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Abstract. We discuss some basic regularity properties of the area-preserving deforma-
tions u : Ω 7→ R2 that have minimal elastic energy∫

Ω

|∇u|2

among a suitable class of addmissible vectorfields defined on a smooth, bounded domain
Ω ⊂ R2. Although we restrict ourselves to the quadratic stored energy function and 2-
space, most of our results extend to three dimensional setting with convex stored energy
function.

1. Introduction

This paper is the sequel of [4], where under very weak assumptions we were able to derive

the Euler-Lagrange equation of the minimization problem discussed below. Our purpose

here is to further investigate the weak equations and to point out some geometric methods

that lead to regularity of local minimizers in Hölder spaces. In the interests of brevity

we shall concentrate on the two dimensional problem with quadratic energy, however the

majority of our results holds in a more general setting.

To begin with let’s assume that an elastic body occupies in a reference configuration the

smooth, bounded region Ω ⊂ R2. A deformation of Ω is a map u : Ω 7→ R2,u = (u1, u2)

and the deformation gradient is ∇u = ∂xju
i. Then the total elastic energy is defined as

E(u) =

∫
Ω
W (∇u),

where the stored energy function W : ∇u 7→ R is assumed to be C1 and bounded below.

The explicit form of W is determined experimentally and depends on mechanical and ter-

modynamical properties of the material. For instance for Rivlin-Mooney materials, such as

rubber for an automobile tyre, the total elastic energy is

E(u) =

∫
Ω
|∇u|2.(1.1)
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The rubber is also an example of incompressible material. The incompressibility constaraint

is a constitutive restriction on the kinds of deformations that a body can suffer. Mathe-

matically the incompressible deformations u : Ω 7→ RN ,Ω ⊂ RN are characterized by the

following equation

det∇u = 1.(1.2)

When N = 2 we call incompressible deformations area-preserving.

The reason to work in R2, beyond obvious technical simplicity, is motivated by the

following: if the deformation u : Ω 7→ R3,Ω ⊂ RN is invariant in some fixed direction, e.g.

in the direction e3 then the third component of the deformation u3(x1, x2, x3) = x3 and

u1, u2 are independent of x3 variable.

Now the problem, we shall be concerned with, in two dimensional space can be formu-

lated as follows: Find an area-preserving deformation u ∈ W 1,2(Ω,R2) such that for all

incompressible deformations w ∈W 1,2(Ω,R2) with supp(w− u) ⊂ Ω the following holds∫
Ω
|∇u|2 ≤

∫
Ω
|∇w|2.(1.3)

If (1.3) holds then u is called a local minimizer of E(·).
In his fundamental work [1] J.Ball proved that such minimizer exists. However the

regularity of u is far less clear. The nonlinear nature of (1.2) produces several difficulties,

notably when one tries to derive the Euler-Lagrange equation. Formally if one introduces the

hydrostatic pressure p, as the Lagrange multiplier associated with the material constraint

(1.2), then for sufficiently smooth u, p the governing equations are [5]{
div {∇u− pcof∇u} = 0 in Ω,
det∇u = 1 a.e. in Ω.

(1.4)

Here cof∇u is the cofactor matrix of ∇u. Under relaxed conditions these equations are

derived in [4]. We summarize the main results of [4] here:

Theorem 1. Let u be a local minimizer of ( 1.1) subject to ( 1.2). Then

i) if |∇u|2 is locally in L log(2 + L) then there exists a locally integrable function q,

defined in the image domain Ω? = u(Ω), such that∫
uim(u−1(y))ujm(u−1(y))ψi

j(y)dy =

∫
q(y) divψ(y)dy(1.5)

for any ψ(y) ∈ C∞
0 (Ω?,R2),

ii) if |∇u|2 is locally in L log(2+L) and if p(x) = q◦u(x) then p is locally integrable in Ω,
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iii) if u ∈ W 1,2(Ω,R2) ∩W 1,3
loc (Ω,R

2) then the first equation in ( 1.4) is satisfied in the

weak sense.

