EXISTENCE AND REGULARITY OF THE REFLECTOR SURFACES IN R"*!

ARAM L. KARAKHANYAN

ABSTRACT. In this paper we study the problem of constructing reflector surfaces from the near field data.
The light is transmitted as a collinear beam and the reflected rays illuminate a given domain on the fixed
receiver surface. We consider two types of weak solutions and prove their equivalence under some convexity
assumptions on the target domain. The regularity of weak solutions is a very delicate problem and the positive
answer depends on a number of conditions characterizing the geometric positioning of the reflector and receiver.
In fact, we show that there is a domain D in the ambient space such that the weak solution is smooth if and

only if its graph lies in D.

1. INTRODUCTION

We are given a smooth surface ¥ in R™™!| a pair of bounded regular domains & C TI = {X € R™*! : X"+ = 0}
and V C ¥ and a pair of nonnegative, integrable functions f : &/ — R and g : ¥V — R. For = € U we issue a
ray parallel to en41 that after reflection from the unknown surface Iy, strikes V at some point Z € V), see Figure
1. Denote by £, : © — Z the reflector mapping. The main problem that we study in this paper is formulated as

follows:

Find a function u : Y/ — R such that the reflector mapping %, verifies the following two conditions:

(P) R U) =V and / f= / g for any measurable U’ C U.
u’ ZuU')
The first equation %Z.(U) = V expresses the boundary condition, namely that after reflection the rays strike
the whole target domain V. For the perfect reflector the integral identity manifests the local form of conservation

of energy. The full energy balance condition demands that the pairs (f,U) and (g, V) verify the following identity

(1.1) /uf(ac)daz:/vgd’;’-lg.

Notice that, both conditions in (P) are formal because in general the surface I', may not be smooth and some
extra care will be necessary to formulate (P) in a suitable weak sense.

For u € C?(U) we denote the reflector mapping by Z.(x). Let Y be the unit direction of the reflected ray and
~ be the normal at M. By Snell’s law +,Y and en41 are coplanar and ~ forms equal angles with —e,, 41 and Y.

As a result we obtain the identity

(1.2) Y =en+1 — 2v(en+1,7)

where (,) denotes the inner product in R™*1. In order to derive the differential equation for u we employ the
method of stretch function introduced in [8, 9]. Utilizing the local energy balance condition and computing the
Jacobian of Z,, we find that u solves the Monge-Ampere type equation

Ve[ g2t oo
e vy |2 T T e P

g

(1.3)
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FI1GURE 1. The reflector problem.

where t > 0 is the stretch function, Y is the unit direction of reflected ray and 1 is the defining function of X,
ie. © = {X € R"™ : ¢(X) = 0}. Here the stretch function ¢ > 0 is determined from the implicit equation
Y(x + uent1 +tY) = 0 and hence it depends on x,u and Du.

For u € C*(U) we consider the symmetric matrix

1+ | Dul?

Id — D*u.
2% u

(1.4) W(u) =

In general, this matrix may be indefinite. Note that if [(V,Y)| # 0, say (Ve,Y) > 0, and W(u) > 0 then (1.3)

can be written in an equivalent form

|V 2t " 14+ Du o] f
(1.5) ~o.Y) |15 Duf? det — Id — D"u =

In this paper we study the solution of (1.5) for which W(u) > 0. For such u € C*(U) the equation (1.5)

is degenerate elliptic. Thus the inequality W(u) > 0 defines the class of C? admissible function for which the
equation (1.5) is of elliptic type. Our first step is to introduce a suitable notion of weak solution for the equation
(1.3) such that the condition W(u) > 0 still holds for non-smooth solutions v in a.e. sense. In fact, we consider
two such notions called respectively A-type and B-type weak solutions. Let us define the class of upper-admissible
functions W (U, V) consisting of all w : U — R such that for each point z there is a paraboloid of revolution
P(-,0,Z) (regarded as a concave graph over I = {X € R™"" : 2! = 0}) with focal axis parallel to en1, focal
parameter o and focus Z € V C ¥ that touches I'y, at M = (x,u(x)) from above. Then we say that P is a
supporting paraboloid of u at x. For u € W (U, V) we define the mapping

Su(Z) = {x € U such that P(-,0,Z) is a supporting paraboloid at z}.

Since u € W (U, V) is concave in usual sense then it follows from Aleksandrov’s theorem that .#, is one-to-one

modulo a set of vanishing measure. Subsequently ., generates the set function Su,¢(E) = [ sumy (z)dz, defined
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for each Borel E C V. Then we say that u € W (U, V) is a B-type weak solution of (1.5) if [, gdH% = Bu s (E)
for any Borel £ C V.

The B-type weak solutions are easy to construct since the measure 3, s defined via the mapping ., : V — U,
see Section 8, is countably additive thanks to Aleksandrov’s theorem, see Lemma 8.2. No additional assumptions

are imposed on f, g, and V.

The construction of A-type weak solutions is more delicate and we require stronger assumptions on the data.

Namely, we suppose that the following conditions hold

(1.6) f,9>0,
(1.7) dist(U, V) > 0,
(1.8) (Y, Vy) >0,
(1.9) V is R-convex with respect to U,
(1.10) —ﬁﬂ—i—ldcos@ <0,
where Y is the unit direction of reflected ray at z,u(z)), 6 € [0, 7] is the angle between e,+1 and the normal %

of ¥ ={Z € R""! : 4)(Z) = 0} and II is the second quadratic form of ¥.
Before explaining the meaning of these conditions it is convenient to describe the idea behind the construction

of A-type weak solutions. First we define the mapping
u(x) = {Z €V such that P(-,0,Z) is a supporting paraboloid at z}.

One of our tasks will be to prove that under conditions (1.7), (1.8)
Qg (W) = / gdHs, wClU
R (w)

is a countably additive measure defined on Borel subsets w C U.

Unlike the B-type weak solutions we don’t get the countable additivity for a. 4 directly. Recall that for the
classical Monge-Ampere equation there are two approaches to prove the countable additivity of curvature measure:
one is by Fubini’s theorem, see [1], Theorem 4, page 190 for n = 2, [7] for n > 3, and the other by Legendre’s
transformation, see [18]. Note that the Legenedre transformation also works for a more general class of problems,
including optimal mass transport, where the corresponding matrix W (u) is invariant with respect to translations,
ie. W(u+c) =W(u),ceR.

Unfortunately, (1.4) is not translation invariant with respect to u due to the fact that (1.5) is not of variational
form. This means that —%Id cannot be written as cu;x; (2, Z) for some cost function ¢ : U x V —
R. In the context of optimal transport theory the classical Legendre transformation corresponds to the cost
function ¢(z, Z) = (x, Z), and for general cost ¢ one can define the c-transform which is obtained directly from
Kantorovitch’s duality argument, see [20].

In order to prove that a4 is countably additive we first examine the focal parameters of supporting paraboloids.
From a geometric argument describing the confocal expansion of paraboloids we express the focal parameter of a
supporting paraboloid as a function of Z, z and uw and observe that for each fixed Z there is a unique o such that
P(-,0,Z) is a supporting paraboloid of u at some x € U. That done, we can proceed to define one of the main

novel tools introduced in this paper, a Legendre-like transformation for upper admissible functions « € W+ (U, V)
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such that the transformed function v*, called R—transform of u, is semi-convex. Moreover, if u is admissible then
the mapping %, is one-to-one modulo a set of vanishing surface measure, see Proposition 10.5. In the definition of
Legendre-like transformation we use the fact that 4*(Z) can be seen as the smallest focal parameter of P(z, 0, Z)
touching u from above. The set where %, is not one-to-one is a subset of the points where u* is not differentiable.
Hence the semiconvexity of v*(Z) implies that the surface measure of this set on ¥ vanishes. This, in turn, implies
that the set function ow,q(F) = [, B () gdH3 is well-defined and countably additive, see Section 10.

Note that, (1.7) is necessary in order to infer that u* has C' smooth lower supporting functions and hence u*
is semiconvex, (1.6) helps to construct A-type weak solutions for target domains V which are not R—convex in
the sense of Definition 10.7. It should be remarked here that for general V the resulted a measure is obtained

indirectly via approximation by R—convex domains and weak convergence, see Section 11.

Our existence result for A and B type solutions is contained in

Theorem 1. LetUd CII = {X € R gt = 0} andV C X be bounded domains. Suppose f :U - R,g: ¥ — R

are nonnegative and integrable so that the energy balance condition (1.1) holds.

a) Then there exists a B-type weak solution to (P).

b) If, in addition, the conditions (1.7), (1.8) are satisfied then the measure o, g is countably additive.

c) Finally, if g > 0 then under the same conditions as in part b), there is a A-type weak solution of (P) in
the sense of Definition 10.7.

If V is not R—convex then we can still show that A-type weak solution exists however one must require that
f > 0, see Section 11 proof of Theorem 1 b). This is due to the condition in (10.11), see Definition 10.7. The
third part of Theorem 1 is proven indirectly. Namely, we show that the B-type weak solution, constructed by
an approximation method, is also of A-type provided that V is R—convex and (1.7)-(1.8) are satisfied. Finally,
assuming that f,g > 0 we can remove the R—convexity assumption on V in order to establish the existence of

A-type weak solution via an approximation of ¥V by R—convex domains.

Next, we focus on the problem of C? regularity of weak solutions. The first step is to study Dirichlet’s problem
for the equation (1.5). We use Perron’s method and suitable barrier construction to establish the existence of
A-type weak solutions to Dirichlet’s problem, see Section 12. A crucial step towards proving the higher regularity
of A-type weak solutions is the a priori estimate of C*' norm of smooth solution, obtained in Sections 5 and 13.
That done, we can employ the continuity method to conclude the existence of smooth solution in a small ball.
This method is well-known for the classical Monge-Ampere equation, see Pogorelov [17], [15].

It is worthwhile to point out that the higher regularity is expected for the A-type weak solutions, under suitable
assumptions on data. This is because the equation (1.5) is the (local) energy balance condition for %, generated
by a reflector surface I'y, regarded as a graph over U and w solves the Monge-Ampere type equation (1.3). In
other words, we can think of u as a potential that gives rise to the mapping %, with Jacobian that satisfies the
equation (1.5).

If we try to derive a similar equation for the mapping ., then the equation will involve the function o(Z)-the
focal parameter of supporting paraboloids of B-type solution regarded as a function of Z. The study of this
problem will appear elsewhere.

Note that, in the proof of Lemma 11.2 (with the aid of which we are able to prove Theorem 1, c)) we exploit

the countable additivity of measure ., g, which is an indispensable property of A-type weak solutions.
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Throughout the paper we tacitly assume that the target domain V is a subset of larger smooth receiver X.

However in some arguments we take V = 3 if there is no confusion.

To formulate our regularity result it is convenient to define the regularity domain D where all four conditions
(1.7)-(1.10) are satisfied.

The domain D plays a crucial role in the regularity theory. In fact, one can show that if one of the condi-
tions (1.7)-(1.10) is not satisfied then the weak solution may not be C', see Remark 11.2. The construction of
counterexamples is similar to that of [9, 10] where a the authors have considered the point source of light and
exploits the approximation of a two-point target V via smooth R-convex sets. The corresponding solutions con-
verge to two-paraboloid configuration and hence the C* regularity breaks down as the approximation proceeds.
We refer the reader to [9, 10] for more details. Notice that the problem studied in [9, 10] can be formulated as an
optimisation problem, see [12].

The class of receivers satisfying (1.10) is considerably large, in particular for any plane (1.10) holds true. More
examples are in Section 4.4. In Section 9 we will see that under condition (1.10) it follows that the local supporting

paraboloid is also global. With the aid of these facts we can prove our main regularity

Theorem 2. Let f,g > 0 be C? smooth functions and the conditions of Theorem 1 b) and (1.7)-(1.10) are
satisfied. Then A-type weak solutions of (P) are locally C* regular in U.

The proof uses Pogorelov’s method of comparing the weak solution with upper and lower smooth barriers in a
small ball. We also remark here that to do this we need to consider the (weak) Dirichlet problem for the equation
(1.3) which is done in Section 12.

Recall that in optimal transfer theory one deals with the following Monge-Ampere type equation
det[cacixj (l’,y) - D2’LL(£I,’)} = h(.T)

where c(x,y) is the cost function and h is determined from the data. In [14] the A3 condition was introduced
which allows to employ a Pogorelov-type estimate for the second order derivatives of the smooth solution u. In

this context the A3 condition takes the from

O pr i (T, Y)EE5mumy > col€?|n”

where ¢o is a positive constant, £ 1 n € R™ and y = y(z,p) is the transport mapping (here p is the dummy

variable denoting Du). For our reflector problem (P) the A3 condition takes the following form

1+ |Dul?
t
We remark that (1.11) is equivalent to (1.10), see Section 4.5.

