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THE STEFAN PROBLEM WITH CONSTANT
CONVECTION

ARAM L. KARAKHANYAN AND JOSE-FRANCISCO RODRIGUES

ABSTRACT. We prove the optimal local regularity of the weak solu-
tions w € H'(Cr) to the two phase continuous casting problem
Au =div[(u)v], in C,=Qx(0,L),L>0

with given convection v, a domain @ C RN~ with Lipschitz boundary
and enthalpy $(u). In order to prove our main result for the one phase
problem, i.e. when u > 0, we use the method of dyadic scaling whilst
for the two phase problem the Alt-Caffarelli-Friedman monotonicity
formula is employed.

1. INTRODUCTION

In this article we prove the optimal regularity for the weak solutions to
Stefan problem with convection. The Stefan problem provides a mathemat-
ical model for the phase-transition phenomenon. An example of this sort is
the continuous casting problem, which models a metal fabrication technique
used in the production of ingots [6] page 32. In this case the liquid phase
moves with a prescribed constant velocity v = ey. For similar problems,
for instance describing the thawing or freezing of the water where the liquid
part is in motion, and relevant physical background we refer to [2] Chapter
10.7, [3], [6].

Here we focus on a model stationary problem reflecting the basic peculiars
that most phase-transition problems with convection share.

2. PROBLEM SET UP

Given a bounded Lipschitz domain @ ¢ R¥~1. Let L > 0 and C; =
Q x (0,L). The points in C, are denoted by X = (z,z), where z € Q and
z € (0,L). In what follows Dy, u, D,u,i = 1,..., N — 1 denote the partial
derivatives of u.
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Let v = u(X,t) be the temperature at X € Cy, at time ¢. The heat flux,
i.e. the net amount of heat flowing across surface S C Cy, from one side to

another each second, is F' = / q - vdo, where v is the outer unit normal
s

to S, q is the flux vector. According to Fourier’s law we have q = —kVu

where k is the thermal conductivity.

We assume that the total energy (or enthalpy if the pressure is constant)
at time ¢ is the sum of heat and latent heat, i.e. § = cpudV 4 LpdV', where p
is the density and c is the specific heat constant of the material and dV is an
elementary volume. In the integral form the total heat for some subregion

BCCLisH:/[SdV.
B

It is possible to have heat generated in the various parts of Cy, called heat
sources, or extracted called heat sinks. The source (or sink) with density f

contributes the amount of heat £ = / fdv.
B

d
The energy conservation then, if no convection is present, gives %H =

—F + FE or in the integral form

(Z/BB:_/Sq.vda_i_/Bf:—/BdiquV-i-/Bf

Here and below v denotes the outer unit normal to S = 0B.

If the liquid part is moving then after time ¢ a point X € B goes to Y =
Y (X,t) € B(t), where v is the velocity of convection and B(t) is the image of
B under mapping Y (-, t). Employing change of variables and Euler’s formula

(see [8] Chapter 2.3) we have 88—}] = Jdivv with J = detDY,dV = JdX we
obtain from the energy balance condition

d / [8[3 . ]
— = — + VB -v+pBdivv| Jdx
dt B(t)ﬁ 5ot P B

— / divqdV + f-
B(t) B(t)

Thereby we have the partial differential equation

0
(2.1) &B + div[pv] = —divg + f.
For the steady state problem the equation (2.1) reduces to
(2.2) div[pv] = div(kVu) + f.

Furthermore, we assume that the thermal conductivity k is constant and
the liquid is incompressible, e.g. p = 1. As for the enthalpy B(u) we recall
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it’s common form
as if s<0,
(2.3) B(s)=< €10,1] if s=0,
as+1 if s>0,

see [5]. Note that B(s) = as + H(s) where H(s) is the Heaviside function.
It follows from (2.2) that the temperature u solves the following boundary
value problem

Au=D,p(u)+ f in (g,

u(z,0) = ho(x) on  Qx{0},
(2.4) w(z, L) = hy(z) on Q x {L},

% = (u — up) on 00 x (0, L),

where hg, hy are given functions, (3 is the enthalpy defined by (2.3), v is the
exterior unit normal to 9 x (0, L), a > 0 is a constant, and ug is the phase
change temperature which, for simplicity, we take ug = 0.

Remark 1. The weak formulation of the problem (2.4), and the existence
of bounded weak solutions, can be found in [5] Theorem 4.1 page 190 (see
also [7]).

In in the first part of Theorem 2 we allow the convection v : C;, — RY

def
to be a bounded vector-field whereas in the second part we take v = ey =

(0,0,...,1), the unit direction of the z—direction, see Section 4.1.

