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THE STEFAN PROBLEM WITH CONSTANT

CONVECTION

ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

Abstract. We prove the optimal local regularity of the weak solu-

tions u ∈ H1(CL) to the two phase continuous casting problem

∆u = div[β(u)v], in CL = Ω× (0, L), L > 0

with given convection v, a domain Ω ⊂ RN−1 with Lipschitz boundary
and enthalpy β(u). In order to prove our main result for the one phase

problem, i.e. when u ≥ 0, we use the method of dyadic scaling whilst

for the two phase problem the Alt-Caffarelli-Friedman monotonicity
formula is employed.

1. Introduction

In this article we prove the optimal regularity for the weak solutions to
Stefan problem with convection. The Stefan problem provides a mathemat-
ical model for the phase-transition phenomenon. An example of this sort is
the continuous casting problem, which models a metal fabrication technique
used in the production of ingots [6] page 32. In this case the liquid phase
moves with a prescribed constant velocity v = eN . For similar problems,
for instance describing the thawing or freezing of the water where the liquid
part is in motion, and relevant physical background we refer to [2] Chapter
10.7, [3], [6].

Here we focus on a model stationary problem reflecting the basic peculiars
that most phase-transition problems with convection share.

2. Problem set up

Given a bounded Lipschitz domain Ω ⊂ RN−1. Let L > 0 and CL =
Ω × (0, L). The points in CL are denoted by X = (x, z), where x ∈ Ω and
z ∈ (0, L). In what follows Dxiu,Dzu, i = 1, . . . , N − 1 denote the partial
derivatives of u.

Keywords: Continuous casting problem, Stefan problem, free boundary, con-
vection.
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2 ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

Let u = u(X, t) be the temperature at X ∈ CL at time t. The heat flux,
i.e. the net amount of heat flowing across surface S ⊂ CL from one side to

another each second, is F =

ˆ
S

q · νdσ, where ν is the outer unit normal

to S, q is the flux vector. According to Fourier’s law we have q = −k∇u
where k is the thermal conductivity.

We assume that the total energy (or enthalpy if the pressure is constant)
at time t is the sum of heat and latent heat, i.e. β = cρudV +LρdV , where ρ
is the density and c is the specific heat constant of the material and dV is an
elementary volume. In the integral form the total heat for some subregion

B ⊂ CL is H =

ˆ
B

βdV .

It is possible to have heat generated in the various parts of CL, called heat
sources, or extracted called heat sinks. The source (or sink) with density f

contributes the amount of heat E =

ˆ
B

fdV .

The energy conservation then, if no convection is present, gives
d

dt
H =

−F + E or in the integral form

d

dt

ˆ
B

β = −
ˆ
S

q · νdσ +

ˆ
B

f = −
ˆ
B

divqdV +

ˆ
B

f.

Here and below ν denotes the outer unit normal to S = ∂B.

If the liquid part is moving then after time t a point X ∈ B goes to Y =
Y (X, t) ∈ B(t), where v is the velocity of convection and B(t) is the image of
B under mapping Y (·, t). Employing change of variables and Euler’s formula

(see [8] Chapter 2.3) we have
∂J

∂t
= J divv with J = detDY, dV = JdX we

obtain from the energy balance condition

d

dt

ˆ
B(t)

β =

ˆ
B

[
∂β

∂t
+∇β · v + β divv

]
Jdx

= −
ˆ
B(t)

divqdV +

ˆ
B(t)

f.

Thereby we have the partial differential equation

(2.1)
∂

∂t
β + div[βv] = −divq + f.

For the steady state problem the equation (2.1) reduces to

div[βv] = div(k∇u) + f.(2.2)

Furthermore, we assume that the thermal conductivity k is constant and
the liquid is incompressible, e.g. ρ = 1. As for the enthalpy β(u) we recall
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3

it’s common form

β(s) =

 as if s < 0,
∈ [0, 1] if s = 0,
as+ 1 if s > 0,

(2.3)

see [5]. Note that β(s) = as + H(s) where H(s) is the Heaviside function.
It follows from (2.2) that the temperature u solves the following boundary
value problem

∆u = Dzβ(u) + f in CL,
u(x, 0) = h0(x) on Ω× {0},
u(x, L) = h1(x) on Ω× {L},
∂u

∂ν
= (u− u0) on ∂Ω× (0, L),

(2.4)

where h0, h1 are given functions, β is the enthalpy defined by (2.3), ν is the
exterior unit normal to ∂Ω× (0, L), a > 0 is a constant, and u0 is the phase
change temperature which, for simplicity, we take u0 = 0.