(1.11) VY Zpy, Zpy + 211011 < 0.
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2. NOTATIONS

generic constants,

closure of a set U,

boundary of a set U,

X = (z',...,x™ 0) projection of X = (z',..., z"*!) ¢ R,
inner product in R**1,

{y € R": |y — z| < r}, open ball centered at y,

B, (0),

graph of function u,

diu = Diu= 2% and Du = (Diu, ..., Dyu),

defining function of receiver ¥ = {Z € R™ ™! : 4(Z) = 0},
(n + 1)-dimensional gradient of receiver ¢ : R — R,
(1, .. .%n,0), projection of Vi,

hyperplane {X € R"™' : z" ! = 0},

units sphere in R**1,

n—dimensional Lebesgue measure of £ C II,
n—dimensional Hausdorff measure restricted on X,
see (6.5),

see Definitions 6.1 and 6.2,

see Definition 12.1

3. MAIN EQUATION

3.1. Preliminaries. In this subsection we gather some useful facts to be used along the proof of Proposition 3.3.

Lemma 3.1. If u=1d+ af ®n,0 € R and &, n € R", then we have

detp = 1+a(n),
1 a®n
- Id- %20
a 1+ alé,n)

Here and henceforth Id is the identity matriz.

Proof.

To prove the first equality we assume, without loss of generality, that £ = e;. Then the formula

follows as the matrix g has triangular form.
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As for the second formula we compute

_af®n _ _af®n

31) wla- ] = marasen - 2R
= M+agen- 8 (alen) +1)
= Id.

If we write down the energy balance condition utilizing the change of variables formula then the resulted
Jacobian matrix is of (n + 1) x (n + 1) dimensions. Our next step is to reduce it to n x n and write the resulted

equation in U C R".

We follow the approach introduced in [9]. Notice that in our definition of stretch function (see Proposition 3.3
below) ¢ > 0 whereas in [9] the stretch function may change its sign. Let Z : i/ — V be C? smooth. Then for
any 4,1 <14 < n the vectors 0;Z(x) € TzX, where TzX is the tangent space of the receiver ¥ at Z € ¥. Moreover,
the volume of the n + 1 dimensional parallelepiped spanned by (017,027, ...,0,.2,7) is

zt -z A
Zr -z A
i B

Here 7 is the normal of ¥ at Z. We use this observation to prove the following

Lemma 3.2. Let us denote Z(z) = (2(x), 2" (x)) and assume that the receiver & = {X € R™ ™' : (X) = 0}

for a given smooth function v : R"*' — R. Then the following formula is true

le Z}l o
d
(3.2) J:—dg" = R
wo iz oz A
ZP e 2 Fag
VY|
= — det Dz.
wn+l

Here Sy (resp. Sv) is the surface area on U (resp. V C 2).

Proof. Because of the observation above about the n + 1 dimensional parallelepipeds we only need to prove

the last equality (3.2). Differentiating the equality ¢(Z) = 0 by 2" we find that §; 2" = — llw 3 9279, .
k=1

Ont
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Using this identity we multiply jth row by 0., and subtract it from (n + 1)st row we get

2 B VA Zy o7
Do ; 1 :
det ) ’ ) : = — det n n _
7 .ozr A, Ynt1 VA Zy, Fn
Zrtl ozt S 0120, 0 Y 02" 00 —Yni1Tns
k=1 k=1
zi ... 7} o
1 : - :
= — det ~
Yt VAR Tn
n+1 _
k=1
and the result follows if we note that § = <% |

[Vip|*
3.2. Main formulae. Now we are ready to derive the main equations manifesting the conservation of energy.

Proposition 3.3. Let u € C? then

(3.3) Y(z) = TS [Dup (2Dw, |Du|* — 1),
(3.4) Z(z) = x4+ u(x)ent1 + tY (x),

_ _Ivel 2 e
(3.5) T = gy det [0+ T pm D

where Y is the unit direction of the reflected ray emanated from x and t = t(x,u, Du) is the stretch function

determined from the implicit relation
(3.6) P(x + u(z)ent1 +tY (x)) = 0.
Proof. Let Y be the unit direction of the reflected ray. According to the reflection law

(3.7) —ent1+Y =2y(—€nt1,7)

1

V/1+|Du|?

where v = (Du,—1) is the unit normal of I', at € Y. Thus we have

= Diu Dou D,u B 1
\/1+|Du|2’ \/1—0—|Du|2’.”’ \/1—|—\Du|2’ \/1+\Du|2

and hence from (3.7)

(3.8) v — 2D1u 2Dsu 2D, \Du|2 —1
’ o 14 [Dul?’ 14 |Dul2”" """ 14 |Dul?’ 1+ |Dul?
Thus for y = 17, the projection of Y onto II, we obtain
; 2D;;u DiuDyuDopyju
3.9 Djy" = = —gm T
(3:9) W T I DuP (1 + Dul?)?
2 DiuDpu
= ————— < 0im — 2————— ¢ Dnju.
1+ [Duf? { T+ \Duv} "

In order to prove (3.5) we use Lemma 3.2 and (3.9). Thus we want to compute the determinant of n x n matrix
Dz, where Z = (2, Z™%') and Z is given by (3.4).
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Taking the =7 derivative of z we get
(3.10) 25 = (2" ty") e
= 0ij + 15y + ty;.

Next, we want to express t; in terms of ¢,u, Du. Differentiating ¥ (x 4 ty,u + ty"') = 0 with respect to z; we

obtain
(3.11) Zlbk@kj 5y ) + Y (g + iy T = 0.
k=1
L1
Using the fact that [y"™']? = 1 — |y|?, we infer y;‘“ = —%, which together with (3.11) yields
(3.12) t; = <V’(/), {wkék] + Ynt1u; + t(T/Jkyg + 7/Jn+1y] )}

o1 Vibrj + N R M
(Vo) | PR T KT T Pty

"
—ﬁ {¢k5kj + Yny1uj + ¢ <¢k — ¢n+1 ) yf}

Combining (3.10) and (3.12) we see that

k
zj = i — ﬁ {wk&q + Ynyru; + 1 <’¢k - wn+1 ) Yj }yl + ty;
= di — #yi [Vr0ks + Ynr1us] +t {&k - ;yi(dfk - ¢n+1y7k)] vy
(Vi Y) (Vip, Y) yntt
B1 B2

The matrix on the right hand side can be further simplified. Using the notation %1/1 = (0%, ..., 0r1,0) we have

the following intrinsic form for the matrix £z Dy,

1 = Y 2 Du® Du 2
Dy =|d— — — n -
Dy = [0ty (0 = e | o 14— 2 o D
= T TDuE n |Du|2uD U
where p is the matrix
Du® Du
= T _—
= e -2
1
= |1d = =y ® (0% — Pns1—2=) | [[d — y © Dy
(VoY) y"t
1 Ynt1 Yng1 12
=1Id- Wy@) VUJ Ty y+ (VY- Y)Du— (0¢ -y — gt lyl )Du}
1 n n n
— 10 gy ® [T Sy vy Dk LD
1 ¢n+1 ¢n+1
~ = Ty [T - e
1
=1Id- W?J ® [V1/J + 1/1n+1Du]

B
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Returning to Dz we get

Dz =p |:Id—|— iDQU} R

1+ |Dul?
1 ~
=Id— —=—— n+1Du| .
n (Vw’y>y®[vw+w +1 u]
By Lemma 3.1
(ys V) + Vura(y, Du) y" ™ — (y, Du)
detpu=1-— =Yt
(V9,Y) vy
From (3.3) we conclude that y"*' — (y, Du) = —1. Thus dety = — é’&f% because (y, Du) = 12+|‘D;1‘j2 and hence
from (3.2) we obtain
[V 2t 2
= ———detudet |Id+ ———=D
/ T * L+ [Duf
[V 2t 2
= ———det |ld+ ————=D .
wo,v) LT T e
Now the proof is complete. |

4. CONVEXITY OF G

4.1. Non-Degeneracy. In this section we examine the equation (3.5) manifesting the energy balance condition
for a perfect reflector, see (P). Hence, making use of change of variables formula and computing the Jacobian,

see Lemma 3.2, we infer

gdSv _ g |V [ 2t 2 }
1= == det [Id + —————=D"u
fdSu [V, Y)] 1+ |Dul?
or equivalently
2t 2 f IV, Y)
4.1 det [Id 4+ ———=D ==—"-1
b e[ T T¥ D “H g [Vl
Note that the matrix
2
(4.2) W = —Id% — D2y

is identically zero for any paraboloid P € Pz (U, V), see Section 4.4. Thus, for admissible u € C? we have
W(u) > 0. Hence (4.1) is degenerate elliptic.

Further, we impose the following non-degeneracy condition

(4.3) (Vi,Y) #0,

say, (Vi,Y) > 0 (see (1.8)). In particular this condition implies that Vi # 0. Note that |(V,Y)| # 0 has a

simple geometric meaning, namely it prevents the reflected rays from approaching ¥ tangentially which would

make impossible to detect the scattered data on 3. We recall the definition of regularity domain D, see (1.7)-(1.10).
Thus if (1.8) holds true then we can write (4.1) as

(4.4) det W =

ngoZ’

where

a=|Dul® + 1.

(4.5) 0= {%]" (VoY)

a Vol
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4.2. Convexity of G. In this section we formulate a necessary condition for the regularity of weak solution. It
is called the A3 condition and was introduced in [14] with regard to the optimal mass transport problems. Recall

that the if u is the potential function in Kontorovich’s formulation then formally u solves the equation
detlc, s (2,9) — D*u(z)] = h(z)

where ¢(z,y) is the cost function and h is determined from the data, see [20]. The A3 condition, in this context,

takes the from
apkpz Crigi (l‘, y)glfj'qkm > CO|£|2|77|2

where ¢o is a positive constant, £ L n € R™ and y = y(z,p) is the transport mapping. Our equation is not
of variational form (see Introduction) and cannot be formulated as a mass transport problem. However this

condition still plays a crucial role in the regularity theory of weak A-type solutions of (P).

4.3. The general case. Let u be a C? solution to

(4.6) det {f%GId - DQu} = h(z,u, Du), G(z,u(z), Du(z)) = %

where a = |Dul?> + 1, h = 'r]gj:)Z (see (4.5)) and ¢t is the stretch function. In what follows we write G = % for short

and use the dummy variable p = Du for the gradient of u. We start with computing the first and second order

partial derivatives of G as follows

tp 1
aka = —t—;a—‘,— gapk,
2ty t t
Opip G = ( 1?3 - ptk2pl ) a—
t t
_%am - %am
+¥amlﬁk'

Next, we compute the partial derivatives of ¢. Recall that by (3.4) Z(z) = x + uen+1 +tY, where Y is the unit
direction of the reflected ray. Let ¢ : R®™! — R be the defining function of ¥, i.e. ¥ = {X € R™™! : ¢)(X) = 0}.
Since Z(z) € X it follows that (Z(z)) = 0. Differentiating ¥ (Z(z)) = 0 with respect to pix we get

n+1 X
(4.7) b _ s

t (VYY)
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After differentiating (4.7) by p; we obtain

Oy [t;-i] _ pyp; o tpytp,

t t 2
n+1 n+1
= Vw |:Z wz Z7ZPlY;k + sz’ PkPl:|
’ i,7=1
n+1
Z ¢z7 n+1 ] ] n+1 )
S e (Z b Y z@wpa)
’ i,7=1 1=
n+1 n+1 ) )
- { S v S vy
’ i,j=1 i,j=1

n+1

tp tp
v¢7 szl PkPL oh

where to get the last line we used (4.7). Therefore we obtain

2p tp  tppp 1
t’; L t’;l = oY) V Wpy Zipy + NVYYpp |-

Returning to Op,p, G we get

a 1
(4.8) Opp G = W [*Vzdjzpk Zp, + V1/]kaplj|
t t
tpgk ap; — tz;z Pl
+zamm'

In order to simplify further this identity we utilize (3.3) and rewrite it as aY = (2p,a — 2). Hence, we have

ap, Y +aYp, = 2er + ent1ap,

apyp Y + ap, Yp, + ap, Yp, +aYp,p, = entirap,p,-

Taking the inner product with Vi) we obtain

Apyp (V,Y) + apy (VP Yo, ) + ap, (V, Yo, ) + a{VY, Y 0,) = Ynt1ap,p,

and this in view of (4.7) yields

e TSy T T ORY) T (VY)
Substituting the last identity into (4.8) we see that

(4.9) oy o _ Ynt1app  A(V, Vi)

_ Pt 10p,p,
(410) 6PkPl(; - tQ(va >v wZPk Zpl + <v,¢7y>
and after recalling that by definition a = |Du|*> + 1 we finally obtain
21/}n+1
4.11 _— Zp, 2 —— 0.
( ) aPkPIG <vw7 >v ¢ Pk <DL + <V¢‘, Y> (Skl
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In what follows we require
(4.12) Opw GEREL < —Co|f|2, co >0

which is the analogous of (1.11) for the reflector problem (P).