3. OpTIMAL GROWTH

3.1. Continuity of solutions. By Theorem 4.1. [5], u is bounded. More-
over the weak solutions of (2.2) are continuous for u solves the divergence
structure equation Au = divf in Cp, where one can take f = eyf €
L>(Cr,RYN) if the convection is constant. Thus the continuity of u fol-
lows from DeGiorgi’s estimates. In fact one can show that u is a-Holder
continuous for any positive & < 1. This means that {u > 0} and {u < 0}
are open sets. Clearly v cannot be more than Lipschitz continuous as the

Stefan condition

L
= Dutvt — Du~v~
indicates, see [5]. Here u™ are the positive and negative parts of u = u™ —u~
and v, v~ are the outer normals to {u > 0} and {u < 0}, respectively.
Thus the following problem rises: Are the weak solutions u to the equation
Au = div[B(u)v] 4+ f locally Lipschitz continuous?

Theorem to follow answers this question.

+
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Theorem 2. a) Letu be a non-negative bounded weak solution to (2.4).
Then the weak solutions are locally Lipschitz continuous in Cy,, pro-
vided that v € L>=(Cp,RN) and f € C(Cp).

b) If u is a continuous weak solution of
Au=D,(p(u)) in Cg

and there is mo sign restriction on u, then u s locally Lipschitz
continuous.

The proof of part a) is shorter and we demonstrate it here first.

Proof of Theorem 2 a). As it is pointed out in [4], in order to establish
the Lipschitz continuity of wu, it is enough to show that for any compact set
K CC Cy, there exists a tame constant C, depending on dist(K,dCr,) such
that

sup  w <max(C27F, sup wu), VX € K Nofu> 0}.
By k_1(X) B, (X)
We argue towards a contradiction: Suppose there exist k; € N, k; 7
00,X; € K No{u; > 0} and weak solutions u; with free boundary I'; =
0{u; > 0}, such that 0 < u; < M (see Remark 1) and

e 1
(3.1 S; o sup  u; > max(j27%, = sup  wy).
B —k;-1(X;) B, —k; (Xj)
(X427 X

Introduce v;(X) = M, where S; = sup  u. It follows

Sj B, k,-1(X;)
from (3.1) that

1

(3.2) ;(0) =0, supv; > 2 0<v;(X)<2, Xe€B.

1
2

Since the functions u; are bounded, it follows from (3.1) that M > j27i
implying that k; — oo.

According to (2.2), v; solves the following equation

272](71'
Avj = (Auy)(X; +27% X)
J
2= ki ke 9—2k; ke
= — div[B(v;)v(X; +2 ]X)]+?f(Xj+2 7X)
J J
E divE; + f,
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where
27ktj 272k}j
BV +27HX), f = T f(X + 27 X).
Sj Sj
Since by assumptions v is bounded we get from (3.1) (the definition of S;)
and the explicit form of B given by (2.3), the decay estimate

F, =

—k; M
5 P2)sup |v] < —B(2)sup |v] = 0.
J Cr J ¢

L

2
IF)l <
Similarly, one can see that sup|f;(X)| — 0.
B,

Utilizing (3.2) and DeGiorgi’s theorem we obtain that the sequence {v;}
is uniformly Hélder continuous in Bj/4 and from the Caccioppoli inequality
it follows that {v;} is also bounded in Hl(B%). Then using a customary
compactness argument and the decay estimate for {F;} and {f;}, we can
extract a subsequence {v;,, } C {v;} locally uniformly converging to vy in
Bs and weakly in H LB s ). Moreover

7/DU0D§D(; 7/vamD(p: /fjmgafij'DQD 4)0, VQDE OSO(B% .

Thus, vy is a nonnegative continuous harmonic function in B%. From
the uniform convergence v;,, — vy we see that (3.2) translates to vy and
we conclude that vp(0) = 0 and supvg = % However this contradicts the
1

2
strong maximum principle and the proof follows. O

4. PROOF OF THEOREM 2 B)

4.1. Preliminary lemmas. In this subsection we prove some technical
lemmas in order to tackle the optimal local regularity of the solution for
the two phase problem, i.e. when there is no sign restriction on u. Through-
out this section v = ey. We begin with the following useful observation. If
w(X) =e~ % u(X) then
a® az

(4.1) Aw = |div(vB(u)) — au, + T ez,

We know that in {u > 0} U {u < 0} u solves the equation Au = au,, see
(2.4). Thus the positive and negative parts of w satisfy the equation

22 CL2

(4.2) Awt =e % %ui = Zwi > 0.

refore w™,w™ ar ntinuous, nonn ive su rmonic functions in Cy,.
Therefore w™, are continuous, nonnegative subharmonic functions in C
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This observation, together with (4.2) and Lemma 2, will allow us to em-
ploy the monotonicity formula, Lemma 5.1 in [1], and show that w is locally
Lipschitz continuous in Cy,.

First we need some preliminary estimates near the free boundary I'(u) =
o{u > 0}.