It is worth to point out that Theorem 1 is valid for a more general class of stored energy

functions subject to suitable structural conditions [4].

The main purpose of this paper is to initiate a study of the regularity of local minimizers

by exploiting the system of PDEs div {∇u− pcof∇u} = 0 from (1.4) or its weak form

(1.5) in dual variables. It is of interest to note that this system is not elliptic, which

produces additional difficulties as one tries to attack the regularity of u. The advantage of

div {∇u− pcof∇u} = 0 is that it is ”almost” linear unlike the second equation det∇u = 1

in (1.4). Hence some of the basic tools from linear theory of elliptic systems would work

under suitable conditions on p. A different approach, utilizing the scale invariance of (1.4),

will appear in the forthcoming paper [10].

The structure of the article is as follows. In the next section we introduce the basic

notations used throughout the paper. The third section contains the discussion of some

exceptional properties of the area-preserving maps. As a consequence it follows that the

inverse of the local minimizer is a minimizer for the dual energy functional, hence it satisfies

the weak Euler-Lagrange equation (1.5) in ”image“ domain Ω?. The link between the

deformation and its inverse allows to translate the regularity properties of the one to the

other. Hence the minimizer and its inverse enjoy the same regularity.

In the next section we examine the L log(2 + L) estimate for |∇u|2 through some well-

known results from the theory of differentiation of integrals in R2. The key observation

here is that the collection of the images of the squares under mapping u differentiates the

integral of |∇u|2, and thus applying the duality this translates to |∇v|2. The assumption

that |∇v|2 has equal integrals over the image of the square and some suitable rectangle in

Ω yields a local L log(2 + L) estimate for |∇u|2.
Using the Riesz transform and a suitable one-sided bound for the pressure associated

with the deformation we can conclude local L log(2 +L) integrability of the pressure. This

is the content of Section 5.

The last two sections contain the proofs of Hölder and Sobolev-type local estimates for

the deformation under suitable conditions on the pressure and its dual.
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2. Notations

We use the following standard set of notations: RN is the N -dimensional Euclidean space,

we always assume that N = 2 if not otherwise stated, BR(x0) is the open ball of radius R

centered at x0, Qρ(x0)-the open cube centered at x0 with side length 2ρ, Q(x0) = Q1(x0),

L log(2+L)(D) is the Orlicz space of all measurable functions f defined on the measurable

set D such that ∫
D
|f | log(2 + |f |) <∞,

Ls(D), 1 ≤ s ≤ ∞ is the space of all measurable function defined on D with finite Ls

norm, W 1,s(D) is the usual Sobolev space (see [7] chapter 7), W 1,s(D,RN ) is the vectorial

analogue of W 1,2(D), M is the space of all 2× 2 real matrices equipped with the standard

norm

‖A‖M = sup
ξ∈R2,|ξ|=1

|Aξ|, A ∈ M ,

the scalar product of two matrices A,B ∈ M is defined as A : B = tr(AtB), where At is

the transpose of A, tr is the trace of the matrix and |A| =
√
A : A. The cofactor matrix of

A ∈ M is denoted by cofA =
∂ detA

∂A
, C∞

0 (D,Rm) is the class of all C∞ maps from Ω to

Rm with compact support in D, if m = 1 then it is denoted by C∞
0 (D).

3. Duality

Let Ω0 be a bounded, open set in R2 having Lipschitz boundary ∂Ω0. A deformation of

Ω0 is a map u : Ω0 7→ R2 and u ∈ W 1,2(Ω0,R2). If in addition det∇u = 1 a.e. in Ω0

then u is called area-preserving (incompressible) deformation. Here ∇u is the deformation

gradient

∇u =

(
∂ui

∂xj

)
=

 u11 u12

u21 u22

 .

Notice that det∇u = u11u
2
2 − u21u

1
2 is integrable in Ω0.

We denote the class of all area preserving deformations of Ω0 by A (Ω0) :

A (Ω0) = {u ∈W 1,2(Ω0,R2),det∇u = 1 a.e. in Ω0}.