4.4. The case of planar receiver ¢(Z) = (Z,no) —do. If ¥ is the hyperplane (Z, no) = do then one can readily
verify that the (1.11) is satisfied. In this spacial case, we have from (3.4)

do — <LL’ + uent1, 7L0>

t= s
<Ya 7’L0>

so for u(z) = P(z) = £+ Z""" — ;L |z — 2|? to show that W = 0 it is enough to check that o(1+|DP|*) —2t = 0.
From Z € 3 it follows that do = (Z,no) and hence we have that

(Z,m0) — (x + P(z)ent1,n0) .

(4.13) t=

(Y (2),n0)
On the other hand
1
(4.14) Z—2—P@ens1 = Z—3—ens1 | 2+ 2" — |z — 2
2 20
=T —enp1e 17i|xfz|2
N e o?
o 2
= Z—$—€n+1§(1— |DP| )
Furthermore, we have from (3.3)
2 |z — 2|2
4.15 Y = = n fded N |
(19) 1+|DP\2{ o=t (57 1))
2
= - N 1—|DP ]
1+|DP\2 [( x) —e +12( |DP?)
Plugging in (4.14) and (4.15) into (4.13) yields
1 2
(4.16) p= CLHIDPE)
2
Next, we verify the condition (1.11) for the linear ¢
_ omgt!
I G = m5kl-

In particular if no = enq1 and ¥ = 2" — ¢, ¢ € R then y™' < 0 (see 3.3 and Figure 2) and hence for the
horizontal planar receiver the condition (1.11) does hold.
Another example of receiver is the sheet of hyperboloid of revolution ¢(z) = fo + § /0% + |2|? with a,b > 0.

Then VZp = M/TW (Id + m) and hence (1.10) is satisfied.

Remark 4.1. The stretch function in the paper differs from that of introduced in [9, 10], namely in this paper
t > 0 whereas in [9, 10] the stretch function may change its sign. The present derivation of equation is shorter

and simpler than in the early version of the paper [8].
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4.5. Refined (4.12) condition. The condition 0y, G < 0 in (4.12) can be reformulated in more geometric way

if one uses the second fundamental form of 3. Note that it is enough to consider

(4.17) G = [%V%pzpkzpl + 210
since
a 2 27/)n+1 1 *
[ — Z 7 .= .
T 2T T SR (TR

Let us fix Zop € ¥ and Tz,X denote the tangent space of ¥ at Zy. If zg € U and Z(xo) = Zo then Z,, (z0) €
Tz, X since (V(Zo), Zp, (x0)) = t{V, Yy, ) + tp, (V1),Y) = 0 thanks to (4.7).

Next, we want to show that Y, Y, ,...,Y,, are mutually orthogonal. From (3.3) we have Y = 1(2p,a—2), Y| =
1 where a = p?+1. Thus Y L Yy, k=1,...,n. Moreover

2 2
(4.18) Yo = —5E(2p,a—2)+ = (e +prens1) =
2 2
= —Pry 4 Z(en + prent).
a a
Therefore
9\ 2
(4.19) Yoy, Yp,) = (E) (=ppY + ek + prent1, —piY + e + prent)
2\° [ 2 a—2
= (*) {— PEPL | 5y — PkpL +prpi| =
a a
2
2
()
a
In particular, from (4.19) we get |Y;, | = 2.

To compute the second derivatives of 1), we consider a new coordinate system Z1, ..., Zn, Tn41 near Zp, with
Zpn+1 having direction —Y. Suppose that near Zy, in Z1,. .., Tn, Tnt+1 coordinate system X admits a representation
of the form Zn4+1 = ¢(Z1,...,Zn). Recall that the second fundamental form of ¥ is

& -
(4.20) M=% hji=1,...,n

V1+De?

if we choose the normal of X at Zy to be (7%1}017;'{;22”%1) , Do = (Dz,¢,...,Dz,¢,0).

From now on we denote J(Z) = Z""! — o(2) and assume that near Zy, ¥ is given by the equation ¥ =0.
Then

®11 - p1n 0

(4.21) Vi = — .
0 --- 0 0
Hence for Z = © + uen+1 + tY we have
(4'22) VQ"ZZPIC ZPL = 7V2tp(typk + thY)(tY;;n + tPlY)
= _tQVQSOYPkYPl

2\? ,
*<;) apkpz‘p

2
- (§> 1+ [Dyl? 1L
a
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Since Y is a unit vector and (4.19) holds true we may assume that Y}, has the direction of Ty, k = 1,2,...n.
1

V14 |Dp|2

Combining these formulae and noting that the second fundamental form of ¥ is IT = OO we arrive

at
* 2t
(4.23) Gl = 24/1 4 |Dy|? —;H + Ogi cos @

where 6 is the angle between e, 1 and Vi. Summarizing we see that (4.12) is equivalent to (1.10) condition in

the definition of regularity domain D.

Remark 4.2. As one can see from Figure 2 the reflected rays may converge to focus F' from either side of the
focal plane. The inequalities y" T > 0 or y" ! < 0 determine the side of the approach to F. Consequently we may
have that for a chosen orientation of ¥ the reflected rays strike the target domain from either side making it harder

to verify the condition (1.10) (recall that (1.10) was derived under assumption y™*

< 0 and for fized orientation
of ). The mixzed striking can be ruled out if we assume that X is visible from any supporting paraboloid’s focal

plane. In particular this is true if ¥ is a graph over Il.

5. LoCAL C? ESTIMATES

The proof of C? a priori estimate is similar to that of far-field problem with point source, see [9, 10]. The main
idea goes back to [21] and [14], where a general method was introduced to prove such estimates for the smooth

solution. We give a concise proof here for the sake of completeness.

Proposition 5.1. Let u € C* be a classical solution of (1.5) and matriz W > 0. Assume that right hand side of
(4.4) is CY' regular and strictly positive. Then under assumption (1.11) we have C* a priori local estimate for

the second order derivatives, i.e. for any subdomain U’ CC U there is C > 0 depending of dist(U,U’') such that

sup |D*ul < C.
Z/{/

Proof. Denote w = —u and W = D*w — $G&;;. Let F[W] = [det W]%, W = {W;,} and let h = h%, where
h = f/(ngo Z) and n is given by (4.5). Then (4.4) takes the following form

FW] = h.

OF

Let us differentiate this equation with respect to zx twice. Denoting F*/ = B We obtain
ij

9% log det W

. det VW
(5.1) FY"Wij ik Wi, W

WijiWrsk + Digh > Dpeh,  k=1,....n

where to get the last inequality we used the concavity of log det W. Note that

i oF cofW
ij _ _ _
(5.2) = OW;;  detW

2%

where cofW is the cofactor matrix of W.

For ¢ € S™ consider the auxiliary function z(z,€) = p? Y &&Wij,x € B1(0) where p is the standard cut off
ij=1
function of By,2(0). Assume that sup z(z,&) is attained at & and £ = e;. By a rotation of the coordinate
S” x B1(0)
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axis we may assume that {W;;} is diagonal at Z and Wi1 > Whaa > -+ - > Wy, At T we have

pi . Wi
5.3 lo 21:27+ 7:Ov
(5:3) (log =) = 200+ 35,

Pij pipi | Wity  Wi,iWi,
5.4 logz)ij = 27~ — 2=~ + -
(5.4) (log 2)4; P P2 Wit (Wi1)?

Pij pip; | Wit

=2— -6 + —— <0.
p? Wi —

Next we have that

1
Wit = Oz, Wi = w11 — E(Gzl + Guui + Gp ugi),

1 1
(5.5) Witii = Wit — EGmpiw?i - §ka’LUkii + 01 + wi1).

Consequently we find that

1
(5.6) Wiii1 = Witii — i(Gplplw%I + Gprwii1) + O(1 + wiy).

At Z W is diagonal, in particular so is D*w, thus from (5.5) and (5.6) we infer

i " i 1 1 i
(5.7) F"Wii6 — F"' Wi = Flwiig — iF Gpipiw?i - §F Gp, Whis —

g 1. 1.

—F" w114 + §F“Gmp1w%1 + §F”G’pkwk11 +
+F"O(1 + wi1) =

= §F Gpypy iy — §F Gppi Wi +

+§F kaWkll - EF kawkzz +

—‘rF”O(l + wll).

It follows from the identity (5.3) that |wiix| < C(1+ Wi1)/p at T therefore

(5.8) FYGp w1 < F”GMC;VVU < CTer;VVH‘
As for the the quadratic term we estimate

i 2 i 1 2
(5.9) Flwi; = F" (Wi + §G)

1
=F" <(Wn-)2 + WG + ZG2>
_ 1 OdetW
T detW Wi
= O(1 + TrF" 4+ TrWy;)

((W”)2 + WiiG + %G&)

where to get the last line we used (5.2).
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Utilizing the estimates (5.8) and (5.9) we get from (5.7)
(5.10) F'Wie > F" Wi + TGmmwfl

j1+ Wi

—O(1 + TrFY + TrW,;) — CTrF* + F*O(1 +wi1)

F 14 (TrFY9)(TrWy,
= F Wii,11+7Gp1P1w§1+O< + (Tr p)( ! J)>

By (5.4) we have at &

0> Fii(logz)“- =
iiyay. ij
_ F Wu,ll o O <FI‘rF ) )
Wi p

This in conjunction with (5.10) and (5.1) yields

ij B ij ij -
O(TYF )> 1 {DHMLF Gplplwf1+0(1+(TrF )mw”))]

p - Wia 2 P
h11 1 1+ (TeF9)(TeWyy)
> TeF9 Qo 4 + O( i)
= 27 T W T o p

Here cq is the constant from (4.12).

It remains to estimate hi1. We have hi1 = hy,p, wriwst + hp,ws11 + O(1) and utilizing (5.3) we conclude
hi1 > —CWii (1 + Wi1) + O(1).

Now if Wi is sufficiently large then TrF¥ > 1 at Z because by (5.2) at  we have F¥ = diag[W;}', ..., Warl.

Therefore
1 C(1+ Wi1) 1+ TrFY9 co
- — o) — > =
© <p> * TrF + ( pTrF -2 Wi
implying the estimate Wi1 < C; and the result follows. [ |

6. R—CONCAVE OR ADMISSIBLE FUNCTIONS

6.1. Paraboloids of revolution. Let Z be a given point in R™*! and ¢ > 0. A paraboloid of revolution with

+1

focus Z, focal parameter o and focal axis parallel to """ axis is denoted by

(6.1) P(z,0,Z)=h—mlz— 2> with z=2.

Constants h and m can be expressed in terms of o and Z as follows (see Figure 2); the height of the paraboloid

measured from the hyperplane IT = {X € R : "' = 0} is equal to A, hence
(6.2) h= % +zm

To determine m we first notice that if P(zo,0,Z) = 0 at o € II, i.e. paraboloid intersects the hyperplane
I, then m = h/|zo — z|>. By definition z¢ is equidistant from the directrix and the focus Z. Thus from the
Pythagorean theorem

‘IO _ Z‘Q — (O'+ Zn+l)2 _ (Zn+l)2
implying
h LNEy ASh
(6.3) m = =2
|zo — 2|2 o2 420271
1
20"
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In what follows we write P(z) instead of

_ o n+l i 2
(6.4) P(z,0,2) = 5 +Z 20|m z|
if there is no ambiguity. For L > 0
(6.5) Pr(U,X) ={P(z,0,Z): P(x,0,Z) > L}.

denotes the class of paraboloids of revolution that lie above the hyperplane {X € R™**!: 2" > L} in U.

Definition 6.1. Let u be a nonnegative continuous function defined in U.

1) Let ¢o € U. Then a paraboloid of revolution P(x) = P(x,0,Z) € Pr(U,V) is said to be an upper

supporting paraboloid of u at xo, if
P(zo) = u(o)
P(z) > u(x), Yz € U.

2) A function u is said to be upper admissible or R—concave with respect to V if for any © € U there exist
Z €V and a supporting paraboloid P(x,0,Z) € Pr(U,V) at x.
3) The class of all upper admissible functions is denoted by W (U, V).

For instance, any paraboloid in Pz (U,V) is admissible. Furthermore it is easy to see that if w;(z) and

uz(z) are R—concave then so is min(ui(x),uz2(x)). In fact, if u;,s = 1,...,N are R—concave then so is
v = min (u1,...,un). In particular, if u; € Pr(U,V) then v = min (ui,...,un) is called R—concave
1<i<N 1<i<N

polyhedron or R—polyhedron for short. The graph of R—polyhedron is a finite union of pieces of paraboloids
P(x,0,7Z) e PL(U,V).

Definition 6.2. The class of R—polyhedrons is denoted by W (U, V).

