced boundary @redA of an open set A is defined (see e.g. [4] 4.5.5) as

@redA :¼ fx2Rn; j�ðxÞj ¼ 1g;
where � is a unique unit vector such thatð

Bðx;�Þ
j�A � �fy;ðy�xÞ��ðxÞ< 0gjdHn ¼ oð�nÞ;

if such a vector exists, else � ¼ 0. Here �A is the characteristic function of A,
Bðx; �Þ ¼ fy2Rn; jx� yj<�g and Hn denotes the n-dimensional Hausdorff
measure. Recall that if Hn�1ð@AÞ is finite then A is a set of locally finite
perimeter and the (normal) vector is well defined on the reduced boundary
@redA. Moreover,

@redA ¼ @A

and j�j ¼ 1 pointwise on @red�.
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1.3. First type operators. Let FðtÞ be a function in C2;1½0;1Þ satisfying:

Fð0Þ ¼ 0; c0 4F0ðtÞ4C0; 04F00ðtÞ4 C0

1 þ t
; ð1:2Þ

where c0, C0 are positive constants. For p2Rn we set f ðpÞ ¼ Fðjpj2Þ. From (1.2) it
is clear that FðtÞ5 0 and f ðpÞ is convex. Moreover,

�j�j2 4
X @2f ðpÞ

@pi@pj
�i�j 4��1j�j2 8�2Rn; ð� 6¼ 0Þ;

since

@2f ðpÞ
@pi@pj

¼ 2F0ðjpj2Þ�i;j þ 4F00ðjpj2Þpipj:

Consequently

�jpj2 4 fpðpÞ � p
�jpj2 4 f ðpÞ4��1jpj2;

�
ð1:3Þ

for some small �> 0, where fp ¼ rpf .
In this paper we mainly deal with the elliptic quasilinear operator

Lu ¼ divðfpðruÞÞ;
which can be also written in nondivergence form as follows

Lu ¼ 2�uF0ðjruj2Þ þ 4F00ðjruj2Þ
X

uiujui;j: ð1:4Þ
By solution of Lu ¼ 0 we mean weak solution, i.e. u2W1;2ðAÞ andð

fpðruÞr� ¼ 0; 8�2C1
0 ðAÞ: ð1:5Þ

From the definition of the operator L and using (1.3) it is clear that the
operator L is uniformly elliptic and non-degenerate. Differentiating the equation
Lu ¼ 0 with respect to xk, 14 k4 n, we get for wk ¼ @ku the equation of the
form divðað�ÞrwkÞ ¼ 0, and in view of (1.2) the matrix ai;jðpÞ ¼ 2F0ðpÞ�i;jþ
4F00ðpÞpipj is uniformly elliptic. Hence by the DeGiorgi-Nash theorem, wk is a
C	 function for some 0<	< 1 and u2C1;	. Also it is worth noting that u2C2;	

by Theorem 15.11 of [5].

1.4. Second type operators. Let s> 1 and take FðtÞ ¼ 1
s
t
s
2. Then repeating the

previous construction we get another operator

�su ¼ divðjrujs�2ruÞ:
In contrary to first type operators, �s is degenerate quasilinear elliptic operator,
since obviously the conditions (1.2) fail.

The weak solution of �s ¼ 0 is a function u2W1;s satisfying for each �2C1
0

to identity ð
jrujs�2rur� ¼ 0: ð1:6Þ

For the properties of �s we refer to [10] and the references therein.
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2. Main Result

Theorem 2.1. Let cjðj ¼ 1; 2; . . . ; kÞ be positive constants and xj be some
points in Rn, n5 3 ðxj 6¼ xi; j 6¼ iÞ. Then there exist a bounded open set � ��
fx1 � � � xkgkj¼1 and a function u2W

1;2
0 ð�Þ satisfying

Lu ¼ �
P

cj�xj in �;
u ¼ 0 on @�;
jruj ¼ 1 on @�;

8<: ð2:1Þ

in the sense of distributions, where the last boundary condition jruj ¼ 1 is under-
stood in a weak sense (see Theorem 1.9 [2] and Theorem 2.1 [3]).

