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One of the simplest models for the segregation of species (or systems of
particles that annihilate on contact) consists of setting a system of equations for
the (vector) of nonnegative species densities @° = (u§, ..., u5), of the form

|
L(u) = S5 ()

where L; is a second order differential operator, F; vanishes if ufug = 0 for k # j
and it is strictly positive otherwise, forcing u$ to segregate (ujuz converge to zero)
as € goes to zero.

In some applications, the system has a variational (or divergence) structure.
For instance (see [CLLL], [CTV1])

1 2
Aus = —uj(up)?
o
the Euler-Lagrange equations for vectors u, stationary points of the functional
_, 1
e = [ (L 7w+ 1 Sl
J Jik
In others, e.g. in the case of this article (and of particle annihilation), the system
is symmetric, 1
Auj = Z gujui,

=y
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and although it may appear to be a minimal change, its lack of variational structure
imposes a different approach.

The final result is, though, very similar to those attained in [CL2], [CL3]
for the variational case, mainly that the interface between any two components
is smooth (the level set of a harmonic function), except in a “filament” (a set of
Hausdorff dimension n — 2), where three or more species may concur, mirroring
the basic two-dimensional example given by
3/2

w(x) = r°/*| cos %9

where each connected component of {w > 0} represents the support of a different
species, and the three components concur at the origin.

This problem has received a considerable attention. See [CTV1]-[CTV4] for
the discussion of the variational solutions and [CL2], [CL3] and [CLLL] for optimal
partition problems. The system with a singular limit also appears in combustion
theory related to flame propagation [CR], [BS].

The parabolic version is not treated in the literature. In this paper we give a
full description of the problem for the heat equation as a model case.

For the elliptic case we prove an improvement of the regularity result. We
discuss the elliptic and parabolic versions separately. The paper is organized as
follows: in the first section we show that the solutions u® are uniformly Holder
continuous in €, giving rise to a Holder continuous vector @ as a uniform limit as €
goes to zero. Our approach works for more general classes of nonlinear uniformly
elliptic and parabolic equations.

The vector u inherits several properties from u® that are the starting hy-
potheses of the regularity theory. In the next section we prove several properties
of the limit function @ = lim._, @®, such as harmonicity across the free bound-
ary, regularity of [Vu|? across interfaces, and Lipschitz regularity. The latter is an
application of a monotonicity formula introduced in [ACF].

The third section contains a geometric description of the free boundary and
the proof of the clean-up lemma which states that a certain “flatness” implies
regularity of the free boundary near a point where only two components concur.

Next we introduce Almgren’s monotonicity formula [A] in order to find the
structure of the free boundary near a singular point. The proof of Almgren’s mono-
tonicity formula for the heat equation is given in the Appendix.

1. Uniform Hélder continuity for u*
We consider, in the ball By of R", a nonnegative solution, uj > 0, of the system
ué
Auf =+ Z ug.
k#i

For this section we may replace Au by a uniformly elliptic operator Lu =
D;(a;;D;u) with bounded measurable coefficients a;;.
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We will assume that the u$ are bounded (0 < u§ < M), and that @ =
(u§,...,us,) is in L' or L? since being subharmonic (or a-subharmonic, i.e.
Lu$ > 0) the u are bounded in By_j for any sufficiently small » > 0 by the
mean value theorem.

Of course the u§ are smooth, with bounds depending on €. Our first theorem
is
Theorem 1. In By, for any e, u* is C for some o > 0 independent of €, and

”ﬁEHC‘X(Bl/Q) < C(M)v
with C(M) also independent of €.

Remark. For this first theorem we may replace the Laplacian by any other operator
Lu, linear elliptic or parabolic with the following three properties:
Let w satisfy Lw = f > 0 and

oscw = supw — inf w = 1.
Bs Bo Bs

Then for a positive constant (7o) depending on vy one has:
(a) If [{f =0 >0} >0 > 0 then

supw < supw — pu(vo).
B1 Bo

(b) If [{w < supw — yo}| > 70 then

supw < supw — u(vo).
B4 Bo

(c) If | f| < oscp, w =1, then
< —Y0-
Fow S g
This is true for uniformly elliptic or parabolic equations with bounded mea-
surable coefficients from De Giorgi-Nash—Moser (and the Littman—Stampacchia-
Weinberger estimate [LSW]) for divergence equations, and the Aleksandrov—Bakel-
man—Pucci and Krylov—Safonov theory for nondivergence equations. In the para-
bolic case we must take consecutive parabolic cylinders.

In order to prove Theorem 1 we first state the following

Lemma 2. Let m;(R) = ming, uf, M;(R) = maxp, u$, and O;(R) = oscp,, us.
Suppose that either of the following is satisfied for some positive constant g :

(a) {z € Biya : ui(z) < M; —00;}| > vo where m; = m;(1), M; = M;(1),

(b) {z € By : Aui(x) > %00i} > 70,

(c) {z € Bija: Aui = youg}| = vo-

Then there exists a small positive constant ¢y = co(vo) such that the following
decay estimate is valid:

Ml(1/4) S Mi - C()Oi.
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Proof. Tt is well-known that if Lu > 0 in D C B where u > K in D and u = K
on 0D N By then

sup U< ———r——
- BrND¢
DNBr; 14 C1B20P7

This estimate is classical (see [La]) and as an application to our problem

€ €
Uy Zj;éi Uy
g

- Sup u.

. .
Au; = in By

with u = u we have

M
M;(1/4) = sup u gmax(z,
(1/4) Sop 50

In particular, oscp, u§ = O;(R) decays and
O;i(1/4) = M;(1/4) —mi(1/4) < coM; —m;(1/4) < co(M; —mi) = coOi(1)
)

since m;(1/4) > m;(1) > com;, co < 1 so in case (a) the conclusion follows.
To prove case (b) we use Green’s representation formula

M; — o (M; — ml)) =coM;, co <L

B
where v§ is the harmonic replacement of u$ in Bj, and G(z,y) is the Green’s
function of B;. Then we have

0<vi(e) —ui(x) = [ Gley)Aus(y)dy > / Gz, y)Aus(y) dy
By Byan{Au$>2v00;}
> 700; G(z,y)dy > Cy30;,

Bi/4aN{Au$>v00;}
that is, us(z) < v (x) — CY20;(1) and M;(1/4) < coM; for ¢y < 1.
To handle (c), consider A; = {z € By/4 : Auf > yus} and H; = {x € A; :
us(x) < M;/2}. First let us assume that

1
[Ai \ Hi| 2 5[4l (1.1)
Then

Therefore

1 1
{Au] 2 70M;/2}] 2 {z € Ai: uj(z) 2 Mi/2}] = |A; \ Hi 2 5|Ail 2 570

by (1.1). So part (b) applies and we have
M1(1/4) < C()Mi(l), co < 1.

Now assume that

1
|A; \ Hi| < §|Ai" (1.2)
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Then L 1
[Hil = A\ (A \ H)| = |Ail = [Ai \ Byl 2 5[4 2 570

by (1.2). This implies [{z € By/4 : uj(x) > M;/2}| > |H;| > v0/2, and from (a)

the result follows. O

We now return to the proof of the Holder regularity. To simplify the notations
we shall denote u° by u.