Remark 6.1. [t is easy to see that upper admissible functions are concave in the classical sense and hence locally

Lipschitz continuous.

Next, we prove that R—concave functions can be approximated via R—concave polyhedrons.

Lemma 6.3. Let u € C°(U) be an R—concave function. Then there is a sequence of R—concave polyhedrons ux

such that ur — u uniformly in U.

Proof. Let Q" be the set of points of IT with rational coordinates. Denote E = Q™ N/. Since Q" is countable
we have E = |Jyo, Ex where Ey = {m1,ma,...,mz},m; € Q"N E,i=1,..., k. Because u is R—concave, there
are supporting paraboloids P;(x) at the points m; € Ex. Then ug(z) = min(Pi(x),. .., Px(z)) is an R—polyhedron
and u < uy. Let us show that uy converges to u uniformly in U.

Take any £ > 0 and fix a compact set K C U. Suppose that there is a sequence z, € K such that ug(zr) —
u(wg) > €. Since K is compact then there is a subsequence {zx,} C {zx} such that zx;, — z0 € K. Let
d > 0 be a small positive number to be fixed below. By choosing j large enough we get |2, — xo| < ¢ for some

2, € By, C Q". This implies |zx; — 2x;| < 2J if k; is sufficiently large. Therefore we get
€ < uk; (k) —ulz;)

< Uk (mk]) — u(ZkJ) + |U(ij) - u(xkj)"
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It follows from Remark 6.1 that u € C%'(K) and hence |u(zk;) — u(zx,;)| < Clzr; — k;| < 26C. On the other
hand it follows from Lemma 7.2 that |uy; (zx;) — u(zk; )| = uk,; (Tx;) — uk; (21;)| < 26C, with C' > 0 independent

of j. Combining these estimates we conclude that € < 4C9 which gives a contradiction if we take § < ;7. |

Lemma 6.4. If the sequence of admissible functions uy uniformly converges to a function u and the sequence
X € 'y, converges to Xo € I'y then the limit of any converging sequence of supporting paraboloids of ur at

X € 'y, converges to a supporting paraboloid of u at Xo.

Proof. Let Py(x) be an upper supporting paraboloid of 'y, = Iy, at Xy € I'x. Then I'y, is a subset of the solid
{X e R""!: X" < Py(x)}. Therefore if P, converges to a paraboloid P then T, C {X € R™™! : X"t < P(x)}.
On the other hand P(x0) = u(xo) implying that P is an upper supporting paraboloid of I', at X where Xo = 0.
|

Remark 6.2. The lower admissible function can be defined accordingly. Notice that lower admissible functions
are only semiconver. Moreover, their graphs may contain saddle points and hence one cannot expect to obtain full

regqularity results.

7. PARABOLOIDS OF REVOLUTION

7.1. Properties of P(z,0,Z). The following property of P(z, 0, Z) is well-known: all rays issued from II parallel
t0 en+1 and lying in the epigraph of P(z, o, Z) after reflection converge to the focus Z. Thus P(z, 0, Z) is a solution
to our problem (P) when the receiver ¥ consists of one point i.e. ¥ = {Z}.

If the rays emanate from ¢ C II in the direction of e,+1 then we require P(z,0,Z) > 0 for all x € Y. This
is a natural condition stating that P(z, o, Z) is visible from each point of U in e,4+1—direction. If we demand a
stronger condition, P(z,0,Z) > L for some positive L, then it will imply a lower bound for the focal parameter
o. Indeed, if P(z,0,Z) > L then we have from (6.2) that g + Z"*' —m|z — 2|2 > L or equivalently
(7.1) zzL—z" ZL*?éI\);\ZnH| Zg
Thus the lower estimate for o follows if we choose L large enough.

Notice that for fixed Z € ¥ the curvature of P(z,o,Z) decreases as ¢ — oo because D?*P = mlId = ild,
where Id is the identity matrix. Thus the paraboloids become flatter as ¢ increases.

7.2. Continuous expansion of confocal paraboloids. Let Z be fixed then P(z,0,Z) is a one parameter
family of surfaces with respect to . If ¢ increases then P(z, o, Z) moves away from IT = {X € R : X"T! =0},

We want to introduce the pointwise intensity at fixed Z € ¥ and determine its dependence from o.

Let w € W¢(U,V) be an R—concave polyhedron and €2; C T, be a piece of a paraboloid of revolution
P(z,0:,7Z:),Z; € V. Let U; C U be the projection of Q; onto II. For each ray ¢, emitted from z € Q; in the
direction of e, 41 let Y be the unit direction of £,’s reflection from ;. Let S; be the set of all unit directions Y on
the unit sphere centered at Z;, corresponding to £, with x € ;. The reflection will give rise the atomic measure
¢i0z, with ¢; > 0. By energy balance condition and the formula (3.9) we get
(7.2) o= /S g:(Y)dS = /§ ()~ _ /Q F(z)dz > 0.

implying

(7.3) g(Y) det Dy = —y" " f(x).
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FIGURE 2. The reflection property of paraboloids of revolution.
Let Q; be the graph of u;(z) = A; — Bi|lx — z:|*, 2 € U;. Then
2m 2| Du? 9
4 det Dy = — det D
= A T e g
2n
n+1 2
= — —————|det D
TR T
hence from (7.3) and (3.8) we infer
f(z)
(7.5) 9:i(Y) = =
rrpury | det D2yl
B /(@)
R — (2Bi)”

(1+4BZ|z—=;]?)"
_ 1+ 4B} |z — z|* 1"
Recall that B; = %, and hence
o 1 "
sV (@) = @) | + 5ol -]
Differentiating g; by o we get
d n g 1 2 not 1 2
——9i == St —le—z 1— =z —2|).
n= 1@ |54 el al] - Zlo- s
Thus g; is increasing in o if |z — 2;| < ¢ and decreasing in |z — z;| > 0. As the Figure 2 shows Y™t may have
different signs (regarding Y as a vector on the units sphere) depending on whether the point on the reflector is
above or below the focal plane passing through F' and perpendicular to e,+1. If F' = Z is the focus then for M;

we have |z — z;| > o, whereas for Ms, |z — zi| < o, see Figure 2.
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7.3. Touching poraboloids. Let Pi(z) = P(z, 01, Z1) be a paraboloid of revolution and 0 # Z,. It is easy to see
that there is P>(xz) = P(z, 02, Z2) such that P, is the upper supporting of P; at M where M, Z; and Z lie on the
same line, see Figure 3. Without loss of generality we assume that Z; = 0. If X"*! = d; > 0 is the directrix of the
parabola generating P; and oy its focal parameter then the distance of M from the directrix is |[MAi| = |M Z1].
Thus, if X" ! = dy is the directrix of P, then do = d1 — Z5 +|Z2|, hence 02 = d1 — Z3 T +|Za| = 01— Z3 T +| Zs|.
Let us show that Py(x) = P(z,01 — Z5™, Z2) touches Py at M.

Indeed, we have that

03 | 1 z—2? o1 |z
Py(z) - Py(x) = B2y gprr 12— 22l on 1TD
2(@) ~ Pi(e) = 5+ 2 20 2 " 20y
03 =01 | w1, 2 |z =2
= 7 L] I 2
2 T2 T 202
IR/ S R Lt
2 20’1 20’2
_ |2+ 25" " (02 — o) [a]® + 201 (x, Z2) — 01| Zs?
2 20’10’2 ’

Note that o2 — 01 = |Z2| — Z;LH using which we can transform the last term as follows

—~ 2
oo P2\
2| - 25

B 01|22\2 ( o1 +1>
| Za| = Z571 \|Z2| — 25}
~ 2
ezt (L N
N 20102 1|Z2|—Z;H'1

712
N —
202 \|Z2| = 2™

(02 — 0)|z* + 01(2(x, Z2) — | Za) _ |Zo| — 25
20102 20102

On the other hand

Za| + 257 |2 < o1 +1> _ |2+ 2 |2 o+ 2s| - 25
2 205 \|Za|— 25" 2 205 |Zo| - 25"
_ |2+ 25 | Zo|? 1
2 2 |Za] - 25
| Z2[? 1 |2 1
T2zl 2 |z g
= 0.
Thus we conclude that
|Zo| — 221 Z ’
Pyz)—Py(z)="2"22 (g4 —22 | >0.
(@) = Pile) = 2 ( gz 2
Note that © = —o1 #ﬂ is the projection of M onto Il and we have that
|22 -2
(7.6) Py(z) = P(x,01 + |Z12a| — (Z3' = 21", Z5)

_—

Zo—271
—o01 . T -
|Zo—2Z1|—(2y T —27Hh)

is the upper support of Pi(z) = P(z,01,21) at © =
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do
Ay b J
1
A, i
M ] P
Z—0 N

FI1GURE 3. The touch of two paraboloids P; and P> at M.

Remark 7.1. In Section 12 we will use this argument to show that if u € WH (U, X) then u+e € WH(U,X) for
e > 0, provided that ¥ satisfies the visibility condition (12.4), i.e. ¥ is visible from any focal plane, see Remark

4.2. Here Y=¥-— Ment1, M > 0 is a downwards translation of ¥ in ent1 direction (see also Lemma 12.2).

7.4. Uniform estimates. It is convenient to work with particular classes of paraboloids. Let L > 0 and define
(7.7) PL(U,X) ={P(z,0,%): P(x,0,Z) > L}.

Note that P (U, V) is not empty since for fixed L > 0, Z € V and sufficiently large o we have P(x,0,Z) € P (U, V),
see (7.1).

We will be rather sloppy with the definition of Pz, (U, V) in Section 8.1 where Pr (i, V) is defined as the set of
all paraboloids P(z, 0, Z) such that (7.1) holds for all z € U and Z € V with some L > 0. Clearly, this slight

modification is coherent with the inequality (7.1).

Lemma 7.1. Let dg = sup |Zn+1] and di = sup |X — Z|. For every P(xz,0,Z) € PrL(U,V) we have
zZev Xeu
Zev

(7.8) sup P(z,0,72) < igf P(z,0,Z) + d1 + 2do.
u

Proof. Let 2° € U be a point where the infimum is realized and X°® € R™*! is the corresponding point on the
graph of P(z,0,Z). Then X is equidistant from Z and the directrix. But the distance of X° from the directrix

is bigger than Z hence
Z<1x°- 2|
2

Notice that sup P(z,0,2) < |h| = |§ + Z"*"|, thus
u



REFLECTOR SURFACES IN R"*1 23

sup P(z,0,7) < 2 +|2""}
u 2

<X = 2|+ |27

2 1
= y/]a® — 2|2 + [igfp(m,a, Z) - Zn+1] + |z
< sup | X — Z| +inf P(z,0,2) + 2 sup | 2"

= iIZ}fP(:E,O', Z) +dy + 2dp.

|
Next we prove a gradient estimate
Lemma 7.2. Retain the assumptions of previous lemma. Let P(x,0,Z) € Pr,(U,V) then
d
7.9 sup |DP| < ——.
(7.9) ZEB| < 2(L — do)
Proof. We have that
pp| = =2 o4
o o
Now the desired estimate follows from (7.1). ]

8. WEAK SOLUTIONS OF B-TYPE: PROOF OF THEOREM 1 a)

We develop our approach along the lines of the classical Monge-Ampere equation [1, 16] where in order to
construct a weak solution one uses the method of approximation by convex polyhedrons. Since the supporting
functions for the reflector problem (P) are paraboloids of revolution then one has to consider the “paraboloidal
polyhedrons“. For the ”ellipsoidal” case we refer to [9, 10] (see also [21] and [11]).

Let u € W (U, V). Consider the mapping

Su(Z) = {x € U : T a supporting paraboloid of u at x with focus at Z € V}.

For any Borel set w C V we put

(8.1) Fuw) = ] u(2).

Zew
Below we establish some properties of .#,. We will also use the notation . (E) instead of .#,(E) if there is no
ambiguity.

Lemma 8.1. .% : V — II maps the closed sets to closed sets.
Proof. The proof follows from Lemma 6.4. |
Lemma 8.2. Let u € WH(U,V). Then
Hzell:ax e S(Z1) NS (Z) for Zy # Za, Zi € V,i=1,2}|=0.

Proof. Denote A = {x ell:z e S (Z1)NS(Z2) for Z1 # Zoy, Z; €V,i= 1,2}. If x € A then u cannot be

differentiable at . By Aleksandrov’s theorem the concave function u is twice differentiable a.e. Hence |A| = 0.1

Lemma 8.3. Letu € W (U, V). Consider F = {E CV such that #(E) is measurable}. Then .7 is a c—algebra.



