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ARAM L. KARAKHANYAN

Abstract. In this paper we study the problem of constructing reflector surfaces from the near field data.

The light is transmitted as a collinear beam and the reflected rays illuminate a given domain on the fixed

receiver surface. We consider two types of weak solutions and prove their equivalence under some convexity

assumptions on the target domain. The regularity of weak solutions is a very delicate problem and the positive

answer depends on a number of conditions characterizing the geometric positioning of the reflector and receiver.

In fact, we show that there is a domain D in the ambient space such that the weak solution is smooth if and

only if its graph lies in D.

1. Introduction

We are given a smooth surface Σ in Rn+1, a pair of bounded regular domains U ⊂ Π = {X ∈ Rn+1 : Xn+1 = 0}
and V ⊂ Σ and a pair of nonnegative, integrable functions f : U −→ R and g : V −→ R. For x ∈ U we issue a

ray parallel to en+1 that after reflection from the unknown surface Γu strikes V at some point Z ∈ V, see Figure

1. Denote by Ru : x 7→ Z the reflector mapping. The main problem that we study in this paper is formulated as

follows:

Find a function u : U −→ R such that the reflector mapping Ru verifies the following two conditions:

Ru(U) = V and

ˆ

U′

f =

ˆ

Ru(U′)

g for any measurable U ′ ⊂ U .(P)

The first equation Ru(U) = V expresses the boundary condition, namely that after reflection the rays strike

the whole target domain V. For the perfect reflector the integral identity manifests the local form of conservation

of energy. The full energy balance condition demands that the pairs (f,U) and (g,V) verify the following identity

(1.1)

ˆ
U
f(x)dx =

ˆ
V
gdHnΣ.

Notice that, both conditions in (P) are formal because in general the surface Γu may not be smooth and some

extra care will be necessary to formulate (P) in a suitable weak sense.

For u ∈ C2(U) we denote the reflector mapping by Zu(x). Let Y be the unit direction of the reflected ray and

γ be the normal at M . By Snell’s law γ, Y and en+1 are coplanar and γ forms equal angles with −en+1 and Y .

As a result we obtain the identity

(1.2) Y = en+1 − 2γ〈en+1, γ〉

where 〈, 〉 denotes the inner product in Rn+1. In order to derive the differential equation for u we employ the

method of stretch function introduced in [8, 9]. Utilizing the local energy balance condition and computing the

Jacobian of Zu we find that u solves the Monge-Ampère type equation

(1.3)
|∇ψ|

|〈∇ψ, Y 〉|

∣∣∣∣det

[
−Id− 2t

1 + |Du|2D
2u

]∣∣∣∣ =
f

g
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Figure 1. The reflector problem.

where t > 0 is the stretch function, Y is the unit direction of reflected ray and ψ is the defining function of Σ,

i.e. Σ = {X ∈ Rn+1 : ψ(X) = 0}. Here the stretch function t ≥ 0 is determined from the implicit equation

ψ(x+ uen+1 + tY ) = 0 and hence it depends on x, u and Du.

For u ∈ C2(U) we consider the symmetric matrix

(1.4) W(u) = −1 + |Du|2

2t
Id−D2u.

In general, this matrix may be indefinite. Note that if |〈∇ψ, Y 〉| 6= 0, say 〈∇ψ, Y 〉 > 0, and W(u) ≥ 0 then (1.3)

can be written in an equivalent form

(1.5)
|∇ψ|
〈∇ψ, Y 〉

[
2t

1 + |Du|2

]n
det

[
−1 + |Du|2

2t
Id−D2u

]
=
f

g
.

In this paper we study the solution of (1.5) for which W(u) ≥ 0. For such u ∈ C2(U) the equation (1.5)

is degenerate elliptic. Thus the inequality W(u) ≥ 0 defines the class of C2 admissible function for which the

equation (1.5) is of elliptic type. Our first step is to introduce a suitable notion of weak solution for the equation

(1.3) such that the condition W(u) ≥ 0 still holds for non-smooth solutions u in a.e. sense. In fact, we consider

two such notions called respectively A-type and B-type weak solutions. Let us define the class of upper-admissible

functions W+(U ,V) consisting of all w : U −→ R such that for each point x there is a paraboloid of revolution

P (·, σ, Z) (regarded as a concave graph over Π = {X ∈ Rn+1 : xn+1 = 0}) with focal axis parallel to en+1, focal

parameter σ and focus Z ∈ V ⊂ Σ that touches Γu at M = (x, u(x)) from above. Then we say that P is a

supporting paraboloid of u at x. For u ∈W+(U ,V) we define the mapping

Su(Z) = {x ∈ U such that P (·, σ, Z) is a supporting paraboloid at x}.

Since u ∈ W+(U ,V) is concave in usual sense then it follows from Aleksandrov’s theorem that Su is one-to-one

modulo a set of vanishing measure. Subsequently Su generates the set function βu,f (E) =
´

Su(E)
f(x)dx, defined



REFLECTOR SURFACES IN Rn+1 3

for each Borel E ⊂ V. Then we say that u ∈ W+(U ,V) is a B-type weak solution of (1.5) if
´
E
gdHnΣ = βu,f (E)

for any Borel E ⊂ V.