Proof. The proof is inductive, based on reducing the oscillation of the vector u in
consecutive balls By by a fixed constant p < 1, for some (fixed) A < 1. Since we
can always renormalize the system to the unit ball by
* 1 k
u*(z) = Mu()\ x),
with M = sup; , u; where x € By« into the same system (with a different ¢), it is
enough to show that the largest of the individual oscillations decays from B; to
By, for a system u, with max; , u;(x) =1 on By. Let O; = oscp, u; and without
loss of generality assume that 1 > 07 > .-+ > O.
We start with several simple cases in which the oscillation of a given compo-
nent decreases by a fixed proportion (see Lemma 2):
(a) If m; < wy < M; and [{u; < M — yo(M; — m;)}| > o then in By o, M;
decays to M; — pu(yo)(M; — m;) and O; decays to [1 — pu(7)]0;
(b) If |[{Lu; > vyo(M; — m;)}| > 0 > 0, then again M; and O; decay by amount
proportional to O;.
(c¢) If |A| = [{Lu; > vou;}| > 7o, then either u; > M;/2 half of the time in A
and M; decays from (b), or u; < M;/2 and M; decays from (a) (in both cases
the amounts of decays in M; are proportional to O;).
(d) 1t Ej>1 O; <001, > 0, then we let w be the solution of Lw = 0, wl|sp,
= Ui.

Since u1 + ;-1 (M; — uj) is a supersolution, we have

ur Sw < uy+ Y (Mj —uy) < up + 60
J>1
But

osc w < (1 —p)oscw < pyOq,
B2 B

hence
osc up < ((1—p)+0)01 <Oy

Bi/2
and osc u; decreases proportionally to O;.
Therefore, to establish our basic iterative decay estimate for oscillations, it
is sufficient to prove that either

(o)) among those O;’s with O; > §O; there is at least one that decays by a factor
whenever the sizes of balls shrink by a half; or
(B) all O,’s with possible exception of O; decay by a factor.
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Indeed, applying («) or (8) a finite number of times we will force all O; bigger
than §O; to decrease.

Case 1: We first discuss the case € > 1, i.e., for 0 = 1/e:

0 S Uj S 1,

max uj, = 1 for some j.

Consider two subcases: (i) O1 ~ 1, i.e,, O1 > dg and (ii)) O; < 1.
We first consider (i). If oscp, ,»u1 = Op has not decreased, so that O >
(1 — ’}/0)01, then

’ﬁ’Ll = minu1 S M1 - 01 S M1 - (1 —"Y())Ol.
B2
Note that there is a point xg in By, such that u;(zo) = m;.
Since the right hand side of the equation is < 1, uy(z) < mq + %(50 in a
neighborhood of size dy, i.e., for « in Bs,(xo) one has

1
ui(z) < M;p — (1 —70)O0:1 + 550 < M (1 — do).

From observation (a), O;(1/2) has decreased proportionally to O;. We thus
obtain a contradiction.

Now consider (ii) O; < 1. Again we divide it into two subcases. Assume first
that all O; < %Mj (i.e., %Mj < uj < M; for all j). Then the right hand side of
the j-th equation is ~ OM; for j # jo (uj, ~ 1).

If 9M; > ~oO; for some 7y small, we have decay from observation (b).

If 6M; < v0Oj, we have decay from regularity (the right hand side is much
smaller than the oscillation).

On the other hand, if for some j (j # jo), O; > %Mj, then

L’LLj ~ Guj S 290]
If § < 1 we have decay of O; from regularity since the right hand side is

< 0;.
If 0 ~ 1, we have it from observation (c).

Case 2: We now go to the case ¢ < 1. We consider two subcases: M; > ¢ and
M; < e.
Suppose M7 > €. If O; does not decay, we must have (from Lemma 2(a))

{un > /2] = 1/2.
Then, for ¢ # 1,
{Lu; > w;/2}| > 1/2.
Thus all M; decay for i # 1.



Vol. 5 (2009) Geometry of a segregation problem 325
Now suppose M7 and hence all O; are smaller than ¢ (since O; < 07 < My).
Since M;, = 1, we have u;, > 1 —¢, so
1
Lul Z —ui,
€

and (b) applies.
The proof is complete. O

Corollary 3. Given a family of solutions (@)%, with €}, going to zero, there is a
subsequence that converges uniformly to a C* function u.

2. General properties of the limit u

We now restrict ourselves to the Laplace operator.

Lemma 4. Let @(x) = (u1(x),...,um(x)) be the limit function from Corollary 3.
Then:
(i) Au; is a positive measure and
Aui < Z A’LL]',
J#i

(ii) Au; = 0 whenever u; > 0.

Proof. (i) follows from the fact that all u$ are subharmonic and for each ¢, and a
nonnegative function ¢ € C§°(Q2),

/(Aw)ug :/@Auf g/w(ZAu;) :/(A@)Zu‘; .
J#i J#i
To prove (ii) we will use the formula

£t st = [ an) s f

r

By Holder continuity, if u§(zg) = ag > 0, then |uf(y) — u5(zo)|] < ap/2 in a
neighborhood By (xg). Then

1 Qo
us | = uE-> = Aus < —
f (g < g
for € small, from the uniform convergence. Since u§ > ag/2 in By, we get
- us ) < —.
i) = p2
B € A h
Ase—0, 30, uj goes to zero. O

Corollary 5. The Holder continuous functions u; have disjoint supports and are
harmonic when positive.
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In order to show the linear decay of u; away from the boundary of its support,
we recall the monotonicity formula introduced in [ACF] (see [CSa] for details).

Corollary 6. Let v and vo be defined as
Jo k
’Ul:Z’LLj, Vg = Z Uj,
j=1 j=jo+1

and let xo be a point on the boundary of suppu;,. Then J(R) = Jr(vi,v2) =
D(vy1,R)D(v2, R) /" as R /', where D(v, R) denotes the Dirichlet average

D(v,R) = i/B ﬂdw

R? r(%0) ‘I - x0|n72 -
Furthermore,
1 ][ >2 9 ][ 2
= v; ] <CD(;,R) < — vy, 1=1,2. (2.1)
(R OBRr R? Ba2r\Br '
Proof. The second inequality in (2.1) follows from [CSa, (12.16)]. For the proof of
the first inequality we refer to [ACF]. O

Lemma 7 (Linear decay of u at the boundary of its support). Let x9 € B/ N
dsupp(uy). Then

1
(a) & up < CJg <u1,zuj) < CllullLa(s, )
Br(@o) #1
(b) supu; < CR.
Br

Proof. w1 — 37, u; is superharmonic. Since u;(zo) = 0 for all j,

][ (5% S][ Zu]‘.
O0BRr OBRr j#1

Thus )
Op = — uy < C[D(uy, R)]Y?
R BBR
and also )
1 1/2
on<pf Suwcp(Xur)]"
OB jz1 i#1

Hence

2
0 < JR(UlaZUfj) < Jyp2 < C||UH%2(BI/2) Zuj 12 .
] ) (B1/2)

Now part (b) follows from subharmonicity. For y in Bg(z),

ul(y) < f u < C up < QRHUHLQ(Bl/z(QCU))' O
Br(y) Bar(wo)



Vol. 5 (2009) Geometry of a segregation problem 327

Corollary 8. u; is Lipschitz in By /4(xo) and
luillLips, ) < Cliullz(s, )

Proof. Let y € Byjs Nsuppu; and d(y,dsuppuy) = h (h < 1/4). Then, in By (y),
uy is positive, harmonic and sup(u;) < Ch. Therefore |Vu;(y)| < $h = C. O

3. Geometric description of the interface

In this section we start to analyze the geometric properties of the free boundary.
First, a simple

Lemma 9. If ) . ,u;j =0 in B,(zo), then uy — uy is harmonic.