24 ARAM L. KARAKHANYAN

Proof. We want to show that the following three conditions hold
a) Vez,
b) if A€ Z then V\ A€ Z,
c) if Ay € F then 2, Ai € Z.
We first prove a). Note that if A; € V is any sequence of subsets of V then ./ (U§2,4;) = U52,.%(A;). Hence,
writing V = U2, F;, where E; C V are closed subsets we conclude that .7(V) = S (U2 E;) = U2 .Y (E;). By

Lemma 8.1 it follows that .(E;) is closed for any 4, and hence measurable, implying that (V) is measurable.
Let A € #. We use the following well known identity
(82) SWN\NA) = [ZW\ LAV A) N7 (A).
From Lemma 8.2 it follows that | (V \ A) N .%/(A)| = 0. Therefore | (V \ 4)| = |L (V) \ L (A)| and b) is
proven.

It remains to check c¢). Without loss of generality we assume that A;’s are disjoint, see [2]. Thus, let 4; €

y,AiﬂAj:(D,i#j. Then

S A 2 1A UERA)] 2 317 (A = 317 (A) NS (4))] >

v
g
K
B

For u € W* (U, V) introduce the set function

(8.3) Bus(w) = /y( ¥

for any Borel subset w C V. Since .# contains the closed sets (see Lemma 8.1) we infer that 3, is a Borel

measure. Moreover, from the proof of Lemma 8.3 we conclude that ., s is countably additive.

Definition 8.4. A function u (or its graph T',) is said to be a B-type weak solution to (P) if u € WH(U,V) and
for any Borel set w CV the following identity holds

(8.4) Bug(w) = / gdHE, SV = U

Two classes of receivers are of particular interest to us: vertical, where ¥ is a cylinder in e,+1 direction,
and planar receivers. Verticals are more natural for upper admissible solutions whereas for lower admissible u
horizontal plane is more natural since the regularity theory, developed in Section 13 can be applied to establish

the smoothness of weak solutions in this case.

8.1. Existence of weak solutions of B-type. The measure 3, defined in (8.3), enjoys a number of interesting

properties, notably it is weakly continuous. We have

Lemma 8.5. Let ui be a sequence of B-type weak solutions and Bi is the corresponding measure, defined by

(8.3). If ur — u uniformly on compact subsets of U then u is R—concave and B weakly converges to Bu, .

Proof. That u is admissible follows from Lemma 6.4. Recall that the weak convergence is equivalent to the

following two inequalities (see [2] Theorem 4.5.1)
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1) limsup Bx(E) < B(E) for any compact E C V,

2) li]:;n:i:r;f Bx(H) > B(H) for any open H C V.
Take a closed set E and let EZ be an e—neighbourhood of the closed set E* = .%(FE), see Lemma 8.1. We claim
that for any € > 0 there is ip € N such that . (E) C EZ whenever i > io, where .%; is the mapping corresponding
to u;. If this fails then there is € > 0 and a sequence of points z; € .%;(E) such that z; € CE;. By definition
there is Z; € E such that x; € %;(Z;). We can assume that ©; — x¢ and Z; — Zo € E at least for a subsequence.
Thus, zo € CEZ, 20 € .7(Z0) and Z, € E which is a contradiction.

To prove the second inequality, let H C V be an open subset and denote H* = ./(H). By Lemma 8.3 H™ is
measurable, hence there is a closed set H such that H C H* and |H*| — e < |H| < |H"| for a small £ > 0.
Let N. be an open set, |N:| < € containing the points where the inverse of . is not defined. By Lemma 8.2 .
is one-to-one modulo a set of measure zero. We claim that
(8.5) H\ N. ¢ H € 7.(H).

Here . is the mapping generated by ux. We argue towards a contradiction. If 8.5 fails then there is z € HZ \ N.
but xr & Hj. We can assume that xr — xo. Since H. \ N: is closed it follows that o € HZ \ N.. By definition
of N¢ the inverse of . is one-to-one on HZ \ N.. Thus there is unique Zy € H such that g = ¥ (Zp). There is
an open neighborhood of Zy contained in H because H is open. If P(z, ok, Zx) is a supporting paraboloid of uy
at xy it follows from Lemma 6.4 that zx € % (Zk), Zr — Zo. Thus for large k, {Z} is in some neighborhood of
Zop € H implying that x; € H} which contradicts our supposition. |

Proposition 8.6. Let f and g be two nonnegative integrable functions. IfUU C Il and V C X are bounded domains
such that the energy balance condition (1.1) holds then there exists a B—type weak solution to the problem (P).

The proof is based on an approximation argument, namely we take gn = Zfil Cidz, with C; > 0 such that
Zf\;l Ci = [, f(x)dz,Z; € ¥ and gn weakly converges to g. For each gn we construct a B—type solution ux.

Then the existence for general case follows from the compactness argument and weak convergence Lemma 8.5.

8.2. The case of V = {Z;} U{Z3}. In order to construct a B-type weak solution for the problem (P) we use an
approximation method that utilizes the weak convergence of # measure, established in Lemma 8.5.

First, we examine the case of two point receiver. Assume that g = C1dz, + C2dz, is a discrete measure
supported at Z; and Zs. Here C; and C5 are two nonnegative constants such that the energy balance condition
holds C1 4+ C2 = [, f(x)dx. Let Pi(x) = P(x,0i, Z;) € PL(U,V),i = 1,2 and L > 0 be fixed. If we choose o2 > L
to be sufficiently large it follows that Px(x) > Pi(z). Hence
(8.6) (x)dz > C4 and (z)dx < Cs,

Eoy Eqy
where E,, = {z € U : min[Pi(z), P2(x)] = Pi(z)} is the i—th visibility set, ¢ = 1,2. We note the following simple
property of visibility sets: if P; is fixed then

(8.7) Eoyts C Eq,

for any > 0. This follows from the confocal expansion of paraboloids, see Section 7.2.

Let’s fix 01, Z1, Z2 and consider the set

I = {02 > 0 such that (8.6) is satisfied}.
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We denote 02 = ir}f oo and claim that
uz(x) = min [P(z, 01, Z1), P(x,52, Z2)]
is a B-type weak solution of the two point receiver problem. Indeed, if it’s not true then

(x)dz < Ca.

Bz,

On the other hand, by (8.7), the visibility set can only increase as o decreases. Hence we see that the function

F)= [, s f(z)dz is continuous, F(0) < C2 and F(2L) = C1+C>. Thus there is 6o > 0 such that F'(do) = Co.
-

Therefore 5 — dg € I which is a contradiction.

8.3. The case V ={Z1,Z,...,Zn}. Let’s choose o1 > 0 so that 3L < P(z,01,Z1) < AL where A\ > 0 is a large
but fixed constant. If o; > AL, = 2,3,..., N, for suitable A > X such that P(x,0:,Z;) > AL,i=2,..., N, then

(8.8) /fZCl, /fgCi, i=2.3,... N
o E;

Here E; = {x € U : P(x,04,Z;) = un(z)} is the z',f th visibility set with
un(x) = min [P(z,01, Z1),..., P(z,0n, ZN)].
It is convenient to define the following sets
I, = {or > 0 such that (8.8) is satisfied}, k=1,2,...,N.
We want to check that if o5, = l}if o1 then
un(z) = min [P(z,501,21),..., P(z,0n, Zn)]
is the desired solution for V = {Z1,Zs,...,Zn}. Indeed, if for some k,2 < k < N we have fEk f(z)dz < Ck

then Fj(d) = fEakﬂs f(z)dz is continuous function of § and at the endpoints Fj(0) < Cj and Fy(2L) = Zivzl Cs.
Applying the intermediate value theorem for continuous functions it follows that there is do such that Fy(do) = Ck.
This implies that o5 — do € I, which is a contradiction.

Now the proof of Theorem 1 a) follows if we take a dense sequence {Z,}n>; C V, construct a solution
un,3L < uny < AL for each finite collection {Z1,Z2,...,Zn} and utilizing the weak convergence of measures,

Lemma 8.5, pass to the limit as N — oo. |

9. LOCAL AND GLOBAL SUPPORTING PARABOLOIDS

In this section we discuss some of the properties of supporting paraboloids that will be used in the definition
of the A-type weak solutions, see Section 10. Throughout this section we assume that the condition in Theorem

1 b) are satisfied.

9.1. R—convexity of target domain.

e Reflection cone. Let Qu = {Z € R"“,E € U} and g € Qu, then Cqy 4, 4, denotes the reflection cone
at ¢ defined as the set of all Z € R*! such that

Z — c +c c +c
9.1) q 17 272< ! 272|,en+1>

274
|Z —q T e + caval \ ey + 272



REFLECTOR SURFACES IN R"*1 27

for a pair of unit vectors 1,72 and all constants c1, ca. Here (,) denotes the scalar product in R™*1. Tt is easy to
see that Cy,,.~, i a convex cone in R™"*. Indeed, if vo L Span{vi,y2} then <ﬁ,70> = {en+1,%) .

e R—convexity of V. We say that V is R—convex with respect to a point ¢ € Qu, if for any 1,72 the

intersection Cy,~,,v, NV is connected. If V is R—convex with respect to any ¢ € Qy then V is said to be

R—convex with respect to Qu, or simply R—convex.

Remark 9.1. The formula (9.1) has a simple geometric interpretation. Indeed, let us think that ¢ = (z,u(z)),
then Y = é%g‘ where Z € X, see Figure 1. From the reflection law (1.2) we have that Y = ept1 — 2y{€n+1,7).

If at q the surface T',, is not differentiable and 1,2 are the normals of any two supporting planes of I'y at q

tyi+(1—t)v2
[ty1+(1—=t)y2|’

is concave). Hence the R—convezity of V means that V can capture the reflected rays even for the non-smooth

then any unit vector t € (0,1) is also a normal to some supporting plane of T'w at q (recall that u

reflector T'y,.

9.2. The behaviour of supporting paraboloids near contact point. Let Py, P1 € Pr(U,V) and consider
the contact set

1 1
A=<z eR": ﬂ—i-Z{“H——|x—Z1\2=@+Zg+1——\m—zo|2 .
2 o1 2 00
Here P, = % + Zprt - %|x — zi|?,i = 0,1. We want to show that A is either a sphere or plane. Indeed, we have
0'10'()[0'1 — 0p =+ Q(ZIH—I — ZSL+1)] =
= [(Jo - 01)|x\2 —2(z,0021 — 0120) + (0’0|Z1|2 - a1|zo|2)]
= (00 — 01) (x —

Thus we see that if A # @ then it is ether a sphere (if o1 # 02) or a plane (01 = 02). Consequently if P > Py

OpR1 — 0120 o |O'()Z1 — 0'120|2

2
2 2
)+ @lal - ) - 220

opg — 01

then )
Opok1 — O1%
o100for — 00 + 2(ZP — ZHY] > (00 — 01) (@ — 2)° + (ool ]? — o ]zof?) — 170 T1Z0
(00 —01)
where
~ g1
9.2 — _ _
(9:2) Z=a+(n ZO)JO_U1

is the centre of contact sphere. Note that Z lies on the line passing through zo and z;.

Lemma 9.1. The local supporting paraboloid is also global.

Proof. Let A be the contact set of Py and P;, Z; € ¥ is the focus of P;,;i = 0,1 and zo € A. Denote by
~i,© = 0,1 the normal of P; at zo. Let Cx,,y,,» be the reflection cone for Xo = (zo, Po(zo)), see (9.1). Consider
K =X NCxy,1,40 be the intersection of Cp -, 4, and 3. Then for any point Z € K between Zy and Zi, there is a
unique paraboloid Px,,z with focus Z, passing through the point X and tangent to I'p, N I'p, C R™ 1,

Since Px,,z is tangent to A at Xo, we have
D,Pxoyz(Xo) =60DP; (Xo) + (1 — G)DP()(X())

for some 6 € (0,1). The correspondence 6 — Z is one-to-one, so now we can consider Px,, z to be a function of
0, i.e. from now on Py is the paraboloid with focus Z € K and tangential to A at Xy. By choosing a suitable

coordinate system we can take Xo = 0 so that

D(Pl_PO):(07"' ,0,0é)
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for some « # 0 depending on Z. Note that the matrix W = 0 at any paraboloid in Pr (U, V), which yields

1
(9.3) D*Py = —5G(Py)ld
where G(Py) = %, see (4.6). Suppose that (1.11) holds. Twice differentiating (9.3) with respect to 6 , we
obtain
¥ p?py = Lo, cID(P - R
a2 0= —5%nmn |D(P1 — Po)|” <0,
therefore

D?Ps(z) > 0D’ P1(Z) 4 (1 — 0) D> Py(Z)
for all z € A and close to 0. This, in particular, implies that near z = 0
Py(z) < 0P (Z) + (1 — 0)Po(T)
for z € A, # 0 and 7 is close to the origin. Thus we have
(9.4) Py(z) > min(Pi(z), Po(Z)) for z € A near 0,Z # 0.
By Taylor’s expansion we can extend (9.4) to some neighbourhood of 0. Hence we obtain
(9.5) Py(x) > min(Py(x), Po(z)) for x near 0,z # 0.