The following properties of the elements of A (Ω0) are worth recording (see [14], see also

Remark 3.3 [4]):

• u ∈ A (Ω0) has continuous representative,

• u maps open sets onto open sets, i.e. u is open,
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• if Ω is of class C∞,Ω ⊂ Ω0, u0 ∈ A (Ω0) and u0 is a homeomorphism then one can

define the inverse map v of u ∈ A (Ω), from Ω? = u0(Ω) to Ω and u = u0 on ∂Ω:

v : Ω? 7→ Ω, v(u(x)) = x, u(v(y)) = y, ∀x ∈ Ω,∀y ∈ Ω?,

• v has a continuous representative and v ∈W 1,2(Ω?,R2).

Moreover the usual formulae relating the derivatives of u and v are valid. We have for

the gradient of the inverse mapping v

∇v(y) =

 u22(v(y)) −u12(v(y))

−u21(v(y)) u11(v(y))


for det∇u = 1 a.e. in Ω. In particular



∫
Ω
|∇u|2 =

∫
Ω?

|∇v|2,∫
Ω?

|∇v(y)|2dy =

∫
Ω?

|∇u(v(y))|2dy,

det∇v(y) = 1 for a.e. y ∈ Ω?.

(3.1)

Next we state the main result of this section.

Theorem 2. Let

J?(w) =

∫
Ω?

|∇w(y)|2dy, w ∈ A (Ω?).

Then v, the inverse of u, is a local minimizer of J(w), i.e.

∫
Ω?

|∇v|2 ≤
∫
Ω?

|∇w|2,

for all w ∈ A (Ω?) with supp(w− v) ⊂ Ω?.

Proof. Let D be a subdomain of Ω?,D ⊂ Ω?. We want to show that

∫
D
|∇v(y)|2dy ≤

∫
D
|∇w(y)|2dy

for any w ∈ A (Ω?) such that supp(v −w) ⊆ D. Let D0 = supp(v −w) ⊂ D. By change

of variable formula (3.1) we have

∫
Ω0

|∇u(x)|2dx =

∫
D0

|∇v(y)|2dy,∫
Ω0

|∇T(x)|2dx =

∫
D0

|∇w(y)|2dy,
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where T is the inverse of w and we set Ω0 = v(D0) = w(D0). We identify u and T with

their continuous representatives. Notice that Ω0 is closed for v,w are continuous and D0

is closed. Thus it suffices to prove that

∫
Ω0

|∇u|2 ≤
∫
Ω0

|∇T|2.

We claim that supp(u − T) ⊂ Ω0. We argue towards a contradiction, then there exists

x0 ∈ Ω \ Ω0 such that y1 = u(x0), y2 = T(x0) and

y1 6= y2.

Clearly y1, y2 ∈ Ω? \D0. Thus v(y1) = w(y1) = x0 and v(y2) = w(y2) = x0 implying that

v(y1) = v(y2) which contradicts to y1 6= y2. �
As an immidiate consequence we get.

Corollary 3. Let v be as in Theorem 2, then there exists a locally integrable function

q? : Ω 7→ R such that ( 1.5) holds for v and q? in Ω.

4. L log(2 + L) estimate for |∇u|2

In order to state the main result of this section we need some definitions from the theory

of differentiation of integrals. These definitions can be found in de Guzman’s book [8] pages

42 and 65.

Let x ∈ RN . A collection of bounded measurable sets B(x) is called a differentiation

basis at x if

• all the sets R ∈ B(x) have positive measure,

• x ∈ B for all R ∈ B(x),
• there is at least a sequence {Rk}∞k=1 ⊂ B(x) such that diamRk → 0.

The differentiation basis in RN is B = {∪B(x) : x ∈ RN}. Next we define the upper and

lower derivatives of f with respect to B at x;

DB(f, x) = sup

{
lim sup
k→∞

∫
�

Rk

f : {Rk} ⊂ B(x), Rk → x

}
,

DB(f, x) = inf

{
lim inf
k→∞

∫
�

Rk

f : {Rk} ⊂ B(x), Rk → x

}
.