§>2
Proof. uy — 2322 u; and ug — 2#2 u; are superharmonic. O

This is not a very interesting result, since it is not clear when this hypothesis
holds.
To reach a reasonable description of the interface, we will complement it with
two lemmas:
(a) a “clean-up” lemma that asserts that if in B, the “density” of the components
“of u;” is very small, for j # 1,2, then 2#172 uj =01in B, s,
(b) “Almgren” monotonicity formula that says that in the complementary situ-
ation @ has a tangent “cone” of homogeneity strictly bigger than one.

We start with the clean-up lemma. It consists of two parts.
The first part, a consequence of the monotonicity formula, says that if one of
the components, u1, goes to zero at a point zg in a “nondegenerate” fashion, i.e.,
1

ff uy > 6 >0 asr goes to zero,
T J B, (z0)

the whole configuration is a “small perturbation” of a linear function.
Lemma 10 (see [CSal). Assume that at xo,

D(uq,uz2,0) = Il%igloD(ul,uQ,R) =g > 0.

Then:

(a) any convergent sequence of dilations (1/Ag)u(Agx) for Ay — 0 converges to
U] = alx{ﬂ Up =z, u; =0 forj>2,

(b) @1 — @ must be harmonic, so ay = ag = aé/4.

Proof. Property (a) is proven in [CSal; note that (1/\g)u;(Arx) is Lipschitz and
supported in narrower and narrower domains, so @i; = 0.
(b) follows from the fact that u; — >, u; is superharmonic. O

In these circumstances, the clean-up lemma says that the components u; for
j # 1,2 disappear before reaching z.
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Theorem 11. Assume the hypotheses of the previous lemma. Then >
a neighborhood of xg.

js2Uuj =0in
Before going into the proof, we need some preliminaries. After a large dilation,
we can start with a configuration satisfying the following hypothesis.
Let @;, i = 1,2, be the A-dilation of u; at the origin, i.e. @;(x) = u;(Ax)/A,
and write

Uy — U = vy + /G(x,y)A(ﬂl —Up) = Vg + v1

where vg is harmonic, vglop, = @1 — U2, and v; is the part that comes from the
presence of u;, j # 1,2, and is supposed to be small.
From the previous lemma, we may renormalize cg = 1, and assume that

(@1 — uz) — 21| < A, (3.1)

in particular supp; 4 o %; C |[{|z1]| < h}[, and each u; has Lipschitz norm less than
ch.
We also recall a decay property of harmonic functions in narrow domains.

Lemma 12. Let w be continuous in By, supported in Q) and harmonic in its support.
Assume that Q is “narrow” in the sense that any ball of radius h, By(y), contained
in B1, intersects the complement of Q, CQ), say, half of the time, i.e.,

|Bh n CQ| S 1
| Ba| 2’
Then
w(z) < supw - e~ CGD/A
E)Bl
Proof. We prove that in the ball By_s,, k=1,..., N, where N ~ A1,
1
w(z) < 3 . Sup W

Bi_(k—1)n

Indeed, by the mean value theorem,

w(z) < ]L w.
Bh(ZL’)

But w = 0 “half of the time in such a ball.” Hence the estimate follows. O

Before going back to the proof of the theorem, we slightly transform (3.1)
into a convenient inductive hypothesis. Mainly, we change the x; direction to the
harmonic replacement vy of u; — us in By, i.e., vy is harmonic and

U0|aBl =Up — Uu2.

Since vg— 1 is harmonic in By and (vg—x1)|ap, = h, we have |vg— (u3 —u2)| < 2h
and in 31/2, |V(UQ - .’1?1>| = |(Vv0) - 61| < ch.

Therefore, for a small number h, to be chosen, we have the starting hypoth-
esis:
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Decompose u; — us = vg + v1, with vy the harmonic replacement of u; — usg
in By; then:
(a) |vo — (u1 —ug)| <h,
(b) |[Vug —e| <h,
(c) suppwu; for j > 2 is contained in the h-neighborhood of the Lipschitz level

surface vy = 0.

Note also that >, o(supp, uj — u;) = (3 provides a barrier for vy since 3 > 0
and A < A(uy — uz). Hence —3 <wv; < 8 < Ch.

Let us see now what kind of improvement we can gain by going from B; to
Bi_s. We note that u; has decreased from h = hg to hy = he=Cs/h < h% whenever
s~ h'/%/2,

In particular, if we decompose u; — us = vy + 91, then v; < h% in By_g.
Therefore

|U1 — U2 7’50‘ S h(Q)
while |’Uo - 1~}0| S |’U0 — Uy — UQ| S ho.

To see how v; decays, we first estimate the total mass of the measure Au;,
j 7é 1,2, in By_g. If sz C Bj then

c
f Aujg—zj[ Uj, j#1,2,
B, P” J By,

c
1B, (Auj) < ;%SQ;;UjIBpI-

implying

Choosing a family of balls By, = B, , pr, < h'/2, which covers supp u; and using ex-
ponential decay we conclude that pp, , <>, pip° 0sCB,,, Uj|Bp,| < h* =1 By,
provided we take oscp,, u; < h*". Now for € By with dist(z,suppu;) > ht/2n
we see from Green’s representation formula that

oy (x) < P

Thus on Bj_os we have the estimate |Vg — Vug| < h(l)/z.

H H : k

B
T, .
k+1 B’k

This suggests the following iterative scheme: Start with hg small. Consider the
inductive sequence hy, = h?_, (that converges to zero very fast) and the sequence
r with

1/2
ri=1, rgp1=m—h'",
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which converges to 1 — p with p < 1/2 if hg is small. Then:

Lemma 13. In B,, there is a harmonic function vy such that
(a) [vk — (u1 —u2)| < hy,
(b) [V(vk —vp—1)| S hi_y,
(©) |Vor —er| < F b n? <1/4,
(d) the level surface vy, = 0 is Lipschitz with Lipschitz constant less than 1 for
every k.

The proof is exactly the discussion above.

Note that we take as vj the harmonic replacement of u; —us half way between
r, and g1, so it does not coincide with u; — ug on 0B but still satisfies (a),
and this allows us to establish the estimate (b).