Remark 2.2. In case of second type operators � and u2W
1;s
0 ð�Þ, s> 1, solve

�su ¼ �
P

cj�xj in �;
u ¼ 0 on @�;
jruj ¼ 1 on @�;

8<: ð2:2Þ

Remark 2.3. We recall here that jruj ¼ 1 on @red� in a strong sense and the
rest of the boundary, @� n @red� has Hn�1 measure zero.

2.1. Preliminary notices. We introduce the function ’ as a solution

L’ ¼ ��:
Note that ’ can be obtained as radial solution to (1.4) satisfying to following

ODE

v00ðrÞ
v0ðrÞ ¼ � n� 1

r
� F0ðjv0ðrÞj2Þ
F0ðjv0ðrÞj2Þ þ F00ðjv0ðrÞj2Þjv0ðrÞj2

; ð2:3Þ

for any radial symmetric solution v ¼ vðrÞ, r ¼ jxj.
Since this last equation has the form  0ðrÞ ¼ Gðr;  ðrÞÞ, where ’0ðrÞ ¼  ðrÞ

then the existence of ’ðrÞ follows from classical ODE theory. Moreover since
L’ ¼ 0 in Rn n f0g then by Serrin’s argument ’ðrÞ=rn�2 ! 
> 0. Without loss
of generality we may assume that 
 ¼ 1 otherwise we could consider scaled
function ’
ðrÞ ¼ ’ð
rÞ


 . Furthermore r’ðrÞ � rr2�n ¼ oðrr2�nÞ.
Indeed the function ’�ðxÞ ¼ �n�2’ð�xÞ is a solution to fLL ¼ 0 for fLL con-

stracted from ffðtÞfðtÞ ¼ f ð�n�1tÞ and hence the C1;	 estimate yields

kr’�kC	 4M

for any compact subset of the annulus B1nB112. Noting that lim�!0 ’�ðxÞ ¼ jxj2�n

the C	 estimate above yields lim�!0 r’�ðxÞ ¼ rðjxj2�nÞ. Returning to original
functions the assertion follows.

To show that L’ ¼ �� we choose a �r such that �r ¼ 0 in jxj< r, �r ¼ 1 in
jxj> 2r and jr�rj4 c

r
. For �2C1

0 computingð
fpðr’Þr� ¼ lim

r!0

ð
fpðr’Þ�rr�

¼ � lim
r!0

ð
fpðrjxj2�nÞr�r� ¼ ��ð0ÞC0

Cn

: ð2:4Þ
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where Cn ¼ 1
ð2�nÞn!n

, !n is the area of the unit sphere in Rn. Let v be the solution of

Lv ¼ �a1�x1 � � � � � ak�xk

(see Appendix) and denote by ~vv ¼ ðv�MÞþ, where positive constants a1; . . . ; ak
and M will be specified below. Define the domains Dm;j as the component of
fxj~vv> ajm

n�2g containing point xj.
As to constant the M, it should be chosen in the manner that Ei \ Ej is empty if

i 6¼ j, where Ej is a component of the set fv>Mg containing point xj and the
following inequality is satisfied on @Ej

jr~vvj ¼ jrvj> 2 ð2:5Þ
Thus suppð~vvÞ is a union of disjoint domains containing points xj.
Also we will observe that

T1
m¼1 Dm;j ¼ fxjg. Let us recall a result stated in [2]

for L and in [3] for �s.

Theorem 2.4. Let Dm;j be defined as in 2.1. Then there is a solution ðum;�mÞ of
the following free boundary problem

Lum ¼ 0 in �m n
Sk

j¼1 Dm;j

um ¼ 0 on @�m;
um ¼ ajm

n�2 in Dm;j;
lim�3x!y jrumj4 1 y2@�m;

8>><>>: ð2:6Þ

where a1; . . . ; ak are arbitrary positive numbers and the last gradient condition
holds with equality Hn�1-a.e. on @�m.