Definition 4. B is said to differentiate (the integral) of f if for almost every x we have

DB(f, x) = DB(f, x) = f(x).

If B differentiates every function f in a class Φ then we say that B differentiates Φ.
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For N = 2, x ∈ Ω we take B(x) to be the collection of all open rectangles R containing

x and with sides parallel to the given orthogonal frame [e1, e2] in Ω. Similarly we let

B?(y), y ∈ Ω? be the collection of all open rectangles R? containing y and with sides parallel

to (in general different) orthogonal frame [e?1, e
?
2] in Ω?. These frames are arbitrary but

fixed. We put B = ∪B(x) and B? = ∪B?(y).

The basis of rectangles has a number of interesting properties: it is known that if B
differentiates f ∈ L1(Ω) then locally f ∈ L log(2 + L) (see for example [6]).

Let Q be an open square containing x ∈ Ω then from change of variable formula [14] we

have ∫
�

Q
|∇u|2 =

∫
�

u(Q)
|∇v|2, u ∈ A , v = u−1.

Since the basis of the squares differentiates L1, we infer that the collection of the sets

{u(Q), x ∈ Ω} differentiates v(y). Similarly by considering the sets v(Q?), where Q? is

an open rectangle containing y ∈ Ω?, one can conclude that the collection of the sets

{v(Q?), y ∈ Ω} differentiates u(x) for a.e. x ∈ Ω. Hence if either of the sets {u(Q)} or

{v(Q?)} “behaves” as B or B? one should be able to conclude local L log(2 + L) regularity

for |∇u|2. In this direction we have

Theorem 5. Let B and B? be defined as above.

• Let [e?1, e
?
2] be an orthonormal frame in Ω? and assume that there exists an orthogonal

frame [e1, e2] in Ω with the following property: for any R? ∈ B?(y), y ∈ Ω? there

exists an open square Q conatining v(y), |Q| = |R?|, with sides parallel to [e1, e2]

such that ∫
R?

|∇v|2 =
∫
Q
|∇u|2.

Then |∇v|2 is locally in L log(2 + L).

• Let R ∈ B(x) corresponding to some fixed orthogonal frame [e1, e2]. If there exists an

orhogonal frame [e?1, e
?
2] in Ω? such that for any R there exists a square Q?, |Q?| = |R|

containing u(x) with sides parallel to [e?1, e
?
2] such that∫

R
|∇u|2 =

∫
Q?

|∇v|2

then |∇u|2 locally is in L log(2 + L).

Remark 6. The hypotheses in Theorem 5 can be relaxed due to a result of R. Moriyón,

[?], namely if one takes a subbasis of rectangles BM ⊂ B in Theorem 5, with an additional

condition

D2 ≤ d ≤ D ≤ 1,
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where d is the length of the smaller side and D is the one of the bigger side of R, then one

can conclude the local L log(2 + L) estimate and this is the best space [?].

Next we want to show that if u is differentiable at x0 then the sets {u(Qρ(x0))}, i.e. the
images of the squares centered at x0, asyptotically behave as parallelograms. At this point

we don’t known if the area preserving deformations are a.e. differentiable. However u is

weakly differentiable in some weak sense, introduced by Yu. Reshetnjak in [11].

Definition 7. u is said to be weakly differentiable in Reshetnjak’s sense if there exists a

linear map ` and

lim inf
t→0+

γ(x, t) = 0, γ(t, x) = sup
z∈Q1

∣∣∣∣u(x+ tz)− u(x)− `(tz)

t

∣∣∣∣ .(4.1)

It is known that each u ∈W 1,p(Ω,RN ) is a.e. weakly differentiable in Reshetnjak’s sense

provided p > N−1 [11]. In our case N = p = 2 and therefore (4.1) holds for local minimizer

u.