Tk+1)

4. Almgren monotonicity formula and control of the singular set

We will now prove, at the points of the interfaces, a monotonicity formula due to
Almgren that shows that at each such point 4 is asymptotically homogeneous and
bounds this homogeneity from below.

First we note that

Lemma 14. (Vu)? is a continuous function across the interface.

Proof. If Jo(z¢) = limg_o+ Jr(zo) # 0, then according to the clean-up lemma,
U1 — U 1S harmonic.

If Jo(zg) = 0 for every pair, then |Vu(z)|* goes to zero as x goes to xp.
Indeed, from semicontinuity, given ¢ > 0, there exist 6 and 7 such that

‘ 2

Js(x) <e for x € Br(z0).

If y € Brja(wo) N {u1 > 0} and B,(y) is the largest ball around y contained in
{uy > 0} (s < 7/2), then there is a point z; € dB;(y) N {u1 = 0}. From earlier
discussions, we have

S

2s Bas (1)

and |Vuy (y)| < /2. O

u < eV

We can now prove Almgren’s monotonicity theorem [A] adapted to our set-
ting.

Theorem 15. For xq in the interface define

Pl ftr0) = faB ( )U“2
RrR(Zo

Then F'(R) > 0.
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Proof. By scale invariance it suffices to show that (log F')’ > 0 for R = 1. We have

Vul|? n—1 u?+2 U,
(1ogF)’(1):1+f‘9Bl| =D o, Jog, 1r
fBl |Vul? faBl u?

Assume for the moment that A“; = (Vu)? as measures. Then

u?
/ |Vul|? = A— :/ Uy,
B4 Bq 2 0By

Since u? is subharmonic, Au? is a positive measure, and the identity is correct
except on the interface. At a regular point of the interface, where Vu # 0, this is
also true. So we need to prove that Au? is absolutely continuous with respect to
the Lebesgue measure and that it vanishes in the Lebesgue sense at every point
where |Vu|? = 0 and u = 0.

At those points zo where |Vu| goes to zero, u?(z) < o(|x —z0|?), and we have

fAu:dU. (4.1)

We go on with the formal computation:

2

Jop, IVul* _ 2 o, wur
faB1 Uty faBl u?

We need to transform [ B, (Vu)? into integrals involving u and w,..
We use the following Rellich identity (see [GL]):

(log F)' = —(n —2) +

div(z|Vu|?) = n|Vul® + 2zu;u;;

and
div (z, Vu)Vu = |Vul* + (z, Vu) Au + zuu;;
or
div(z|Vul? — 2(z, Vu)Vu) = (n — 2)|Vul* — 2(x, Vu)Au.
We now integrate (assuming that 2(z, Vu)Au = 0):
/'m-anvm2=/’&wﬂvm2—x%vmvm:i/ [Vul? — 22,
By By aB,

or

/ |Vul|? :2/ uer/ (n —2)|Vul?.
831 aBl Bl

Substituting yields

faBl u? B faB1 uu,} >
fa& Uty fa& u? |

To complete the proof we have to make sense of

/ (x, Vu)Au = 0.
By

mngzz{
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We start by separating Bj into two parts: the first one is S, the e-neighbor-
hood of S = {z : @(x) = 0}, and the second one is G = By \ S..
Next we truncate each one of the u; by taking u? = (uj; — )*. Each u? now

has separated support:

and we apply the previous calculation in each domain D? which is the interior of
supp u‘;. Then we are left with the extra boundary term

/<x-y>|Vu|2dA_/2<x,w><vu,u> dA

along the analytic surfaces u; = §. Since these are level surfaces of u;, we have
(uj,v) = —|Vu,l, and also |Vu;|dA = du;s where p;s is the primitive measure
Auf. The integrals above are then equal to

/(x,v>|Vui\ dpis + /2(56,Vu> dpis = 3/<x,Vui) disis.

For ¢ fixed we now let § go to zero.

Outside of S., we have a sequence of smooth level surfaces and the integrals
cancel in the limit. Inside S;, |Vu;| = o(1) and therefore the integrals inside S
are all bounded by

(total mass of p;) - o(1).
We then let € go to zero and the proof is complete. ([

5. The singular set

At this point, we have verified all the hypotheses necessary to develop the inter-
face regularity theory, as in [CL3]. Therefore, we obtain the same final theorem
(Theorem 4.7 there):

Theorem 16. The set of interfaces S = {x : @(x) = 0} consists of two parts:
(a) a singular set, ¥ = {|Vu;|> = 0}, of Hausdorff dimension n — 2,

(b) a family of analytic surfaces, level surfaces of harmonic functions.

(Note that in our case, the proof of part (b) immediately follows from the clean-up
lemma.)
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6. A final remark on the regularity of the c-system

From the Lipschitz continuity of the limiting solutions we can deduce the following
regularity theorem.

Theorem 17. Let @*(z) = (u5(x),...,u(x)) be a solution of our e-problem in By
of R™, such that
Jull < 1.

Then, for any a <1 and any 1 < p < oo, u is in C*(By/2) and Wl’p(B1/2) with
[ullge < Cla),  lullwrr < C(p)
independently of €.

Proof. The proof follows from the techniques described in [CP], using the following
approximation lemma.

Lemma 18. Given 0, there exists eg > 0 so that if ¢ < €, and u® is a solution as
in Theorem 17 above, there exists a solution u of the limiting problem that satisfies

lue = ull ooy ) <0 1V (ue = u)l2B,,0) < 0.

Proof. The first bound follows from equicontinuity and compactness. For the L2
norm estimate we first point out that the total mass

Aus
Zi: /;3/4 K

/B 3/4(Vu5)2

Au; <C | w3

1
B3 /a B,

and

are uniformly bounded since

and the gradient bound follows from Caccioppoli’s inequality.
Next, notice that
Au? = 2(ulAu + (Vu)?).
Then for a cut-off function ¢ we write

(u — uf)?

/31 AV~ = = [ oA )+ [l

The first integral on the right-hand side goes to zero since u — u® goes to zero
uniformly. The second integral, after integration by parts, takes the form

which goes to zero. Il
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The parabolic case

We will now extend our results to the evolution system

3
Auf — (uf)y = = D w5 inQx (-T0),
i (6.1)
us(z,0) = fi(x) for z € Q,
us(x,t) = h;(z,1) on 9Q x (=T,0),

with T" > 0. It models a problem from population dynamics: the configuration
of competing species which cannot coexist on the same region (competition rate
is 00). We assume that 942, the initial and boundary data are sufficiently smooth
so that for every € > 0 we have a smooth solution.

More generally one can consider the Fisher equation: logistic growth equation
supplemented by an extra diffusion term A,

D () — (0 (1)) = S, 1) 5 ) + gl 1,0
© i
where Au§ is the spatial diffusion, (u$(t,z)): is the instantaneous rate of change
of the ith population’s density, %uf- (t,x) > i U5 (t,z) describes the interaction
between different species with competition rate 1/¢, and g;(¢, z,ul) is the growth
rate.

As the competition rate 1/e becomes larger and larger the populations un-
dergo a segregation and this process leads to a final configuration where the pop-
ulations are separated.