Remark 2.5. The last gradient condition in (2.6) for the operators of the first
type should be written as �ðjrumjÞ ¼ 1, where �ðsÞ ¼ 2sF0ðsÞ � FðsÞ. But since
� is a monotone and continuous function then jrumj ¼ ��1ð1Þ ¼ �, so we can
assume without loss of generality that � ¼ 1 (cf. [2], p. 15). Note that the third
condition in (2.6) should be changed into um ¼ ajm

n�s
s�1 for �s.

Remark 2.6. Taking in previous reasonings instead of jxj2�n’ ¼ Cnjxj
s�n
s�1 and

Cn ¼ s�1

ðs�nÞðn!nÞ
1

s�1

and repeating argument above we get

�s’ ¼ ��:
Also on account of Theorem 12 [7], v behaves like ’ðjx� xjjÞ that is

lim
x!xj

vðxÞ
’ðx� xjÞ ¼ aj

and again from the argument above we conclude that

rvðxÞ � rðajjx� xjj2�nÞ ¼ oðrjx� xjj2�nÞ:

3. Uniform Estimates and W1;2 Bounds

The proof of Theorem 2.1 will be based on the results of this section. First we
prove a lemma ensuring non-degeneracy of domains �m near points xj.
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Lemma 3.1. Let um, �m, evv and Dm;j ðj ¼ 1; . . . ; kÞ be defined as in 2.1. Then

(a) suppðevvÞ � �m,
(b) um 5evv in RnnDm;j (by the comparison principle).

Proof. Let "> 0 and suppðevvÞn�m 6¼ ;. Then there is the smallest number 	> 1
such that Bðxj; rm=	Þ � �m (rm is the supremum of the radii of the balls Br �
suppð~vvÞ).

Taking into account (2.5) and using first a Lavrentiev type argument [8, Lemma
2] and then a comparison principle we arrive at the desired result. Part b) is a
consequence of a).

Lemma 3.2. Let um be a solution to the above free boundary problem. Then the
following hold:

(a) um 4C outside a compact neighbourhood of the points xj, j ¼ 1; . . . ; k for
sufficiently large m, where C does not depend on m;

(b) jrumj are uniformly bounded in L2ðUtÞ, where Ut :¼ fum< tg
ðt<mn�2minjajÞ;

(c) Hn�1ð@�mÞ4C.

Proof. (a) Fix a large integer N and consider DN ¼ DN;1 [ � � � [ DN;k. Since
um 4 v on @DN , by definition then, comparison principle ([5] Theorem 10.1) gives
um 4 v in �m for each m.

(b) We need to prove jrumj4C in Ut ¼ fum< tgðt<mn�2Þ. By (1.3) we haveð
Ut

jrumj2 4
1

�

ð
Ut

fpðrumÞ � rum: ð3:1Þ

Since

divðumfpðrumÞÞ ¼ umLum þ fpðrumÞ � rum;

by using (3.1) and (2.2) we arrive atð
Ut

jrumj2 4
1

�

ð
Ut

divðumfpðrumÞÞ: ð3:2Þ

By the divergence theorem and since um ¼ t on @Ut, it follows thatð
Ut

divðumfpðrumÞÞ ¼ t

ð
@Ut

fpðrumÞ � �; ð3:3Þ

where � denotes the unit outward normal to @Ut.
Since t<mn�2minjaj, then from (3.2) and (3.3) and again using divergence

theorem we find that ð
Ut

jrumj2 4
t

�

ð
[@Dm;j

fpðrumÞ � �: ð3:4Þ

Next, by (1.3)

fpðrumÞ � �4 jfpðrumÞj4 jF0jjrumj4C0jrumj; ð3:5Þ

12 A. Hakobyan and A. Karakhanyan



where C0 is a positive constant. Since evv ¼ um on @Dm;j and evv4 um 4 ajm
n�2

(Lemma 3.1) we have jrumj4 jrevvj on @Dm;j for j ¼ 1; . . . ; k. Applying this
together with (3.4) and (3.5) we obtainð