This is Leoper’s characterization of the (1.11) condition, see [13].

This leads to the following conclusion: the local supporting paraboloids are global. Indeed, assume that we are
given two paraboloids P;(z) = cFa* — ¢|z|?,i = 0,1 and P(z) = cF2* — ¢*|z|?. Since D(P; — Py) = (0,---,0, )
it follows that

dF=ch=c1<k<n-—1, " =0cf + (1 —0)c.

By (9.4) we have —c*|Z|? > 0(—c§|Z|*) +(1—0)(—c§|Z|?) near the origin and Z € A implying ¢* < fci+(1—0)cp.
Thus combining the inequalities for the coefficients of the quadratic polynomials P, Py and P; we infer that
Py(z) > min(Pyi(x), Po(x)) globally in U.

Note that we needed (1.11) or (4.11) only in some neighborhood of zg. ]

Remark 9.2. Notice that to derive the inequality ¢* < 0ci + (1 — 0)ci we only need to have a closed subset of A
near the origin.
10. WEAK SOLUTIONS OF A-TYPE: PROOF OF THEOREM 1 b)

For a given u € W (U, %) we define the following multiple valued map %, : U — V as follows: for any x € U

we set
Z.(x) = {Z € ¥ : Z is the focus of an upper supporting paraboloid of v at = € U}.

If u is differentiable at xo € U then Zy(xo) = Z(x0) and Z(xo) is given by the formula (3.4). For any subset
E C U we denote

Ru(E) = | ) %u().

zEE

Lemma 10.1. Z,(E) is closed for any closed subset E C U.
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Proof. Let Z) € Z.(E) and Z, — Zy. We wish to show that Zy € %, (E). It follows from the definition
of #Z, that there is z € F such that Zy € Zy(xk). Let Py(x, 0%, Zk) be a supporting paraboloid of T'y, at zj.
Applying Lemma 6.4 to u = ux we conclude that for a subsequence T, — To € FE, ij (z, Tk Zk].) converges to

a supporting paraboloid P(z, 0, Zo) of u at zo € E. Hence Zy € Zu(E). |

For a given nonnegative g : & — R and u € C*(U) introduce the set function
(10.1) g (E) :/ gdHs.
2(E)

Note that a4 is well-defined for polyhedral u € W (U, ). In fact, it follows from Lemma 10.1 that a4 is also
well defined for closed subset E C U.

Our intention is to establish that any u € W (U, %) defines a Radon measure defined by (10.1). This is done
with the help of Proposition 10.5 below.

10.1. Legendre-like transformation of admissible function. In this section we consider a Legendre-like
transformation for the admissible function v which will be used in the construction of the A-type weak solutions
for (P).

Definition 10.2. Suppose that ¥ = {Z € R : Z"1 = (2), 2 = Z}. Let u e WH(U,V). Then

(10.2) u(z) = 21615 {u(z) = ¥(2) + c(z,2)}

is called the R—transform of w. Here c(x, z) is the distance between the points on the surfaces 'y, and X, given by

(10.3) o(@,2) = \/Jo — 2> + [u(@) — v(2)]*.
Recall that the paraboloid of revolution is given explicitly by P(z,0,Z) = $ + ¢(z) — 5=|z — 2|*, where
Z = (z,(z)) is the focus and o > 0 the focal parameter, see (6.4). If z is fixed and u € W' (U4, V) then the focal

parameter oo of supporting paraboloid with focus Z = (z,1(z)) is characterized by the following condition
10.4 oo(z) = inf o.
( ) O( ) P(z,0,Z)>u(x)
At the point xo, where P and u touch, we have that u(zo) = 2 + ¢(2) — %h’o — 2|?. Hence by solving the

quadratic equation og + 200[1(2) — u(xo)] — |xo — 2> = 0 we find that

2

(10.5) oo = u(wo) —P(2) + \/|$o — 2" + [u(wo) — 9(2)]

is the only nonnegative solution. Thus, for given admissible u we can consider the smallest focal parameter of

paraboloid with focus Z = (z,v(z)), defined by (10.4), as a function of z.
Lemma 10.3. Let Z(y) = u(wo)—v¥(2)+c(xo,y). Then &L is C* smooth provided that v € C* and dist(U, V) > 0.

Proof. Denote Q(y) = |y — zol* + %*(y) — 2¢(y)u(xo) + u*(z0) then L(y) = u(zo) — ¥(y) + VQ(y). We

compute

D;Q
ng = _Dz ,
Y+ 20

Di; 2 = =Dy + ﬁ (Qw’ - %5;) :

Qi(y) = 2(y — z0) + 2¢(y) DY (y) — 2DY(y)u(zo),
Qij(y) = 205 + 2¢i(y) V5 (y) + 2¢(y) iz (v) — 295 (y)u(zo).
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Using the formulae above we obtain

2 — D4 L (p2o_PR2DCQ
D22(y) = Dw+2m(DQ o )
D) <1 . ulzo) — w<y>> L 14+ Dy(y) © Db(y) _ DQy) © DQ(v)
Q(y) Q(y) 1Q3 (y)
which yields the estimate |D?.Z| < C with C > 0. n

In what follows we call %, the ¢)—support function of v* at z.

Lemma 10.4. Let u* be the R—transform of u € WH(U,%). Then
o u'(2) = u(zo) — P(2) + c(wo, 2) if Z = (2,9(2)) € Zu(x0),

e u* is semi-convex.

Proof. First, we observe that by definition v*(z) is locally bounded, non-negative, lower semi-continuous
function. Let us show that if Z € %Z(xo) then u*(z) = u(zo) — ¥ (2) + c¢(xo, 2). By definition of u* we have
w*(z) > u(zo) — Y (z) + c(xo, z). Suppose that u*(z) > u(zo) — ¥ (2) + ¢(zo, 2) L oo for Z € Ru(x0) C E. From
(10.3) we see that oo > 0. From (10.5) it follows that P(z, 00, Z) is a supporting paraboloid of u at xg.

On the other hand if o1 & u*(z) then o1 > oo and by (10.2) there is a sequence {zx} € U such that
xr — 1 €U and o1 = u(x1) — Y(2) + c(z1, 2). From (10.5) we infer that P(x,01,Z) is a supporting paraboloid
of u at 1 € U. Thus we have that P(z,01,Z) and P(z, 00, Z) are supporting paraboloids of u at respectively z1

and xo such that o1 > o¢ implying P(z1,01,2Z) > P(z1,00,Z) > u(x1) = P(z1,01, Z) which is a contradiction.

To prove the second statement we let 2, (y) = u(xo) — ¥(y) + c(zo,y). Then
u'(y) = sup {u(e) —u(y) + clz,y)} 2 u(zo) — ¥(y) + elxo,y)
which implies that u*(y) > %%, (y) and u*(2) = %%, (2), where Z € Zu(x0). We can regard 2%, (y) as an lower
supporting function of u* at z. By Lemma 10.3 .%,, is C? smooth hence u*(z) + C|z|? is convex for sufficiently

large C' > 0. |

Proposition 10.5. Let %, be the reflector mapping corresponding to u € WH(U,X) and set S={Z € X:Z €
Ru(x1) N Ru(x2), 21 # x2}. Then
e the surface measure of S on X is zero,

o furthermore, auy(E)= [ gdH% is Radon measure.
R (E)

Proof. Let u* be the R—transform of u. If (z,9(z2)) = Z € S then there are z1,72 € U such that
Lo (y) = u(z:) — Y(y) + c(zi,y),7 = 1,2 are the p—support functions of u*(y) at z. Let us show that u*(y) is
not differentiable at z.

Indeed, if u* is differentiable at z then we have

Du*(2) = —Dy(z) + E=2) = Dji?g(m) —%(2)
(z — x2) — DY(2)(u(z2) — w(z))

c(z2, 2)

)

Du*(z) = —D(z) +

The condition %%, (2) = %%, (#) implies that u(z1) — u(z2) = ¢(x2, 2) — ¢(x1, ). From this identity we deduce
(z = 21) = DY(2)(u(a1) = ¥(2)) _ (2= 22) = DY(2)(u(x2) —¥(2))

(10.6) c(x1, 2) N c(xa, 2)
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From the definition of stretch function ¢ it follows that (z — z,(z) — u(z)) = Ye(x, z) where Y = (y,y™ ") is

the unit direction of the reflected ray. With the aid of this observation we can rewrite (10.6) as follows
v+ DY =+ D)y = Vit (Du(z), -~y =Ya o+ (D(2), — Dyt

The last identity implies that Y7 — Y2 is collinear to the normal of ¥ at Z. Consequently, from the assumption
(1.8) we obtain that this is possible if and only if Y7 = Y. From this equality we can infer that x1 = x2 which
will be a contradiction. Indeed, from Y1 = Y2 we have y1 = y2 and consequently we conclude that

z— 1 Z — T2

(10.7) c(w1,2)  c(w2,2)

Taking the reciprocal of both sides in the last identity and recalling the definition of ¢(x, z) we see that
(10.8) w(@1) —Y(z) _ u(wz) —P(2)

|21 — 2] lza — 2]

and this yields

) = 9() + e ua2) — 9(:)
= () + A2 ) —(2)).

C(IQ, Z)
Now the condition u(z1) — u(z2) = ¢(x2, 2) — ¢(x1, z) implies

c(w2,2) —c(w1,2) wlx c(z2,2) — c(z1, 2)
c(z2, 2) (2) c(z2, 2)

(10.9) P(2)

= c(x1,2) — c(x2, 2).

If c(z2,2) # c(z1,2) then from the last equality it follows that u(z2) — ¥(2) = /(u(z2) — ¥(2))2 + (2 — 22)2.
Hence z2 = z and by (10.7) 1 = z2 which is a contradiction. Thus we must have c¢(z2, z) = ¢(z1, 2) and in view
of (10.7) this implies that 21 = 2, again contradicting our supposition. Therefore we infer that v* cannot be

differentiable at z. By Rademacher’s theorem u* is differentiable a.e. in z. Thus S has vanishing surface measure.

In order to show that aw,4 is Radon measure it suffices to check that Z = {E CU : %.(F) is measurable} is
a o—algebra. This can be done exactly in the same way as in the proof of Lemma 8.3. It remains to recall that

by Lemma 10.1, .% contains the closed sets. |

Remark 10.1. In the definition of u* it was assumed that ¥ is the graph Z" T = (2) and ¢ is a smooth
function. One can easily amend this definition if, say, Z' = {/;(27, Z=1(0,2%23,...,2", 2" as follows

n—1

u*(2) = sup { u(@) — 2"+ | Y (@ — 202 + [u(x) — 2701)° + [21 — O(3)]

zeU i=2

2

This is particularly useful for the cylindrical receivers with generators perpendicular to 11.
10.2. A-type weak solutions. Now we are ready to define the A-type weak solutions of the problem (P).

Definition 10.6. A function w € W (U, ) (or its graph T, ) is said to be an A-type weak solution to the equation
(1.3), if Z.(U) C ¥ and for any Borel set E C U we have

(10.10) g (E) = /E (@)da.



32 ARAM L. KARAKHANYAN

It is worth pointing out that the notion of A-type weak solution stems from Aleksandrov’s concept of generalized
solution for the classical Monge-Ampere equation. Here %, replaces the normal mapping 0" w of convex function
w. Accordingly, the paraboloids replace the supporting planes. In order to show that Aleksandrov’s measure,
defined as 1., (E) = |01 w(E)|, is indeed a Radon measure, it is enough to check that 1., (E) is countably additive,
see [1],[17]. This property follows once we establish that the normal mapping 8w of convex function w is one-
to-one modulo a set of measure zero. This was shown by Aleksandrov for the classical Monge-Ampere equation,
see [1], Chapter 5.2.

Definition 10.7. A function v € W (U, V) is said to be A-type weak solution of (P) if u is a A-type weak
solution of (10.10) and

(10.11) V C %Z.(U), {xeld: Z.(x) V=0

This definition is natural, stating that the target domain V is covered by the reflected rays and the endpoints
of those rays that after reflection do not strike V constitute a null set on U.
10.3. Comparison principle. An immediate consequence of Lemma 9.1 is the following comparison principle.

Proposition 10.8. Let u; be weak solutions of (4.4) in Q with f = fi,i = 1,2, where Q is a smooth, bounded
domain in II. Suppose that Ry, () C X, fi < fa in Q and u1 < uz on 9Q. If 'y, the graph of ui, lies in the

region D then we have ur < ug in €.