Assume that u is weakly differentiable at x0 in the sence of (4.1). By change of variable

formula (see [14]) we have that∫
�

Qρ(x0)
|u(x)− u(x0)|2dx =

∫
�

u(Qρ(x0))
|v(y)− v(y0)|2dy.(4.2)

Introduce the linear mapping `(x) = u(x0) + S(x − x0), where S = ∇u(x0),detS = 1.

The image of the square Qρ(x0) under linear mapping `(x) is a parallelogram Pρ(y0) of the

same area ρ2 centered at y0. For a sequence tk ↓ 0+ as in (4.1) we let

t∗k = sup{t > 0, `(Qt(y0)) ⊂⊂ u(Qtk(y0))}.

Let y1 ∈ ∂Pt∗k
(y0) ∩ u(Qtk(x0)), then there exist x1 ∈ ∂Qtk(x0) and x2 ∈ Qt∗k

(x0) such

that

u(x1) = `(x2).

By (4.1) we have that u(x1) = u(x0) + S(x1 − x0) + tkθ(tk) with |θ(tk)| ≤ γ(x0, tk). Thus

|S(x1 − x2)| ≤ tkγ(x0, tk).

Utilizing detS = 1 we estimate |(x1 − x2)| = |S−1S(x1 − x2)| ≤ ‖S−1‖M|(x1 − x2)S|
thereby

|tk − t∗k| ≤ C(x0)tkγ(x0, tk)
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and
|Pt∗k

(y0)|
|Qtk(x0)|

=

(
t∗k
tk

)2

→ 1 as tk → 0.

In particular by applying (4.2)

∫
�

Pt∗
k
(y0)

|v(y)− v(y0)|2dy ≤
(
tk
t∗k

)2 ∫
�

u(Qρ(x0))
|v(y)− v(y0)|2dy −→ 0.

Remark 8. Although the discussion of the 3-dimensional problem is beyond the scope of

this paper we would like to point out the following: to formulate the analogue of Theorem 5

in 3-space one needs to replace the rectangles with the rectangular intervals with two equal

sides while considering all rectangular intervals will result that |∇u|2 + |cof∇u|2 is locally

in L(log(2 + L))2.

5. L log(2 + L) estimate for pressure q

The goal of this section is to show that a suitable one-sided bound for q and the as-

sumption σij ∈ L log(2 + L) imply that locally q ∈ L log(2 + L). It follows from the

results of [4] that q ∈ L1
loc(D) provided σij ∈ L log(2 + L)(D), D ⊂ Ω?. Here σij(y) =

uim(u−1(y))ujm(u−1(y)), y ∈ D.

From the physical point of view the pressure is essentially non-negative. However it is

not clear how one can mathimaticaly justify this statement.

Notice that a necessary condition on q is that it must have a vanishing integral [4]. To

formulate our result we recall the definition of the i-Riesz transformation of f defined as in

[13] page 57

Rif(z) = lim
ε→0

cN

∫
|y|>ε

yi
|y|N+1

f(z − y)dy, cN =
Γ(N+1

2 )

π
N+1

2

.

The computation below also works in higher dimensions, but we keep in mind that N = 2.

Lemma 9. Let σij ∈ L log(2+L)(D), D ⊂⊂ Ω? and for some function b ∈ L log(2+L)(D)

we have that q ≥ b (or q ≤ b) in D. Then q is locally in L log(2 + L)(D).

Remark 10. Obviously if the pressure is bounded above or below then one can take b =

const.

Proof. To fix the ideas we suppose that q assumes a lower bound. Let bε be the mollifi-

cation of b then q̂ε = qε − bε ≥ 0 satisfies

Dj σ̂
ε
ij = Diq̂

ε,(5.1)
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where σ̂εij = σεij − δijb
ε and σij is defined as above. Let η be a cut-off function, suppη ⊂ D.

Multiplying (5.1) by η and using partial integration we get

0 =

∫
BR(y0)

ηDj(σ̂
ε
ij − δij q̂

ε)

=

∫
∂BR(y0)

η(σ̂εij − δij q̂
ε)
yj − yj0
R

−
∫
BR(y0)

Djη(σ̂
ε
ij − δij q̂

ε).