Ut

jrumj2 4
tC0

�

ð
[@Dm;j

jrevvj4 tC0

�2

ð
[@Dm;j

fpðrevvÞ � revv
jrevvj ; ð3:6Þ

where the last inequality holds from (1.3).
Since evv ¼ ajm

n�2 on @Dm;j, then it is obvious that revvj=jrevvjj ¼ �, therefore
using the divergence theorem again to the right hand side integral in (3.6) we getð

Ut

jrumj2 4 � tC0

�2

ð
[Dm;j

Levvj ¼ tC0

�2
ðc1 þ � � � þ ckÞ:

This gives that jrumj is bounded in L2ðUtÞ.
(c) is almost included in the proof of part (b). However, we give some details

for proof. Since

jrumj ¼ 1 a:e: on @�m

then, by (1.3) we get

Hn�1ð@�mÞ ¼
ð
@�m

dHn�1 ¼
ð
@�m

jrumj4
1

�

ð
@�m

fpðrumÞ �
rum

jrumj

Observe that since um> 0 in �m and um ¼ 0 on @�m, then on @�m we will have
rum ¼ �jrumj�, where � is the outward unit normal vector on @�m. Applying the
divergence theorem and using the fact, that Lum ¼ 0 in �mnDm, we get from the
last inequality

Hn�1ð@�mÞ4 � 1

�

ð
@Dm

fpðrumÞ � �4
1

�

ð
[@Dm;j

jfpðrumÞj:

The final result now follows by the same argument as in the proof of part (b),
after (3.4).

Lemma 3.3. The domains �m are uniformly bounded, i.e.
S
�m is bounded.

Proof. Suppose xm2@�m and umðxmÞ ¼ 0. Let Br0
be a ball centered at a

regular free boundary point xm with fix radius r0. Take in Lemma 2.5 [2] 
 ¼ 1
3
.

Then by this lemma for any � > 1 we have

4

3r0

 ð
�

B3r0=4ðymÞ
u�mðxÞdx

!1=�

4 cmð1=3Þ

where jxm � ymj ¼ r0=4 and ym is in the complement of �m. It is clear thatð
B3r0=4ðymÞ

u�mðxÞdx5
ð
Br0=2ðxmÞ

u�mðxÞdx ¼ r
�
0 jBr0=2j

ð
B1=2ð0Þ

v�mðxÞdx

Nonlinear Free Boundary Problems 13



where vmðxÞ ¼ uðxmþr0xÞ
r0

. Observe that vmð0Þ ¼ 0 and jrvmð0Þj ¼ 1. Hence multi-

plying both sides of the last inequality by jB3r0=4j and powering by 1=� we get that

4

3r0

 ð
�

B3r0=4ðymÞ
u�mðxÞdx

!1=�

5
�

2

3

�n=�
 ð

B1=2ð0Þ
v�mðxÞdx

!1=�

n is the Euclidean dimension. By Theorem 4.1 [2], vm are uniformly bounded in
C0;1ðB1Þ. Therefore, the Ascoli-Arzela lemma implies that a subsequence vm con-
verges to some function v uniformly in B1

2
. And we conclude that cmð1=3Þ is bounded

from below say by c� > 0. Next fix a large number R such that um 4 c� in Rn n BR. IfS
�m is not bounded then for some k there is a�k such that x2�k n BR and ukðxÞ> 0.

Considering balls BrðxÞ � Rn n BR and using Remark 2.6 stated in [2], we get

1

r

 ð
�

BrðxÞ
u
�
k ðxÞdx

!1=�

5 c� > 0:

Since the functions um are uniformly bounded by c�, then if r is large, ukðxÞ is 0 in
Br=3ðxÞ. Thus

S
�m is bounded.

Corollary 3.4. The functions fumg are uniformly bounded in W1;2ðUtÞ.
Proof. Since Hn�1ð@�mÞ> 0 and

S
�m is bounded then applying Poincar�ee’s

inequality and Lemma 3.2 b) we arrive at desired result.