As we pointed out above, the Holder regularity theory for the elliptic e-system
extends to the parabolic case.

Lemma 19. If [[ul L~ (B,) < 1, then u|p,,, € C* and [Julca(s, ,) < C with a and
C independent of €.

As before we will consider limits u of a convergent sequence of solutions u*®
as € goes to zero. We start with the Lipschitz regularity of the limit function .
Lipschitz regularity
Since we have a uniform Hoélder estimate for u® the limit function u is also Hoélder
continuous. Following the elliptic theory we start by proving the following:
Lemma 20. Let u = (u1,...,Un) be the limit function as € — 0. Then u; and u;
have disjoint supports (i # 7) and H(u;) = Au; — Dyu; = 0 on the interior of the
support of u;.

Proof. Note that
1
H(u)=Au; — D 5:7‘?5 Z.
(uz) Uj tU; guz — U,

H(uf) <) H(uj).

k#1

Then
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Indeed,
S HM) = B D w2
k#1 i#£2 i#£3 i#Em
_4 Z uy, + positive terms > H (uf).
¢ A
Now let us assume that (zg,%0) € @ = Q x (=T,0) and uf(xo,to) = g > 0.
From Holder continuity of uf we conclude that
Qo .
ui(z,t) > 5 Qn(xo,to)

with Qp(wo,t0) = Bn(zo) X (to — h?/2,ty + h?/2) for some small h > 0. Let
o(x) be the standard cut-off function for Bap(zg), ¢ = 1 in Bp(xg). Then in
Qn = Qn(wo, to),

/ H(ui) //
Qn th

_ / A (@) (2, 1) + / () U (2, to + 2h2) — uS (, to — 2h2)] < C(B).
Q2n

Ban(zo)
On the other hand, H(u§) = ﬁ > k1 Uf», and we have

/QhHu1 Ydzdt < C(h // Z 272(6// Zui

k#1 @n 21

2
// > ugdedt < —C(h)e.
Qn(wo,to) &o

k#1

So we conclude that

Since uj’s are subsolutions, this implies that . s up — 0 uniformly in
Qny2- U

To prove that u; is caloric in the interior of its support we use our observation

H(ui) < H(uj).

k#1
Therefore

L 00= ()
Qh/2(w07t0) Qny2(zo,to) k;él
h? h?
(Z// Anug,(z,t) +/ n(z) {ui <x,t0 + ) — uj, <x to — ﬂ)
n(20,t0) B (z0) 2 2

k;ﬁl
<C(h

Here n(x) is the standard cut-off function for By (zo). O
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Now we are ready to prove the Lipschitz regularity. We use a parabolic version
of the monotonicity formula [CSa].

Theorem 21. Let u = (u1,...,uy) be a solution in Q. Then

lullLip(@)2) < llullzz(@y)-

Proof. Recall the monotonicity formula for a pair of disjoint nonnegative subcaloric
functions [CSal. Let uy, ug satisfy

(a) Au’b - Dtui > 0) 1= 1725
(b) uwius =0,
(¢) u1(0,0) = u2(0,0) = 0.

Let @(z) be a cut-off function such that ¢ = 0 outside By/3 and ¢ = 1 in By .
Define

J(t) = J(wl,’LUz,t)

0 0
= t12</ / |V [*G(x, —s) dx ds x / / |Vws |2G (2, —s) d ds>
nJ_y -

where G(z,t) = t—/2¢~12I/4 and w; = u;. Then
J(0F) = J(8) < Ae™ |ur]| 22 (g, luzllz2 (@)

We divide the proof of the Lipschitz continuity into several steps. We start
by observing that in all the estimates below there are underlying Lipschitz homo-
geneities.

In the first step we show that J(¢) controls the (weighted) product of the L?
norm of w; in some strip.

Next we show that, due to the inequality Hu; < Zj;ﬂ Huj, the wy factor
controls the wy factor implying its boundedness at every scale. Finally, we show
that this implies spatial Lipschitz continuity for u;.

Step 1. We prove an L? bound on w;. Let w(z,t) = u(z,t)p(z). Then, by direct
computation,

H(wZ) = A(U’Q) — Dyw® = 2wAw + 2\Vw|2 — 2wwy.
Hence
1 1
|Vw|? = §H(w2) — wAw + ww; = §H(w2) — w[Aup + 2VuVy + ulAg| + wusp.

Integrating this identity with respect to the measure du = G(z, —s) dx ds we get

0 0 1 0
/ / |Vw|? dp = / §H(w2) dp — / / w[Aup + 2VuVep + ulpldu
—t n —t R?L —t n

0
+ / / Wugp dp.
7t "
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Note that
o1
/ —H(w?*)G(x,—s)dxds
—t ]R'n
1 0
= 5/ / [W?AG(x, —s) — Dsw?G(x, —s)] dz ds
—t n

0
:%/ / “’Q[AG(%—S)+DSG(x,—s)]da;ds+%/ w?(z, —t)G(x, t) dx
_t n .
1

1

— w00+ / w2 (i, —)Ga, £) da

since AG(z,—s) + DsG(x,—s) = do,0-
Therefore we conclude that

0 1 1
/ / |Vw|*G(z, —s) dr ds = §w2(0, 0)+ 5/ w?(x, —t)G(x,t) dv

0
- / / weH (u)G(x,—s) dx ds
—t n
0
- / / w2VuVe + ulAp|G(x, —s) dz ds.
—t n
Now if u = uy, then wi; = w3 - ¢ and

0 0
/ / weH (u1)G(x,—s)drds = / / ©*u1 H(uy)G(x, —s) drds = 0
7t n 7t n

since u1 H(u1) = 0 and w;(0,0) = 0, so

//|Vw1|Ga:—s)dxds

= 5/ wi(z, —t)G(x, 1) dx—/ / w1 [2Vu1 Vo + u1 Ap]G(x, —s) dz ds.
n _t n

Observe that the last term on the right admits an estimate
0
/ / w1[2Vu1 Vi + u1 Ap|G(x, —s) dz ds
—t n

0
< C/ / lw|(|Vur| + u1)G(x, —s) deds < Ce™®/t,
—t J/ By,3\B12

where C' depends on the L? norm of u;. Now we consider wy = i, where @ =
Zk# ug. Note that u; and Zk# uy satisfy the assumption of the monotonicity
formula.
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Next, for wy we have

0
I(t) = / / |Vws |*G(x, —s) dx ds

1 O
= 5/ wiG(z,t) dx —/ / waH(1)G(z, —s) dx ds
n _t n

0
- / / wa[wVuVe + uAp|G(z, —s) dz ds.
—t n

If at (z,¢) we have us(z,t) > 0, then Hua(x,t) = 0, and since uy’s have disjoint
supports,

aH (i) = 0.
If (x,t) is a free boundary point, then @(x,t) = 0. Hence
/0 / O*uH ()G (x, —s)drds =0
¢ Jre
and as in the case of wy,
/0 / we[2VaVy + 1A@)G(x, —s) drds < Ce™ 't
¢ Jrn