Lemma 1. For any compact set K C Cy, there exists a positive tame con-
stant C, depending on K such that for any B,(Xo) C K and Xo € T N K
the following estimate holds

(4.3) / Aw| < CpN—1.
p(XO)

Proof. Integrating (4.1) and using Green’s formula we get
2

/ [div(eNmu))—auzﬂu

(4.4) / Aw

4
Bp(XO) Bp(XO)
= e 2% [B(u) + aulen - v
9B, (Xo)
— / [B(u) — auley - De™ 2%
B,(Xo)
+ / e_%za—zu
4
BP(XO)
< CA«pNA'

]

Lemma 2. For any compact set K C Cy, there exists a positive number pg
depending only on dist(K,0Cr), N and a positive tame constant C = C(K)
such that for any B,(Xo) C K and Xo € I' N K the following estimate holds

(4.5) ][ w| < Cp, p < po-
B, (Xo)

Proof. From Green’s representation formula

w(Xo) = / w(Y)P(Y, Xo)dHN 1 — / G(X, Xo)Aw(X)dX,

3B, (Xo) B,(Xo)
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where P(Y, Xj) is the Poisson kernel and G(X, Xy) is the Green function
corresponding to B,(Xo). At Xo € I', w(Xo) = 0 implying that

][ w(Y)dHN ! = / G(X, Xo)Aw(X)dX

9B, (Xo) B,(Xo)

_ 8 4 N-1 N-1
= /OG(s)ds /Ot /Aw tE)AH”™ ~*(&)dt | ds

G(s) / Aw /G’ / Aw.

Bs(Xo) s(Xo)

Now the result follows from (4.3) and the obvious estimate |G’(s)| < C/sV 1,
]

The next crucial step is to use the Alt-Caffarelli-Friedman monotonicity
formula from [1]. Recall Lemma 5.1 from [1].

Lemma 3. Let w™,w™ be two continuous, nonnegative subharmonic func-
tions in B1(Z), wmwt = 0,wt(Z) = w_(Z) =0. Then

1 |Vw+ |Vw
SR, Z,wt w) = — dX dX
Br(2) Br(2)

is a nondecreasing function of R and

ezcfir [ @ [ @

Bi1(Z) B1(2)

Remark 3. It follows from (4.2) that w* defined by w(X) = e~ T u(X)
are subharmonic functions with disjoint supports. Moreover it follows from
DeGliorgi’s theorem, on the Hélder continuity of weak solutions of Au = div f
with bounded f, that w* are continuous. Hence Lemma 8 can be applied to
the pair wt,w™.

4.2. Proof of Theorem 2 b). It is enough to prove that u grows away from
the free boundary linearly. To fix the ideas we assume that By (Xy) C Cp.
Assume that Xy € Cr, and denote by X € T' = 9{u > 0} the closest point
to Xp. Put p = | X — Xo| = dist(X,T') and suppose that w(Xg) > Mp > 0
for some large M. It follows from Harnack’s inequality that w > ¢oM in
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FIGURE 1. The blue domain is D.

Bsp (Xo) C Cr, hence
wt > ¢ ][er > coc1 Mp,

0B, (X) Sp

where S, = 0B,(X) N Bsp (Xo) and ¢; depends only on the dimension N.
By Lemma 2

M
f w > ][ wt —Cp > (coetM — C)p > =P
9B, (X) 8B, (X)

if M is large enough.

Next, let Y € Bg(Xo) be a point on )7)_(?). Then wt > ¢gM in B, (Y).
We use polar coordinates (r,w) about Y. Let E, be the set of w € 0B1(Xo)
such that if (p,w) € 0B,(X) then u(p,w) < 0. After switching to polar coor-
dinates with the unit direction in %Ep C 0B; and using Holder’s inequality
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we get
(4.6) — < 1 ][ w‘—l/w_(pw)dw
' T p ’
9B, (X) +E,
1
= ;//D,.wf(r,w)dew
1E, Lo
1
2
1 1 _ 2
= —(plEp])? |Dyw™ (r,w)|*drdw
p
g, L
1
2
< —(plEp])? [Vw™(2)?dz
By (X)

Introduce the cone K = {tw,t > 0,w € E,}. Recall that w > ¢oM in
B (Y) by Harnack’s inequality. Integrating D,w™ over D = K ((BP(X) \ Bs (Y)) N
{w > 0} (see Figure 1) we obtain

(A7) || Meop™

IN

[ ()

9B (Y)NK

// D,w™ (r,w)drdw <
D

IA

[N

AN

(DIE, ) / Dw* (2)2dZ
By (X)
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Thus combining (4.6)-(4.7) and applying Lemma 3 and Remark 3 we obtain

M2

2 2
2co + 2 - 2
< 22 / \Dwt(2)[2dZ / \Dw(2)[2dZ

C
i Bp (X) By (X)

=

262 1
= | = Dwt(2)|%dzZ
cop? | pN 2 / [Dw(Z)]

1 _
N / |Dw™(Z)|*dZ
B,(X) B, (X)

IA

2 gt
- COp2 [/0 q>(p)]
2cy

= o)

Co

2C e [ s [y

Bl(Xo) BI(XO)

Nl=

IN

and we conclude the proof of Theorem 2 b). O
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