Remark 1. The weak formulation of the problem (2.4), and the existence
of bounded weak solutions, can be found in [5] Theorem 4.1 page 190 (see
also [7]).

In in the first part of Theorem 2 we allow the convection v : CL → RN

to be a bounded vector-field whereas in the second part we take v = eN
def≡

(0, 0, . . . , 1), the unit direction of the z−direction, see Section 4.1.

3. Optimal Growth

3.1. Continuity of solutions. By Theorem 4.1. [5], u is bounded. More-
over the weak solutions of (2.2) are continuous for u solves the divergence
structure equation ∆u = div f in CL, where one can take f = eNβ ∈
L∞(CL,RN ) if the convection is constant. Thus the continuity of u fol-
lows from DeGiorgi’s estimates. In fact one can show that u is α-Hölder
continuous for any positive α < 1. This means that {u > 0} and {u < 0}
are open sets. Clearly u cannot be more than Lipschitz continuous as the
Stefan condition

L

k
= Du+ν+ −Du−ν−

indicates, see [5]. Here u± are the positive and negative parts of u = u+−u−
and ν+,ν− are the outer normals to {u > 0} and {u < 0}, respectively.
Thus the following problem rises: Are the weak solutions u to the equation
∆u = div[β(u)v] + f locally Lipschitz continuous?

Theorem to follow answers this question.
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4 ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

Theorem 2. a) Let u be a non-negative bounded weak solution to (2.4).
Then the weak solutions are locally Lipschitz continuous in CL, pro-
vided that v ∈ L∞(CL,RN ) and f ∈ C(CL).

b) If u is a continuous weak solution of

∆u = Dz(β(u)) in CL
and there is no sign restriction on u, then u is locally Lipschitz
continuous.

The proof of part a) is shorter and we demonstrate it here first.

Proof of Theorem 2 a). As it is pointed out in [4], in order to establish
the Lipschitz continuity of u, it is enough to show that for any compact set
K ⊂⊂ CL there exists a tame constant C, depending on dist(K, ∂CL) such
that

sup
B

2−k−1 (X)

u ≤ max(C2−k, sup
B

2−k (X)

u), ∀X ∈ K ∩ ∂{u > 0}.

We argue towards a contradiction: Suppose there exist kj ∈ N, kj ↑
∞, Xj ∈ K ∩ ∂{uj > 0} and weak solutions uj with free boundary Γj =
∂{uj > 0}, such that 0 ≤ uj ≤M (see Remark 1) and

Sj
def≡ sup

B
2
−kj−1 (Xj)

uj ≥ max(j2−kj ,
1

2
sup

B
2
−kj (Xj)

uj).(3.1)

Introduce vj(X) =
uj(Xj + 2−kjX)

Sj
, where Sj = sup

B
2
−kj−1 (Xj)

u. It follows

from (3.1) that

vj(0) = 0, sup
B 1

2

vj ≥
1

2
, 0 ≤ vj(X) ≤ 2, X ∈ B1.(3.2)

Since the functions uj are bounded, it follows from (3.1) that M > j2−kj

implying that kj →∞.
According to (2.2), vj solves the following equation

∆vj =
2−2kj

Sj
(∆uj)(Xj + 2−kjX)

=
2−kj

Sj
div[β(vj)v(Xj + 2−kjX)] +

2−2kj

Sj
f(Xj + 2−kjX)

def≡ divFj + fj ,
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5

where

Fj =
2−kj

Sj
β(vj)v(Xj + 2−kjX), fj =

2−2kj

Sj
f(Xj + 2−kjX).

Since by assumptions v is bounded we get from (3.1) (the definition of Sj)
and the explicit form of β given by (2.3), the decay estimate

|Fj | ≤
2−kj

Sj
β(2) sup

CL
|v| ≤ M

j
β(2) sup

CL
|v| → 0.

Similarly, one can see that sup
B1

|fj(X)| → 0.

Utilizing (3.2) and DeGiorgi’s theorem we obtain that the sequence {vj}
is uniformly Hölder continuous in B3/4 and from the Caccioppoli inequality

it follows that {vj} is also bounded in H1(B 3
4
). Then using a customary

compactness argument and the decay estimate for {Fj} and {fj}, we can
extract a subsequence {vjm} ⊂ {vj} locally uniformly converging to v0 in
B 3

4
and weakly in H1(B 3

4
). Moreover

−
ˆ
Dv0Dϕ←− −

ˆ
DvjmDϕ =

ˆ
fjmϕ−Fjm ·Dϕ −→ 0, ∀ϕ ∈ C∞0 (B 3

4
).