Combining the estimates for I; and I we have

56 = o) 2 (3 [ wite 06t s+ 0@

X <; / w3 (z, )G (z,t) dx + O(ec/t)>.
This means that

ﬁ /R (e, ~0)G(z, 0 da / (e, 06w, 1) dr < J(E) + O(e")

Step 2. Next we want to show that the wi-term is controlled by the ws-term.
Recall that H(uy) < H(@) so
0
0< / H(t —uy)pG(x,—s)dxds
0 0
= / / (@ —u1)AlpG(x, —s)] dr ds — / / (@ —u1)spG(z1 — s)dx ds
_t n _t n

0
= /_t /n(ﬁ —up)[A(pG(z1 — 8)) + Ds(pG(z1 — 8))] dx ds

+ /n(ﬂ —uy)p(z, —t)G(z,t) dz
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0
- /_t /n(ﬁ —u1)[ApG(z, —s) + 2VpVG(x, —s) + pAG(z, —5)
+ @(2)DsG(x1 — 5)] dx ds
+ /n(w2($7 —t) —wi(z, —t))G(x,t) dx ds

_ /_i/n(a_ul)[A¢+v¢. ﬂG(m,—s)dxds

+ /n(wg(x, —t) — wi(z, —t))G(z, t) dx
= 0(e™ ") + Vi(02(t) — 61(1))
where

0;(¢) i(x, —)G(x,t)dz, i=1,2.

1
= — w
Vit Jge
Therefore

01(t) < O2(t) + O(e™/").
After applying the Cauchy—Schwarz inequality we have

0,(t) < <1 /n w(z, —t)G(x, 1) dx)l/Q,

01(t) < 6s(t) < (1 /,7 w3 (x, —t)G(x, ) dx) 1/2.

Multiplying both inequalities we get

0i(t) < ti? /R wie, ~0)G(z, 0 da / (e, ~HG(w, 1) dr < 4 (1) + O(e™1).

Therefore the monotonicity formula implies that 6;(¢) is bounded for any ¢ small.

Step 3. Since the heat equation is translation invariant, we can extend the previous
estimate to any free boundary point (zg,—t9) € Q with t; > 0. For some py > 0
we have B, (zo) X (—to — po, —to) C Q. Here py depends only on the distance of
(zo,—to) from the parabolic boundary of Q. Then we let n = x — zo, 7 =t + ¢
and note that v;(n,7) = u;(xg +n, T — to) is also a solution. Taking ¢t = 72 in the
definition of 6;(t), t > 0, and using a change of variables z = ry we have

1
! / wr (o + yr, —to — 12)p(0 + yr)Gly, 1) dy < Co (6.2)

,
for any point (zg, —to) such that dist((zo, —to), 0,Q@) > po and Cy depends on pg.

Next we want to show that u grows linearly away from the free boundary.
Assume that (xz1,—t1) € @, t1 > 0, uz(x1,—t1) > 0 and let p be the distance



340 L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin JFPTA

of (z1,—t1) from the free boundary. Hence u; is caloric in Q1 = B,/s(x1) X
(—t1 — p?/4,—t1). Suppose that for some z2 we have

ul(xg, —tl) Z MR

with R = p/2 and M > 1.
By the Harnack inequality,

inf up > Cy sup u; > C1RM.
Br(z1)X(—t1—3R?/4,—to—R?/2) Br(z1)x(—t1—R2/4,—t0)

Thus taking » = 4R = 2p in (6.2) we obtain, for every R,
P2y 2
Gy [ Malaot Rt R 4
n 4R
which is a contradiction if M > Cy/(c(n)Ch). O

G(y,1)dy > c(n)MC4. (6.3)

Theorem 22. u(z,t) is locally Lipschitz in the parabolic distance.

Proof. Tt is a standard argument to show that the Lipschitz continuity in space
implies %—Hélder continuity in time. Il

7. The clean-up lemma

We start by pointing out that in a “clean” neighborhood of a free boundary point,
u1 — Uy 18 caloric.

Lemma 23. If )"
Qp(xo,t0).

Proof. Since

o2 Ui = 0 in some cylinder Q,(xo,to) then ui — us is caloric in

H(uy) < H(Zuk) = H(us) + H(Zuk)

k#1 E>2
and
H(uz) < H(Zuk) = H(uy) —i—H(Zuk)
k£2 k>2
it follows that u; — ug is caloric in @, (xo,to)- O

Next we have the parabolic clean-up lemma, which plays a crucial role in the
classification of singular points of the free boundary. It basically says that if at
some free boundary point (xg,ty), J(0T) > 0, that is, |Vu(zo,to)| # 0, then at
some neighborhood of (xg,ty) we have exactly two phases.

Clean-Up Lemma. Assume that at (zg,to),
J(O1) = lim J(t) = A > 0.
t—0+

Then Y. ,u; =0 in a neighborhood of (xg, to).

§>2

First recall the following result [CSa].
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Lemma 24 (see [CSa]). Assume that at (xo,to),
J(u1,u2,0) = tliI%J('Uq,'UQ,t) =ap > 0.

Then:
(a) any convergent sequence of dilations (1/Ag)u(Agx, Agt) for Ay — 0 converges
to
Uy = almf, Up = oz, u; =0 forj>2,
(b) @1 — @e must satisfy the heat equation, so oy = ag = a(l)/4.
In these circumstances, the clean-up lemma says that the components u; for
j # 1,2 decay faster than wuy,us and vanish before reaching (zo, o).

Theorem 25. Let uq,us be as in the lemma above. Then Zj>2 u; = 0 in a neigh-
borhood of (xg,t0)-

Before going into the proof, we need some preliminaries. After a large dilation,
we can start with a configuration satisfying the following hypothesis.

Let @, 7 = 1,2, be the A-dilation of u; at the origin, i.e. 4;(z,t) =u;(Az, A\t)/A,
and write

U — U2 = v + V1

where vg is caloric, vglop, = @1 — U2, and vy is the part that comes from the
presence of u;, j # 1,2, and is supposed to be small.

From the previous lemma, we may renormalize cg = 1, and assume that

(@1 — u2) — 21| < A, (7.1)

in particular supp; 4 o 4; C [{|z1| < h}|, and @; being Lipschitz, u; < h.
We also recall a decay property of harmonic functions in narrow domains.

Lemma 26. Let w be continuous in C; = By X [—1,1], supported in Q@ C C; and
harmonic in its support. Assume that 2 is “narrow” in the sense that any cylinder
Qn = B(xg) x (to — h%,to), contained in Cy, intersects CQ, say, half of the time,
i.e.,
QnNCOl 1
= >
|Qnl 2
w(z) < sup w - e~ CU=VIz[2+)/h
dpC1

Proof. We prove that in Q; = Qn(x;,—1 + 2kh), k=1,...,N, z; € hZ> N Cy,
where N ~ h™2, we have

Then

1
w(z) < = supw
Qik
for some C > 1. Indeed, by a density estimate we have
1

[CONQi k-1
Qi k-1l

sup w(z,t) <
Qik 1+co

sup w.
Qik—1
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But w = 0 “half of the time”, hence |CQ N Q; k—1]/|Qs,k—1] > 1/2. Repeating this
for all 7,k and combining the estimates yields the result. O

Now we start the proof of the parabolic clean-up lemma.