Remark 3.5. In view of the comparison principle for �s [10] the Lavrentiev
principle still holds and therefore the conclusions of Lemma 3.1 can be carried
over for �s. As to Lemma 3.2 we can observe that W

1;s
loc estimate can be obtained

by taking in identity (1.5) � ¼ �su with standard cut off function �. The proof of
parts a) and c) go without changes. Note that in the proof of Lemma 3.3, stated for
the case of second type operators, one should use Lemma 4.2 of [3] instead of
Lemma 2.5 of [2] and the equivalent statement of Theorem 4.1 of [2] in this case is
Theorem 7.1 of [3].

4. Proof of Theorem 2.1

Proof of Theorem 2.1. By Corollary 3.4 it follows that fumg is uniformly
bounded in W1;2 outside of any neighborhood of fx1; . . . ; xkg. Hence using the
Rellich-Kondrachov imbedding theorem (see [5], Theorem 7.10), we get a sub-
sequence (still denoted by um), which outside of any neighborhood of fx1; . . . ; xkg
converges strongly in Lq, q< 2n=ðn� 2Þ to a limit function u2W

1;2
0 . Moreover,

rum ! ru weakly. Now there remains only to show that for appropriate choice of
the numbers aj, u is the desired solution, that isð

�

fpðruÞr� ¼ c1�ðx1Þ þ � � � þ ck�ðxkÞ; 8�2C1
0 ð�Þ: ð4:1Þ

Since u5 0 and Lu ¼ 0 in �nfx1; . . . ; xkg then by Remark 2.6 and the same
argument as in Subsection 2.1 we conclude that

ru�rðaj’ðx� xjÞÞ ¼ oðrjx� xjj2�nÞ
and the assertion (4.1) follows as in (2.4) with cj ¼ aj

C0

Cn
.
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Finally let us show that Hn�1ð@red�n@�Þ ¼ 0. In view of C1;	 estimates
jrumj4Cr0

in
Sk

j¼1 @Bðxj; r0Þ for r0 small. Also jrumj4 1 on @�m. Then since
jrumj2 is L-subsolution (respectively jrumjs for �s), applying the weak max-
imum principle we get

jrumj4maxðCr0
; 1Þ:

Therefore the assertion follows as in proof of (3.11) and Remark 3.7 of [2].

5. Appendix

The following theorem is due to Kichenassamy [6].

Theorem 5.1. For any positive constants �1; . . . ; �k there is a unique solution
of

�sv ¼ �
Xk
j¼1

�j�xj ; s> 1:

The method of proving the theorem can be adapted to show the existence of
v2C1;	ðRnnfx1; . . . ; xkgÞ solving

Lv :¼ divðfpðrvÞÞ ¼ �
Xk
j¼1

�j�xj

It can be done as follows. Defining v" to be the solution to the Dirichlet
problem

Lv" ¼ �" in Bð0; 1="Þ;
v"2W

1;2
0 ðBð0; 1="ÞÞ;

�
where �" ¼

Pk
j¼1 �jð!n"

nÞ�1�Bðxj;"Þ. The family of functions v" is bounded in
W

1;2
loc ðRnÞ. To see this we can without loss of generality establish only W1;2 esti-

mate in some ball Br such that fx1; . . . ; xkg �� RnnB2r. Moreover it suffices to
establish only L2ðB2rÞ bound, since considering � ¼ v"�

2 in (1.6), where � is
standart cutoff function in B2r, one can estimate the krv"kL2ðBrÞ by means of
kv"kL2ðB2rÞ.

Now for ’ as in 2.1 let ’"ðxÞ ¼ ’ðxÞ for jxj>" and ’"ðxÞ ¼ c"jxj2 þ b" for
jxj4 ", where the constants c" and b" are chosen such that ’" is a C1 function.
Since the rearrangement of �" is the multiple of 1="n and by direct computations
one can see that

v?" 4C’"4C’; in Bð0; 1="Þ:
(cf. [10] Theorem 1), then the inequality of Hardy-Littlewood for rearranged
functions ([10] p. 168) leads to LqðB2rÞ estimate, for some q> 1 and " small.
Moreover, using Moser’s iteration (e.g. [7], p. 256) we can get L2ðB2rÞ bound
for v"’s. Finally from a priory C1;	 estimates of Section 1.2 the results follows.
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