Thus, v0 is a nonnegative continuous harmonic function in B 3
4
. From

the uniform convergence vjm → v0 we see that (3.2) translates to v0 and
we conclude that v0(0) = 0 and sup

B 1
2

v0 = 1
2 . However this contradicts the

strong maximum principle and the proof follows. �

4. Proof of Theorem 2 b)

4.1. Preliminary lemmas. In this subsection we prove some technical
lemmas in order to tackle the optimal local regularity of the solution for
the two phase problem, i.e. when there is no sign restriction on u. Through-
out this section v = eN . We begin with the following useful observation. If
w(X) = e−

az
2 u(X) then

(4.1) ∆w =

[
div(vβ(u))− auz +

a2

4
u

]
e−

az
2 .

We know that in {u > 0} ∪ {u < 0} u solves the equation ∆u = auz, see
(2.4). Thus the positive and negative parts of w satisfy the equation

(4.2) ∆w± = e−
az
2
a2

4
u± =

a2

4
w± ≥ 0.

Therefore w+, w− are continuous, nonnegative subharmonic functions in CL.
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6 ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

This observation, together with (4.2) and Lemma 2, will allow us to em-
ploy the monotonicity formula, Lemma 5.1 in [1], and show that u is locally
Lipschitz continuous in CL.

First we need some preliminary estimates near the free boundary Γ(u) =
∂{u > 0}.
Lemma 1. For any compact set K ⊂ CL there exists a positive tame con-

stant Ĉ, depending on K such that for any Bρ(X0) ⊂ K and X0 ∈ Γ ∩K
the following estimate holds

(4.3)

∣∣∣∣∣∣∣
ˆ

Bρ(X0)

∆w

∣∣∣∣∣∣∣ ≤ ĈρN−1.

Proof. Integrating (4.1) and using Green’s formula we getˆ

Bρ(X0)

∆w =

ˆ

Bρ(X0)

[
div(eNβ(u))− auz +

a2

4
u

]
e
a
2 z(4.4)

=

ˆ

∂Bρ(X0)

e−
a
2 z [β(u) + au] eN · ν

−
ˆ

Bρ(X0)

[β(u)− au]eN ·De−
a
2 z

+

ˆ

Bρ(X0)

e−
a
2 z
a2

4
u

≤ ĈρN−1.

�

Lemma 2. For any compact set K ⊂ CL there exists a positive number ρ0

depending only on dist(K, ∂CL), N and a positive tame constant C = C(K)
such that for any Bρ(X0) ⊂ K and X0 ∈ Γ∩K the following estimate holds

(4.5)

∣∣∣∣∣∣∣
 

∂Bρ(X0)

w

∣∣∣∣∣∣∣ ≤ Cρ, ρ < ρ0.

Proof. From Green’s representation formula

w(X0) =

ˆ

∂Bρ(X0)

w(Y )P (Y,X0)dHN−1 −
ˆ

Bρ(X0)

G(X,X0)∆w(X)dX,
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7

where P (Y,X0) is the Poisson kernel and G(X,X0) is the Green function
corresponding to Bρ(X0). At X0 ∈ Γ, w(X0) = 0 implying that

 

∂Bρ(X0)

w(Y )dHN−1 =

ˆ

Bρ(X0)

G(X,X0)∆w(X)dX

=

ˆ ρ

0

G(s)
d

ds

ˆ s

0

tN−1

ˆ

∂B1

∆w(tξ)dHN−1(ξ)dt

 ds

= G(s)

ˆ

Bs(X0)

∆w

∣∣∣∣∣
ρ

0

−
ˆ ρ

0

G′(s)

ˆ

Bs(X0)

∆w.

Now the result follows from (4.3) and the obvious estimate |G′(s)| ≤ C/sN−1.
�

The next crucial step is to use the Alt-Caffarelli-Friedman monotonicity
formula from [1]. Recall Lemma 5.1 from [1].

Lemma 3. Let w+, w− be two continuous, nonnegative subharmonic func-
tions in B1(Z), w−w+ = 0, w+(Z) = w−(Z) = 0. Then

Φ(R,Z,w+, w−) =
1

R4

ˆ

BR(Z)

|∇w+(X)|2
|X − Z|N−2

dX

ˆ

BR(Z)

|∇w−(X)|2
|X − Z|N−2

dX

is a nondecreasing function of R and

Φ(1) ≤ C

1 +

ˆ

B1(Z)

(w+)2 +

ˆ

B1(Z)

(w−)2

 .