Proof. From the proof of the monotonicity formula [CSa], we know that the blow-
up functions are a pair of linear functions, and from the H(u) inequalities they
have the same slope. This means that near (xg,ty) we have uniform flatness at
every scale.

As in the elliptic case we want to start with a suitable inductive hypothesis.

In fact, the iterative scheme is the same as in the elliptic case. Start with
hy small. Consider the inductive sequence hy = hi71 (that converges to zero very
fast) and the sequence 7y with

1/2

= 1u Thk+1 =Tk — hk/ )

which converges to 1 — p with pu < 1/2 if hy is small.
More precisely, we can state

Lemma 27. InC,, = B, x (-1 +h,1€/2, 1— hi/Q) there is a caloric function v such
that

(a) fox = (u1 — u2)| < hy,

(b) IV (ok = vimn)| < %,

(€) |Vup —er| <K h}"? < 1/4,

(d) the level surface vy, = 0 is Lipschitz with Lipschitz constant less than 1 for
every k.

To prove this we proceed as follows. First from the exponential decay we can
estimate U9 — (u1 — uz2) in the cylinder C;_s. Next using the covering argument
and computation from the previous section one can estimate the size of Au — uy
in C;_, and then from Green’s representation theorem we find that v, decays as
h?=1 away from the h'/?"-neighborhood of supp uj, 7 > 2. Finally, using gradient
estimates we conclude that |Vig — V| < hl/2.

As in the elliptic theory, we now have a discontinuity. At the neighborhood of
a clean point the free boundary is a transversal level surface of a caloric function.
At a singular point the gradient of u goes to zero, and we want to classify such
points.

8. Almgren’s formula
Lemma 28. (Vu)? is a continuous function across the interface.

Proof. If Jy(xo,t0) = limy_g+ Ji(x0,t0) # 0, then from the clean-up lemma uy —us
is harmonic.

If Jo(zo,t0) is zero for every pair, then |Vu(z,t)|* goes to zero as x goes to
xo, which follows from the estimates of ;(t), i =1, 2. O
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We now consider the backward heat equation
Au+u; =0 inRPH
For ¢y > 0, we define
Ht) = / luz, )2G (x, £) da

where

1 __=?
e — 4(t+tg) =
G(z,1) (t+t0)"/26 o and  w=(ug,...,Un).

Also
D(t) = /” |Vu(z,t)*G(x,t) d.

Theorem 29 (Parabolic Almgren monotonicity formula).

(t+t0)D(t)

NO =0

18 decreasing.

Proof. A version of this theorem is due to [EFV] for caloric functions. For com-
pleteness we give a proof in Section 11 with the modification for our particular
case. U

We are now in the following situation. Our solutions are only local and it is
well-known that solutions of the heat equation in By x (0, 00) with suitable non-
homogeneous time dependent boundary data prescribed on the lateral boundary
0By x (0,00) may become identically zero for ¢t > T. We would like to prove the
following: given a free boundary point, unless our solution is identically zero in a
cylinder backwards in time (i.e. had already become identically zero all the way to
the boundary), it is forced to have a polynomial decay at the point, so that we can
“blow it up” to a nontrivial solution integrable at infinity against the Gaussian
kernel.

We can ensure this by a modification to our setting of a theorem of L. Es-
cauriaza, F. J. Ferndndez and S. Vessella.

Theorem 30. Let (uq,...,un) be a solution. Then there exists a constant C' such

that
/ u? < C'/ u?.

r

This estimate is proved in [EFV] for a class of constant coefficient parabolic
equations. The main part of the proof is based upon a localization of Almgren’s
formula by multiplying u with a cut-off function. Since in our case N(t) is a
monotone function and all computations for derivatives of D(t) and H(t) remain
valid, the doubling property of the solution now immediately follows from the
proof of Theorem 29 and [EFV].
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9. Classification of the global solutions

If N(t) = A for all ¢t and A > 0, then from the proof of the monotonicity formula
we get

Tr — X
2(t + o)
for some unknown function c(t). We want to show that ¢(t) is the homogeneity
degree of u. Without loss of generality we may assume that o = 0, tg = 0. Then
we have

ug + Vu = c(t)u(z,t)

w(x,t) + %Vu = c(t)u(z,t).
For § > 0 we consider ug(z,t) = u(x6,t0?). Then

dilaue = ug (w0 + 02)20t + V(x0,t6%)x.

ug satisfies a differential equation on the path (z6,t6?) for fixed (x,t). Indeed,

wg (20, 160%) + T;Vu(:u? t0%) = c(t6*)u(x0,16?),

20u; (20, t0%) + = - Vu(20,t6%) = 2t0c(t0*)ug(x, 0),

or

d H(t6?)
7 R

where H (t6°) = 2¢(t6?)t0?. Hence

6 2
Hit
logue’?:/ %do—
1

ug(x,t)

and

o2
ug(z,t) = el 5 )d"u(x,t).

Since ug(z,t) satisfies the backward heat equation we get

0= H(ug) = H(u) - & 5797 § y(a, t)%el”“"’d

Therefore [ o H(Za do = ¢(6) does not depend on ¢. Differentiating this equality
with respect to t we get
H(t0?) — H(t)

2t ’

0
0 :/ H'(to®)o do =
1

so H is a constant. Recall that H(s) = 2¢(s

~

s, implying that

c(s) =

)

wle 2

where « is a constant, therefore u satisfies

«
ug + 2tVu T = Q—tu
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Thus we conclude that
u(20,t0%) = 0%u(x,t), u= (u1,...,up),
that is, u is homogeneous of degree o on the paths (z6,t62).

Since u is homogeneous we can seek the solution  in the form /2 f(x/\/%).
In particular, it can be a traveling wave u(z,t) = (22 + ct)®/2. Consider

u(z,t) = ta/Qf(ji)'

— Ypaz-1p( 2 o/ B
() e (5) o)

Uy = to¢/271/2fat <x
\/?E ’

Ugy = ta/271fac3c (-T .
Vit

Plugging these into the backward heat equation Au + u; = 0 we obtain
1 «Q
SAf()+ 5V(E) 2= ()

where z = z/v/t. Therefore a/2 is an eigenvalue of the operator —A + %V -z and
u is the corresponding eigenfunction.
In the one-dimensional case, f satisfies an ODE

2fzz - fzz+af =0.

Setting w(z) = f(2z) one can easily verify that w solves w,, — 2w,z 4+ 2aw = 0.
But the latter is the differential equation for the Hermite polynomials which can
be explicitly given by

Then

Hence returning to f we obtain

/el /2 & x
(/2] k
-1 o
—al kZ:O k'((—)2k)'x 2hik (9.1)

which is the a-caloric polynomial for the backward heat equation. Now if one has
the heat equation (i.e. after replacing ¢ with —t) then

[m/2] 1
hm — ! m72ktk
(z,8) =m kz:%) Kl(n — 2k)!"

is the solution for our problem in the one-dimensional case.
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In n dimensions, Ry, (%1, 8)hm, (22, 8) - P, (20, 8) With 350 m; = m,
m; > 0, is the homogeneous solution of degree m of our problem. By the clas-
sical theory of Hermite polynomials they have only simple real zeros. Hence the
polynomial h,,(z,—1) has m simple zeros. Furthermore, h,,(z,s) is even or odd
in the variable x when m is an even or odd integer, respectively. Therefore we can
describe the nature of the nodal sets of h,, in spacetime,

S(hm) ={(z,8) : hpm(z,5) = 0}.