Dividing by RN and integrating over (0, ρ) 3 R we obtain

∫
Bρ(y0)

η(σ̂εij − δij q̂
ε)

yj − yj0
|y − y0|N+1

=

∫ ρ

0

[∫
BR(y0)

Djη(σ̂
ε
ij − δij q̂

ε)

]
dR

RN
.

Now partial integration with respect to R leads to

∫ ρ

0

[∫
BR(y0)

Djη(σ̂
ε
ij − δij q̂

ε)

]
dR

RN
= − 1

N − 1

{
1

RN−1

∫
BR(y0)

Djη(σ̂
ε
ij − δij q̂

ε)

∣∣∣∣ρ
0

}

+
1

N − 1

∫ ρ

0

1

ρN−1

∫
∂Bρ(y0)

Djη(σ̂
ε
ij − δij q̂

ε)

= − 1

N − 1

1

ρN−1

∫
Bρ(y0)

Djη(σ̂
ε
ij − δij q̂

ε)

+
1

N − 1

∫
Bρ(y0)

Djη
σ̂εij − δij q̂

ε

|y − y0|N−1
.

Letting ρ→ ∞ we get

∫
η(σ̂εij − δij q̂

ε)
yi − yi0

|y − y0|N+1
dy =

1

N − 1

∫
(σ̂εij − δij q̂

ε)
Djη

|y − y0|N−1
.(5.2)

To recognize the i-Riesz transformation we set y0 − y = ξ then (5.2) implies

−
∫
RN

η(y0 − ξ)
{
σ̂εij(y0 − ξ)− δij q̂

ε(y0 − ξ)
} ξi

|ξ|N+1
dξ =

1

N − 1

∫
(σ̂εij − δij q̂

ε)
Djη

|y − y0|N−1
dy

or equivalently

Ri(ηq̂
ε)(y0) =

∑
j

Rj(ησ̂
ε
ij)(y0) +

1

N − 1

∫
(σ̂εij − δij q̂

ε)
Djη

|y − y0|N−1
.

The L1 norm of the integral on the right can be estimated via L1 norm of η[σ̂ij−δij q̂] ∈ L1

uniformly in ε [7] Theorem 7.18. Since q̂ ≥ 0 and σ̂ij ∈ L log(2+L) we can apply the result

of E. Stein Theorem 3 page 309 [12] to infer that ηq̂ε ∈ L log(2 + L)(D) uniformly in ε. A
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customary compactness argument in Orlicz space L log(2+L) finishes the proof. The other

case q ≤ b can be treated similarly by considering q̂ε = bε − qε ≥ 0. �

Corollary 11. If the condition q ≥ b (or q ≤ b) is not satisfied then∥∥∥∥Ri(ηq
ε)(y0)−

1

N − 1

∫
(σεij − δij q̂

ε)
Djη

|y − y0|N−1

∥∥∥∥
L1

≤ C

with C depending only on L log(2 + L) norm of σij, L
1 norm of q, C1 norm of η and

dimension N .

6. Hölder estimate

The previous theorem indicates that a one-sided bound for q elevates the regulaity of

the pressure upto Orlicz class L log(2 + L). In fact an upper constant bound on the dual

pressure q? implies local Hölder continuity for u.

Theorem 12. Let u be a local minimizer. Assume that the dual pressure q? (i.e. the

pressure assosiated with v, the inverse of u) admits a lower bound, namely

q? ≤ C

for some constant C. Then u ∈ Cα
loc(Ω) for some α ∈ (0, 1).

Proof. In view of (1.5) q? is defined modulo a constant hence without loss of generality we

may assume that C = 0. Thus the local L log(2+L) estimate from section 5 is valid for q?.