Proof. Suppose that Q1 = {z € Q: u1(z) > uz(x)} is not empty. Let o € Q1 and P(z, 00, Z0),Zo € X is a
supporting paraboloid of us at zo. From the confocal expansion of paraboloids (see subsection 7.2) we infer that
P(z,00+¢,Zp) is a supporting paraboloid of u1 at an interior point z1 € Q1 for some ¢ > 0. Thus P(x, 00 +¢, Zo)
is a local supporting paraboloid of ui. Since I'y, is in the regularity domain D we can apply Lemma 9.1 to

conclude that P(z,00 + €, Zo) is also a global supporting paraboloid of u;. Therefore
Fur (1) C Ry (1)

implying

fidr < fadx = / gdHy, < / gdHy, = frdzx
Q1 Q1 Ry (1) Ry (921) Q1

which gives a contradiction. Thus Q; = 0. [ |

In closing this section we state the weak convergence result for the a-measures.

Lemma 10.9. Let ur be a sequence of A-type weak solutions and ay is the corresponding measure, defined by

(10.1). If up — u uniformly on compact subsets of U then u is R—concave and oy weakly converges to uy,g.

The proof is very similar to that of Lemma 8.5 (modulo minor adjustments) and hence omitted.
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11. COMPARING A AND B TYPE SOLUTIONS

Let ¢ : RY — R™ be a Borel mapping and u(R™) = v(R™) < oo with p,v being two Radon measures on
respectively RY and R™. Then ¢ induces a (push-forward) measure on R™ defined by wuu(FE) = u(p~*(E)) for

Borel subsets E C R™. A Borel mapping ¢ is said to be measure preserving if
(11.1) oup(E) =v(E) for any Borel set £ C R".

By the change of variables formula (11.1) can be rewritten in the following equivalent form

(11.2) /h(go(z))d,u = /h(y)du, Vh € C(R").

The integral identity (11.2) was used by Brenier to give a weak formulation for optimal mass transfer problems
], [51.

If w € WH(U,Y) is the B-type solution of (P), the existence of which is established in Section 8, then taking
o(Z2) = Su(Z),N =n+1, du = gdH%, and v being the Lebesgue measure one immediately observes that .7, is

measure preserving in the sense of (11.1) or (11.2).

Lemma 11.1. If Zu(xz) C V for a.e. * € U then Z.,(E) C Hull(V), where Hull(V) is the R-convex hull of V

defined as the smallest R-convex subset of 3 containing V.

Proof. We only have to consider the points where u is non-differentiable. Let u be non-differentiable at
xo € U. and suppose that 1,72 are the normals of two supporting planes of u at xo. The ray with endpoint xg
after reflection will lie in the reflector cone Cy,+;,4, and a fortiori the reflected ray will strike Hull(V), because
Ca0,71,72 NHull(V) is connected. Considering all normals of supporting planes at xo we obtain the desired result.
|

Proposition 11.2. Let ¥ be R—conver with respect to Qm = U X (0,m), m > 0 and the densities f, g are positive.
Then B-type weak solution is also of A-type.

Proof. First we show that for any compact K1 C U there holds fK2 gdHs, > le f(x)dx with Ko = Z.(K1).
In other words the B-type solution is A-type subsolution. For the proof of this inequality we don’t need V to be
R—convex. Let n € C(X) such that =1 on K» C ¥ and 0 < 7 < 1. Consequently we obtain from (11.2)

/ ngdH = / W Bu(@)f(@)dz > [ f(z)da.
Vv u

K,

Letting 1 to decrease to the characteristic function of K, h | xk, we conclude the inequality
(11.3) / gdHs, > f(z)dz.
Ko K1

In this argument K can be replaced by any Borel subset of U since by Proposition 10.5 the measure a4 is Borel

regular. As a consequence we infer from (11.3) that

(11.4) if HE(%u(E)) = 0 then |E| = 0.

To prove the converse estimate of (11.3) we utilize the R—convexity of V. Take any compact K;1 € U and
apply Proposition 10.5 to conclude H% (% (K1) N %Zu(U \ K1)) = 0. We claim that

(11.5) 1% (K1) \ K| = 0
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where Z; ' (%.(K1)) is the pre-image of %, (K1). Denote E = %y *(%.(K1)) and G = Ki. In view of (11.4) it is
enough to check that H3(F \ G) = 0. Indeed, form the identity (8.2) it follows that
(11.6) |Zu(E\ G)| = |[%u(E)\ %u(G)] | JIZu(E\ G) N %u(G)]

= |Z2.(E\ G) N Zu(G)|

=0
where to get the last line we used the definitions of £ and G in order to obtain %y, (E)\%u(G) = %u(K1)\%u (K1) =
) and Proposition 10.5. Hence (11.4) implies 0 = |E\ G| = |23 (%u(K1)) \ K1|.

Now we are ready to finish the proof and establish the converse of the inequality (11.3). Let h € C(X) such
that 0 < h <1 and h > xg, k). Since V is R—convex it follows that %, (K1) C HullV, see Lemma 11.1. From

the definition of B-type solutions we have

/M 0(u(2)) f(2)d = /V ngdH:

= / ngdH3,
Hull(V)

> / gdHE.
Ry (Ky)

If n — 0 on compact subsets of V\ %, (K1) then n(Z.(z)) uniformly converges to zero one the compact subsets
of U\ #;*(%.(K1)). Therefore from (11.5) we infer

/ gdHE < / 0(Z(2)) f (2)dz —> / f@ydz = [ f(x)de
Ru(Ky) u B~V (Ru (K1) Ky

which in view of (11.5) implies the desired estimate. It remains to check that u verifies the boundary condition

(10.11). Suppose that there is Zo € V such that Zo € %Z.(U). Since u is of B-type, it follows that .7, (V) = U
implying zo € .%.(Zo) (in other words, there is a supporting paraboloid P(z, 00, Zo) at zo). Thus Zy € Zu(z0).

Therefore V C %.(U). From energy balance condition we have

/ gdHy = / f(z)dz = / gdHy.
Zu(U) u %
This yields [{z € U : Zu(xz) ¢ V}| =0 for f,g > 0. [ |

Remark 11.1. Since V is R—convex it follows that Z,(U) C V. Thus we get the equality %, (U) =V for R-convex
V.

11.1. Existence of A-type weak solutions: Proof of Theorem 1 c¢). Suppose that V C ¥ and let Hull(}V)
be the R—convex hull of V. For small ¢,¢’ > 0 we consider

gE(Z)_{g(Z)eifZEV

(11.7)
¢ if Z € Hull(V)\ V

where we choose ¢, &’ so that g. satisfies the energy balance condition (1.1). By Proposition 8.6 for each g there
is a B-type weak solution which according to Proposition 11.2 is also of A-type. Moreover, from Remark 11.1 we

infer
(11.8) K. (U) = V.

Sending € — 0 we obtain from Lemma 10.9 that u. — w and u is an A-type solution to (10.10) and
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(11.9) V C Z.U).
Since u is second order differentiable a.e. in U it follows that %, is defined for a.e. x € U. Finally we want to
show that |S| = 0 where

S={xelU:3Z € #.(x) such that Z € Z.,(U) \ V}.

Indeed, from energy balance condition (1.1) we have

/f dm—/f aw— [ S =
_ /uf(m)dx—/vgcmg:o.

Since f > 0 we conclude that |S| = 0 and hence (10.11) holds and u is a weak A-type weak solution of (P). W

Remark 11.2. In the proof of Proposition 11.2 (see also Remark 11.1) we used the fact that if V is R—convex
then S = (. Notice that if S # 0 then u is only Lipschitz continuous. In other words, if V is not R-conver then
u may not be C' smooth. Such example can be constructed by approzimation of two-point receiver problem via
smooth R-conver sets in X which in the limit converge to a polyhedral solution formed by two paraboloids, see
[9, 10] for similar examples with regard to point source far-field problem. It is worthwhile to point out that even if

= () then u may not be C*, and hence further assumptions must be imposed to assure the smoothness of u.

Remark 11.3. The existence of lower admissible solutions can be established analogously. However for the A-type
weak solutions we need to modify (1.11) (or its equivalent (1.10)) and require

2t

12. DIRICHLET’S PROBLEM

In this section we will discuss the existence and uniqueness of solutions to Dirichlet’s problem. Notice that in
the construction of either types of weak solutions we have not used the explicit form of the equation, which was
derived for u € C*(U) in Section 3. If u € C*(U) then %, (z),x € U and its Jacobian matrix are well defined.

It is convenient to write the equation (4.4) in the following concise form

(12.1) Fu(z) = %, relU.

Definition 12.1. A function u € W (U, ) is said to be a weak A-subsolution of (12.1) if for any Borel set E

(12.2) /@ - gdHy > /Ef(ac)da:

If o g(E fE x)dx then we say that u is a weak A-solution. The class of all generalized A-subsolutions is
denoted by AST(U).

Let D C ¥ and ¢ be a smooth function. Consider the Dirichlet problem with boundary data ¢

)
(12.3) Fu(z) = 7o Zu(@)’ e D,

u=¢ x € 0D.

We will show the existence of weak A-solution to (12.3) by employing Perron’s method.
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12.1. Shifting . We start from the following observation. Let u be a solution to (12.1) and £ > 0. Suppose
that ¥ is the plane (Z,vo) = do with 79 € S*™!. One can easily verify that if u. = u + ¢ and u is differentiable
at x € U then

() = () & (e — Vo) o2t

see (3.3) and (3.4). Hence, u. may not be a solution to (12.1). Furthermore, it is not clear whether wu. is upper
admissible in the sense of Definition 6.1.

We address a more general question here: Under what conditions u(x) + K(r® — |z — x0]?), K > 0 is upper
admissible in B, (zo) (for small » > 0)? This question is directly connected to the proof of Theorem 2.

We recall the visibility condition for ¥, namely that ¥ must be visible from any focal plane of supporting

paraboloid (it was mentioned in Remark 4.2). Consequently with the aid of Remark 7.1 we conclude
(12.4) we W (U,Y) then we W' (U,E) where X =3%— Meyy1, M >0.
Notice that the condition (4.3) implies (12.4).

Lemma 12.2. Let u € W (D, ) and B, C D. The following is true:

1° the function e = ue + K (r? — |z[*) € WH(B,,X) for any € > 0, where K > max {%, %M} and ue is a
mollification of u.

2° u. € ASJF(BT,i), i.e. ue is a subsolution of (12.1) in Br.

Proof. 1° Let w = u + K(r? — |z|?) and P(x,0, Z) be a supporting function of u at some point & € B,.. We

have
Pa,0,2) + K(* = laf’) = 5+ 2" = o — o + K faf?)
o |2|? 1 2 1
_ 2 Zn+1 K 2 I il - K =
2 AT 20 20 + 2™+ U(m,z)
o K 1+ 20K z 2
= T gntl g2 2 . .
g+ RA I o < 2o [T 1+20K
o = 1 def ~ ~
=Z4+7"" - —_|z-3 = P(z,5,Z
2 2Elfff Z| (x,0,7)
where
(12.5) F=—2 PR A Ay O S 4
' 1+20K’ 1+20K’ 2 14+20K  2(1+20K)"

With the aid of (12.5) and the estimates from Section 7.4 we infer that for P € Pr (U, X) it follows

9 K _ o
1+20K 2(1+20K

2 2
1 L e
B [ e,

(12.6) Z" > L — |z

)2

\Y]

20 4K T 4 20
with some fixed Lo provided that K > %

The mollified function u. is concave and therefore D?%, = D?u. —2K1d < —2K1Id. Consequently . is strictly
concave and w. € C°°(D). Therefore for any xo € B, there is a local supporting paraboloid Py(z, 00, Z0) at
Zo. Since the curvature of %, is uniformly bounded by below it follows that we can choose the local supporting
paraboloids Py such that ZZ1 > Lo —1 for small . Now take % = % — (Lo +10)en 1 then applying the argument
from Section 7.3 and Lemma 9.1 we see that 1. € W (B, f))
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2° Since . is C°° smooth it is enough to show that it is a subslution of (1.5) in classical sense. We have

2t(x, e, D) 4t(x, ue, D)

W =1d — (D?*u. — 2K1d - -
(D7u )T Dip 1+ |Du. ]

>1d | K -1

where ¢ is the stretch function corresponding to . From (12.6) we see that ¢ > |Lo|. Moreover |Du.| =
|Due —2Kz| <3 if rK <1 implying
o K|L
W >1d[K|Lo| — 1] > Id%
provided that K > ﬁ Consequently
VY K"|Lo|" . [ VY| } f
det W > inf >4
IV, )| = 2» (V. )]~ g
if K is large enough. |

12.2. Discrete Dirichlet problem. In order to show that the weak solutions to the reflector problem (P) are
locally smooth we will first establish the smoothness of u in a small ball. This is done via the continuity method
and standard mollification argument, see [15]. Then from Proposition 10.8 it follows that the smooth solution,
obtained via the continuity method must coincide with the weak solution u in small ball, see Section 13 for more

details.