First notice that ho(z,s) =1 so X(hg) = 0, while hi(x,s) = x and X(hq) is
the t-axis. Hence h,, has a degenerate zero if and only if m > 2.

10. Structure of the singular set

In this section we establish an estimate for the parabolic Hausdorff dimension of
the set ¥ = {(x,t) : u(z,t) =0, |Vu(x,t)| = 0}.

Theorem 31. Let P be the parabolic Hausdorff measure. Then the parabolic Haus-
dorff dimension dimp X(u) is at most n.

For the definition of P see [LY]. The proof is based on Federer’s dimension
reduction argument. We sketch it here. Let F be the set of all solutions and take
u € F and let S : F — C, where S is the singular map, S(u) = X, and C is the
collection of all closed sets in R™ x R. First notice that the following hypotheses
are satisfied (see [LY, p. 51]):

H1. F is closed under translation and scaling.

H2. Existence of homogeneous degree zero tangent functions.

H3. Singular set hypothesis, i.e. the existence of the mapping .

If H1-H2 are satisfied then the pair (F,S) is locally asymptotically self-similar.
It is easy to see that H1 is satisfied. Next notice that from Almgren’s the-

orem and nondegeneracy (polynomial growth from below) the scaled function

A~ Nu(Az, A%t) converges to a caloric polynomial by our classification of the global

profiles. Here N is a positive integer. Finally, H3 is satisfied in view of the local

regularity of u. Hence the dimension reduction theorem applies (see [Ch, Theorem

2.3]) and we conclude that the parabolic Hausdorff dimension of X is at most n.

Furthermore, it also implies that

dimy{x € Q: |Vu(z,t)| =0} <n—2.

11. Proof of Almgren’s formula

Here we present the proof of Almgren’s monotonicity formula which works in our
setting. Recall that Gy = AG and

X
VG =—-———"—G.
2(t + to)
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Compute

%H(t) :/ 5[;1% z,t)G(z,1) dx} = /71[2uutG(x,t) +u*Gy] da

= / [2uu;G(z,t) + u>AG) dx = / [2uu,G — 2uVu - VG dx

n

_ / 2 {ut + %]G(m) dz. (11.1)

Next we transform D(t),

/ |Vui\2de:/ Vu;Vu;Gdx = —/ [u;Au;G + Vu; VG] dx

x - Vu;
= i —— | Gdx. 11.2
/nu[utJrQ(t—i—to)}G x (11.2)

Summing up with respect to all e = 1,...,m we get

D(t):/nu[ut—i-Q(vu'I)]de

uVu-x = Z u; Djusx;.
,J
Finally, to compute %D(t) we use the Rellich-Necas identity

where

div(VG(Vu;)?) — 2div((Vu; - VG) - V)
= AG|Vu;|* = 2(V2GVu;) - Vu; — 2Vu,; - VGAw;.
Hence after integration

AG|Vu|? =2 / (V2GVu)Vu; +2 | Vu;VGAu;

n R

Id TR
/n<{ 2+ o) +4(t+t0)2}Vu) Vu,G + anu VGAu

2
:2/ <W) Gii/ V|2 G
A 201 1) t+to Jrn

—2/ MAuiGdaj, i=1,...,m.
. 2(t + to)

R™

On the other hand,
d d /<>
ZD(t) / = [(ZD u) } da = /n @(Z |Vui|2G) da
_Z/ 5 (|IVus*G) d;v—Z/ 2V, V (u):G + |Vui|*Gy] dx
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I
i Ms i Mg i Ms

t(Au; - G+ Vu,VG)] + |Vu|* Gy} dx

> [, e
> [ gt o s wuac) a
([ 2wt + g

+2/ M(ui)tGda:>
_22/ {“ et vtuj—'to)} G_tjtoD(t)

Combining all these computations we have

dN D(t) (t+t0)%D(t) (t +to)D(t) L H(t)

. dt
V= FiON H(t) H2(1)
t—|—t0 {D (t)H (t)%p(t) - D(t)% (t)}
t-l—to{( [ +Mrip(@>ﬂ(t)
()% (t) — D(t).g/nu{ut—kM}de}

otz ][ e e 22 - ([ ofer 2o

where the last line follows from a simple observation that

Z/ Vi 2G = / ~[ut+ Vti;)}(}dm

Then from the Cauchy—Schwarz inequality we have N'(t) > 0. d

Remark. It is important to point out that if N(¢) = const then ut—i—% = c(t)u.
As we showed earlier, c(t) is, in fact, the degree of homogeneity.

Theorem 32. Assume that u = (u1,...,un) s the solution to our free boundary
problem. Then N (t) is nondecreasing.

Proof. Let us look back at those parts of the previous computations which contain
integration by parts. Let S be the zero set of Vu, and S. its e-neighborhood.
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Furthermore, let § > 0 and
uw = (u; — &),

?
In equations (11.1) and (11.2) after integration by parts we have to deal with the
term

[ i@l v oG s+ [uivad-Gaas

boundary term

where dA; 5 is the area measure on the §-level surface of u;. Both terms are well-
defined and go to zero as § — 0.

The next term that we have to deal with comes from the Rellich—Necas
identity. More precisely, it consists of two parts:

11:/ Val - 2 Add + ()]G,
I = /va. |Vul|? - A dA; 5 —2/(Vui-VG)-Vui~ﬁ dA; 5,

where 7 is the unit exterior normal to the d-level surface of u;. Finally, we need
to deal with the following term:

VulV(ud);G = /(uf)tVUfG dA;s — / (ud)(AudG + VulVG).

n

R"L
We thus need to estimate

Iy = / (W) VU G i d Ay g — / (W) (AW + (ud),) - G 0

n

These are all the “bad” terms that we are left with. First let us observe that
on the boundary of Q¢ = {u;(x,t) > 0}, Vul = |Vu!| - 7i. Here we have

L = V! - z[Au + (ul)]G de,
Rn

I = /Vuf-VG|Vuf|dAi,5 —2/vu§~VG|vu;?|dAi,5

9.
= —/VU;?.VG\Vu;?\dAM :/Mwuﬂemm,
' 2(t + to ’

to)
Is = /(uf)tVudeAi,g —/ (u‘g)t(Auf + (uf)t)G dx.
Rﬂ,

Fix e and let 6 — 0. Then the terms with dA4; s go to 0 (outside of S.). Since for
x near Sg, |Vu| = o(1), we thus obtain

I =o(1) /n(Aui + (ui)¢)Gde — 0

e—0

and similarly I3 p— 0. (]
£—
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