Employing Corollary 3 we deduce that the inverse map v = u−1 satisfies the Euler-Lagrange

equation

∫
vim(v−1(x))vjm(v−1(x))ψi

j(x)dx =

∫
q?(x) divψ(x)dx

for any ψ(x) ∈ C∞
0 (Ω,R2). Take ψ(x) = (xi−xi0)η, with η ∈ C∞

0 (Ω), η ≡ 1 inBR(x0), suppη ⊂
B2R(x0), η ≥ 0, |Dη| ≤ C/R in the former equation. Then ψi

j = δijη + (xi − xi0)ηj and

∫ [
vim(v−1(x))

]2
η(x) + vim(v−1(x))vjm(v−1(x))(xi − xi0)ηj =

∫
q?[2η + (xi − xi0)ηj ].

Thus rearranging the terms we get

∫
B2R(x0)

[
|∇v(v−1(x))|2 − 2q?

]
η =

∫
B2R(x0)\BR(x0)

{
q? − (vim(v−1(x))vjm(v−1(x)))

}
(xi − xi0)ηj

≤ C

∫
B2R(x0)\BR(x0)

|q?|+ |∇v(v−1(x))|2.
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Utilizing the change of variable formula, (3.1) and the obvious inequality |∇u|2 − 2q? ≥
|∇u|2 − q? ≥ 0 we obtain

∫
BR(x0)

|∇u|2 − q? ≤ C

∫
B2R(x0)\BR(x0)

|∇u|2 − q?.

Adding C

∫
BR(x0)

|∇u|2 − q? and dividing by 1 + C we get that

∫
BR(x0)

(
|∇u|2 − q?

)
≤ θ

∫
B2R(x0)

(
|∇u|2 − q?

)
with θ = C/(C + 1) < 1.

Consequently from DeGiorgi’s itaration we have

∫
Bρ(x0)

|∇u|2 − q? ≤ Cρβ

for some β ∈ (0, 1). In particular

1

|Bρ|

∫
Bρ(x0)

|∇u|2 ≤ Cρβ−2 = Cρ2(β/2−1).

Taking β/2 = α and employing Theorem 7.19 from [7] we complete the proof. �

7. W 1,s estimate for

If the pressure is constant then in view of (1.5) or (1.4), it follows that u is harmonic.

This observation suggests that if the values of the pressure are close to some constant p0

then one should expect higher regularity for u.

Theorem 13. Let u ∈ W 1,2(Ω,R2, ) ∩W 1,3
loc (Ω,R

2) be a weak solution of ( 1.4). Then for

any s > 0 there exists an ε = ε(s) such that if |p − p0| < ε for some constant p0 then

u ∈W 1,s
loc (Ω,R

2).

Proof. Let uh be the solution to Dirichlet problem

{
∆uh = 0 in Q,
uh = u on ∂Q,

for any square Q ⊂ Ω. Notice that div(p0cof∇u) = p0 div(cof∇u) = 0 since p0 is a constant

and

cof∇u =

(
u22 −u21
−u12 u11

)
.
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It is well-known that uh exists. Since u ∈W 1,3
loc then by Theorem 1 the equation div(∇u−

padj∇u) = 0 is satisfied in the weak sense. Then∫
Q
|∇(u− uh)|2 =

∫
Q
(∇u−∇uh) : (∇u+∇uh)

=

∫
Q
∇u : (∇u−∇uh)

=

∫
Q
(p− p0)cof∇u : ∇(u− uh)

≤
[∫

Q
|(p− p0)cof∇u|2

] 1
2
[∫

Q
|∇(u− uh)|2

] 1
2

thus

∫
Q
|∇(u− u0)|2 ≤

∫
Q
|(p− p0)cof∇u|2

≤ ε2
∫
Q
|∇u|2.

On the other hand ∫
Q
|∇uh|2 ≤

∫
Q
|∇u|2

≤ (1 + ε2)

∫
Q
|∇u|2.

Consequently we have

1

|Q|

∫
Q
|∇uh|2 ≤

1 + ε2

|Q|

∫
Q
|∇u|2,

1

|Q|

∫
Q
|∇u−∇uh|2 ≤

ε2

|Q|

∫
Q
|∇u|2.

Applying Theorem A [3], page 3, the result follows. �
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