Our first aim here is to construct a weak solution to the discrete Dirichlet problem. To do so we follow the
approach of Xu-Jia Wang [21]. Let {b;} C 0D be a sequence of points on the boundary of D and {a;} C D. For
each fixed N € N we set Axy = {a1,...,an} and By = {b1,...,bn} C dD. Suppose that vy(z) is a measure
supported at ax,1 < k < N and consider

(12.7) Fou(z) = yk(x)go%i)(x).

Proposition 12.3. Let u € W (D, X) be a polyhedral subsolution of (12.7), i.e. Fv(x) > vy (w)%, ar € An.

Then there is a unique A-type weak solution to (12.7) verifying the boundary condition w = u on Bn.

Proof. Denote up = u. From uy we want to execute a new function uq such that u1 < uo in Ay, u1(b;) =
uo(b;),bi € By and oy ,9(ai) < awg,g(as) for a; € An.

Introduce the class of paraboloids

P(al) > UO(ai)vi 7é 1,
@0,5((11) = P e ]P)L(D,E) : P(al) > uo(al) — &,
P(bj) = uo(b;),1 <j <N

for e > 0 and consider

Tf’u,o: P.

inf
Pe®g,(a1)
Let 1 > 0 be the largest e for which T} ug is a subsolution to (12.7) on Ay. Then we denote ug,1 = T7'. We
now consider
P(ai) = uok-1(ai),i # k,
@078(@@) =< Pe PL(D,E) : P(ak) > 'u,()“k_1(ak) — &,
P(b;) > uo,k—1(b;), 1 <j< N

and take T;uog = inf ~ P. Thus we can successively construct the functions ug,x = T}, *uo,x—1 where ¢ is the
PE®g,(ay)

largest number for which T ug k-1 is a subsolution to (12.7) in An.
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def
Set ua(x) = TN uo,n—1. Then by construction ang ¢(a:) < o, q(as), since the ® classes may only shrink at

ar as we proceed. Therefore we have a sequence of solutions u,, to the Dirichlet problem in Ay such that

Oéunug(ai) < Qup,_y,9 (ai)7
Um (i) < um—1(ai),

um(bl) = um,1(b¢).

The first two inequalities are obvious. As for the boundary condition we note that uo(b;) < u1(b;) by construction.
If ug(b;) < wi(b;) then by taking min[P;(x), ui(x)], where P;(x) € Pr(D,X) is a supporting paraboloid of ug at
b; we see that min[P;(z), u1(x)] belongs to the corresponding ® class. Thus ug(b;) = u1(b;).

Let us show that ©v = W}Enoo Um is a solution to the discrete problem in Ax with u(b;) = w(b;),b; € By. Indeed,

by employing Lemma 6.4 we conclude that u € W (D, X) and in view of Lemma 10.9 a,,,y — u,g weakly. Thus
the result follows. |

12.3. General case. Below we use Perron’s method to establish the existence for the general Dirichlet problem.
We take {a;}$2; C D and {b;}$2; C 9D to be dense subsets and Ay = {a1,...,an} C D,By = {b1,...,bn} C
oD.

Proposition 12.4. Let u € AST(D, ). Then there exists unique weak solution u to the Dirichlet problem

_ @
(12.8) T et P

u(z) = u(z) on 9D.

Proof. For § > 0 we denote D5 = {z € D : dist(z,dD) > 0} and take n(z) to be a smooth function such that
0<n(z) <1l,n=1in Das and n =0in D \ Ds. Consider the equation

_ flx) =6
(12.9) Fo(x) = vi(z)H (v(z))ns(x) 5o Zu(a)
where vi(x) is a measure supported at ar € Anx and

1 if 0<t<supu,

D

2supu—t
(12.10) H(t) = Sipﬂ if s%pg <t< 2s1$py7

0 if ¢t>2supu.

D

Consider the class
(12.11) WJJ(,H = {v e W¢(D, %) : Fo > viH(v)ns gfo_@f and v > u on BN} .

Clearly WE& is not empty since P(-,0,Z) is in this class if o > 0 is sufficiently large. Set vn,s = i1+1f v. We

WN,E

claim that vy s solves (12.1) in the sense of Definition 12.1 and vy s(b;) = u(b;),b; € Bn.

It is easy to see that au, 5,9(ax) = vi(ax)H (vn,s)ns(ax) (f(ax) — J). Indeed, if vy s is a strict subsolution at
a;, i.e. for some a; we have awy 5,9(ai) > vi(a;)H(vn,s)ns(a:)(f(a:) — ), then we can push Ty ; down by some
€ > 0, decreasing the o measure at a;, which, however, will be in contradiction with the definition of vy 5. Thus

vn,s is a solution of the equation (12.9).
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Next, we check the boundary condition. Choose P; € Pr(U,X) such that P; > vs in Us and passes through
(bs,u(bi)). Such P; exists because by construction vy s(a;) < u(a;) and § > 0.

For }31 = min[P;, vn,s], by construction, we see that ]:ﬁi > ka(é-)ng g({g;‘i at a;. Thus ﬁz c W; .- Hence
By o

ons(bi) = inf  P(b) < Pi(bs) = u(b:).

l =
PEWN,E

Now the desired solution can be obtained via a standard compactness argument that utilizes the estimates
from Section 7.4 and Lemma 10.9. More precisely, for fixed § > 0 we send N — oo and obtain a function vs
that solves the equation Fuvs = H(U&)T}gﬁ. To show that vs = u on D we take xo € dD and again use the
comparison with min[Py, vs] for a suitable Py € P (U, X) such that Py(zo) = u(zo). Thus, from Proposition 10.8
we conclude that vs < w in D. Finally sending ¢ | 0 and employing the estimate (7.8) and Lemmas 7.2 and 10.9

we complete the proof. |

To control the boundary behaviour for the constructed family of approximations vs we used Bakelman’s
construction and Perron’s method, see [3] page 218. For the classical Monge-Ampere equation in two spatial
dimensions it was observed there that if the equation’s right had side is not localized by the cutoff function 7s,
then the boundary curve v (given beforehand) may not be the boundary of the limit surface constructed by
Perron’s method. Thus, it was necessary to multiply the right hand side of the equation by the cut-off function ns
to gain control near 9D, see [15] page 31. We also note that H(v) was introduced for technical reasons, namely

it absorbs the values of sufficiently large paraboloids used in the construction.

Remark 12.1. For lower admissible functions the solution to Dirichlet’s problem can be constructed analogously.
The necessary condition then will be the existence of a lower admissible supersolution w € W~ (D, X), i.e. Fu <

go#’ such that w =u on 0D.

13. PROOF OF THEOREM 2

In this section we prove our main regularity result Theorem 2. We first establish global a priori C** estimates
in any small ball contained in ¢/. Then using the continuity method we conclude the existence of locally smooth
A-type weak solutions.

Let uZ be the solutions to

+ _ fks
]:“s,é =gz L B,
(13.1) s
uits = U. on 0B,

where w. = u. + K(r2 — |x\2), K > 0 and u. is a mollification of the weak solution u. By Lemma 12.2 u. is a
subsolution and hence by Proposition 12.4 the solution to Dirichlet problem exists. Note that for the Dirichlet
problem we have to consider the modified receiver 5, see Lemma 12.2. Letting € — 0 and applying the comparison
principle (see Proposition 10.8) we have that Ups Su< ua"é and “({5 = u on 0B,. It follows from the a priori
estimates established in Section 5 that u(f s are locally uniformly C? in B, for any small § > 0. After sending
§ — 0 we will conclude the proof of Theorem 2. Thus the result will follow once we establish the existence of C?

solutions ui(s of (13.1) in B,.
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Estimates for the Dirichlet problem. Let w € AST(B,,V)NC>(B,) and for ¢ € [0, 1] consider the solutions
to the Dirichlet problem

(13.2) .Fwt:thggzw +(1—-t)Fw in By,
wt=w on 0B,.

Using the implicit function theorem, see [19] Theorem 5.1 we can see that the set of ¢’s for which (13.2) is
solvable is open.

To show that it is also closed we need to establish global C*! a priori estimates in B,. Recall that if 9Q €
C3 ueC*Q)NC*(Q) and u € C* then from global C*! estimates and the elliptic regularity theory we obtain
that w € C%*(Q). Therefore the existence of smooth ugi s will follow once we establish the global C"! estimate

for w. We have

Proposition 13.1. Let h,w € C*°(B(x0)) and w solves the Dirichlet problem

2
det | D*w — %Id - L in Br(zo),
w=¢ on OBy (z0).

Then ||w| c2(grigy) < € where C depends on v, || fllca@rmgy: 19llcam) and [|@llcs gy Here n is defined by

(4-5)

Proof. We employ the barrier argument from [6] section 7.

If the maximum of D?w is realized at interior point then we can apply the estimates from Section 5 (with u
replaced by —w). Thus without loss of generality we assume that the maximum is realized at some zo € 9B, (zo).
In what follows we denote 2 = B, (x¢) to be consistent with the notations in [6]. For simplicity we take zg to be
the origin and e,, being the inner normal at 0 € 92 where zo = re,. Introduce the barrier function

1 1, 2
v(z) = §(Baﬂ — Hbap)TaTs + §Mxn — Tn
with g > 0 fixed so small that the matrix Bag — pdap > 0. If € is sufficiently small then
(13.3) v(z) < —ce® on A(B. N Q)

see [6] (7.25), (7.27) and (7.28). In other words, we facilitate the choice of constants ¢, M, p in [6]. We will see
that under the same assumptions v(z) + K|z — re,|? works well as a barrier function for our equation provided
that K > 0 is large enough.

Next, we introduce the tangential operator T, = 0o + WaOn, @ < n, where x,, = w(a:') is the defining function

of Q near the origin. It follows that
(13.4) |To(w — )| < C|2'|?, @ < n, on QN B: near the origin

see [6] (7.21). On the remaining part of (2 N B.) we have [T (w — ¢)| < C.

. 2
Denoting h = %, where 7 is given by (4.5), and F = D?*w — %Id, G = % we differentiate the equation

det F = h to obtain
ij dij Jij
(13.5) F Dijwk — 7Gk,Dlwk — ? {wak -+ sz} =

= hp, Diwg, + hwwy + ha,
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where F%¥ is the cofactor matrix
(13.6) F9 = det F([F]™)ij.
Introduce the linear operator
L=F9(Dy; — %Gm Dy) — hp, Dy
then from (13.5) we infer
(13.7) Lwy = O(1 + TeFY).
Furthermore, we have that
LTow = Lwe + L(wawn) + O(1 + TrFY).
As for the second term we see that

['(wawn) - Fij(waijwn + WeaiWnj + Weaj Wni + Wawnij) -

F
*TGW 57;]' [walwn + Wawnl] -

7hpl (walwn + wawnl)

= WaLwn — hp,WaiWn

1] ]
+F (waijwn + WaiWnj + WajWni — D) Gplwalwn .

By (13.6) F¥wpn; = §;, det F, hence

LTow = Lwa + waLWn — hp,WaiWn
0ij

%5 Gy taton)

+F det F(8jm + 6in) +

+-7:” (waij Wn —

+0(1 + TrFY).
Next, applying (13.7) we get
LTow = O(1 4 TrFY).
Since ¢ € C*° it follows that
(13.8) £(Ta(w — 9))] < C(1 + TrFY)

for some C > 0 under control.

Next, we compute
(13.9) Lv = F*P(Buap — pbap) + MF™
—%Trf”Gp,O(m) — %Tr}"iijn -
—hp, [(1 4+ M)O(|z[) — 6]

Using the inequality

(13.10) %}'O‘B(Baﬁ — Ubup) + MF™ > coM ™

(the proof of this inequality is identical to that of in [6] page 395) we can control the last term in the computation
above. Indeed, from (13.9) and (13.10) we see that
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(13.11) Lv > coM* + %]—""ﬂ(Baﬁ — iBag) + MF™ —
—%Tr]-'iijO(M) - %TY]-’”G,," -
—hp, [(1+ M)O(|z|) — 0rt]
> coM + O(1+ Me) + c1 (1 + TeF9) — %Tr]—'ij(GplO(|x|) +Gyp,).

Recall that Me < 1, see (7.25) [6].

Let q(z) = K(|z — re,|* — r?) for some K > 0 to be fixed later. Clearly g(z) < 0 in Q = B,(re,) and g(z) is
convex. Now we take v1(x) = v(z) + g(x) for some large K > 0. Then (13.11) yields

Lo > co(1 4+ TrF9) + 2KTrFY — %Trf” Ghp,, -
Choosing K sufficiently large we conclude
Lo > (14 TrFY)

and v1(z) < v(z) < —cse? on A(QN By).

Thus v; controls £ AT, (w — ¢) for some constant A as in [6] and hence
|Dpaw — Dpap| <C a=1,...,n—1.

The remaining derivative wy, can be directly estimated from the equation. |
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