Remark 3. It follows from (4.2) that w± defined by w(X) = e−
az
2 u(X)

are subharmonic functions with disjoint supports. Moreover it follows from
DeGiorgi’s theorem, on the Hölder continuity of weak solutions of ∆u = div f
with bounded f, that w± are continuous. Hence Lemma 3 can be applied to
the pair w+, w−.

4.2. Proof of Theorem 2 b). It is enough to prove that u grows away from
the free boundary linearly. To fix the ideas we assume that B1(X0) ⊂ CL.
Assume that X0 ∈ CL and denote by X ∈ Γ = ∂{u > 0} the closest point
to X0. Put ρ = |X −X0| = dist(X,Γ) and suppose that w(X0) ≥ Mρ > 0
for some large M . It follows from Harnack’s inequality that w > c0M in
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8 ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

Eρ

Bρ(X)

Bρ(X0)

X

Y

w+

w−

X0

Sρ

Figure 1. The blue domain is D.

B 3ρ
4

(X0) ⊂ CL, hence

 

∂Bρ(X)

w+ ≥ c1
 

Sρ

w+ ≥ c0c1Mρ,

where Sρ = ∂Bρ(X) ∩ B 3ρ
4

(X0) and c1 depends only on the dimension N .

By Lemma 2

 

∂Bρ(X)

w− ≥
 

∂Bρ(X)

w+ − Cρ ≥ (c0c1M − C)ρ >
M

2
ρ

if M is large enough.

Next, let Y ∈ B ρ
2
(X0) be a point on

−−−→
XX0. Then w+ ≥ c0M in B ρ

4
(Y ).

We use polar coordinates (r, ω) about Y . Let Eρ be the set of ω ∈ ∂B1(X0)
such that if (ρ, ω) ∈ ∂Bρ(X) then u(ρ, ω) < 0. After switching to polar coor-
dinates with the unit direction in 1

ρEρ ⊂ ∂B1 and using Hölder’s inequality
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we get

M

2
≤ 1

ρ

 

∂Bρ(X)

w− =
1

ρ

ˆ
1
ρEρ

w−(ρ, ω)dω(4.6)

=
1

ρ

ˆ
1
ρEρ

ˆ

Iω

Drw
−(r, ω)drdω

=
1

ρ
(ρ|Eρ|)

1
2

 ˆ
1
ρEρ

ˆ

Iω

|Drw
−(r, ω)|2drdω


1
2

≤ 1

ρ
(ρ|Eρ|)

1
2

 ˆ

Bρ(X)

|∇w−(Z)|2dZ


1
2

Introduce the cone K = {tω, t > 0, ω ∈ Eρ}. Recall that w ≥ c0M in

B ρ
2
(Y ) by Harnack’s inequality. IntegratingDrw

+ overD = K∩
(

(Bρ(X) \B ρ
4
(Y )
)
∩

{w > 0} (see Figure 1) we obtain

|Eρ|Mc0ρ
N ≤

ˆ

∂B ρ
4

(Y )∩K

w+
(ρ

4
, ω
)

(4.7)

≤
¨

D

Drw
+(r, ω)drdω ≤

. (ρ|Eρ|)
1
2

 ˆ

Bρ(X)

|Dw+(Z)|2dZ


1
2

.
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10 ARAM L. KARAKHANYAN AND JOSÉ-FRANCISCO RODRIGUES

Thus combining (4.6)-(4.7) and applying Lemma 3 and Remark 3 we obtain

M2 ≤ 2c2
c0ρN

 ˆ

Bρ(X)

|Dw+(Z)|2dZ


1
2
 ˆ

Bρ(X)

|Dw−(Z)|2dZ


1
2

≤ 2c2
c0ρ2

 1

ρN−2

ˆ

Bρ(X)

|Dw+(Z)|2dZ 1

ρN−2

ˆ

Bρ(X)

|Dw−(Z)|2dZ


1
2

=
2c2
c0ρ2

[
ρ4Φ(ρ)

] 1
2

=
2c2
c0

[Φ(ρ)]
1
2

≤ 2c2C

c0

1 +

ˆ

B1(X0)

(w+)2 +

ˆ

B1(X0)

(w−)2


1
2

and we conclude the proof of Theorem 2 b). �
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