The B-type weak solutions are easy to construct since the measure βu,f defined via the mapping Su : V −→ U ,

see Section 8, is countably additive thanks to Aleksandrov’s theorem, see Lemma 8.2. No additional assumptions

are imposed on f, g,U and V.

The construction of A-type weak solutions is more delicate and we require stronger assumptions on the data.

Namely, we suppose that the following conditions hold

f, g > 0,(1.6)

dist(U ,V) > 0,(1.7)

〈Y,∇ψ〉 > 0,(1.8)

V is R-convex with respect to U ,(1.9)

− 2t

1 + |Du|2 II + Id cos θ < 0,(1.10)

where Y is the unit direction of reflected ray at x, u(x)), θ ∈ [0, π] is the angle between en+1 and the normal ∇ψ|∇ψ|

of Σ = {Z ∈ Rn+1 : ψ(Z) = 0} and II is the second quadratic form of Σ.

Before explaining the meaning of these conditions it is convenient to describe the idea behind the construction

of A-type weak solutions. First we define the mapping

Ru(x) = {Z ∈ V such that P (·, σ, Z) is a supporting paraboloid at x}.

One of our tasks will be to prove that under conditions (1.7), (1.8)

αu,g(ω) =

ˆ
Ru(ω)

gdHnΣ, ω ⊂ U

is a countably additive measure defined on Borel subsets ω ⊂ U .

Unlike the B-type weak solutions we don’t get the countable additivity for αu,g directly. Recall that for the

classical Monge-Ampère equation there are two approaches to prove the countable additivity of curvature measure:

one is by Fubini’s theorem, see [1], Theorem 4, page 190 for n = 2, [7] for n ≥ 3, and the other by Legendre’s

transformation, see [18]. Note that the Legenedre transformation also works for a more general class of problems,

including optimal mass transport, where the corresponding matrixW(u) is invariant with respect to translations,

i.e. W(u+ c) =W(u), c ∈ R.

Unfortunately, (1.4) is not translation invariant with respect to u due to the fact that (1.5) is not of variational

form. This means that − 1+|Du|2
2t

Id cannot be written as cxixj (x, Z) for some cost function c : U × V −→
R. In the context of optimal transport theory the classical Legendre transformation corresponds to the cost

function c(x, Z) = 〈x, Z〉, and for general cost c one can define the c-transform which is obtained directly from

Kantorovitch’s duality argument, see [20].

In order to prove that αu,g is countably additive we first examine the focal parameters of supporting paraboloids.

From a geometric argument describing the confocal expansion of paraboloids we express the focal parameter of a

supporting paraboloid as a function of Z, x and u and observe that for each fixed Z there is a unique σ such that

P (·, σ, Z) is a supporting paraboloid of u at some x ∈ U . That done, we can proceed to define one of the main

novel tools introduced in this paper, a Legendre-like transformation for upper admissible functions u ∈W+(U ,V)
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such that the transformed function u?, called R−transform of u, is semi-convex. Moreover, if u is admissible then

the mapping Ru is one-to-one modulo a set of vanishing surface measure, see Proposition 10.5. In the definition of

Legendre-like transformation we use the fact that u?(Z) can be seen as the smallest focal parameter of P (x, σ, Z)

touching u from above. The set where Ru is not one-to-one is a subset of the points where u? is not differentiable.

Hence the semiconvexity of u?(Z) implies that the surface measure of this set on Σ vanishes. This, in turn, implies

that the set function αu,g(E) =
´

Ru(E)
gdHnΣ is well-defined and countably additive, see Section 10.

Note that, (1.7) is necessary in order to infer that u? has C1 smooth lower supporting functions and hence u?

is semiconvex, (1.6) helps to construct A-type weak solutions for target domains V which are not R−convex in

the sense of Definition 10.7. It should be remarked here that for general V the resulted α measure is obtained

indirectly via approximation by R−convex domains and weak convergence, see Section 11.

Our existence result for A and B type solutions is contained in

Theorem 1. Let U ⊂ Π = {X ∈ Rn+1 : xn+1 = 0} and V ⊂ Σ be bounded domains. Suppose f : U → R, g : Σ→ R
are nonnegative and integrable so that the energy balance condition (1.1) holds.

a) Then there exists a B-type weak solution to (P).

b) If, in addition, the conditions (1.7), (1.8) are satisfied then the measure αu,g is countably additive.

c) Finally, if g > 0 then under the same conditions as in part b), there is a A-type weak solution of (P) in

the sense of Definition 10.7.

If V is not R−convex then we can still show that A-type weak solution exists however one must require that

f > 0, see Section 11 proof of Theorem 1 b). This is due to the condition in (10.11), see Definition 10.7. The

third part of Theorem 1 is proven indirectly. Namely, we show that the B-type weak solution, constructed by

an approximation method, is also of A-type provided that V is R−convex and (1.7)-(1.8) are satisfied. Finally,

assuming that f, g > 0 we can remove the R−convexity assumption on V in order to establish the existence of

A-type weak solution via an approximation of V by R−convex domains.

Next, we focus on the problem of C2 regularity of weak solutions. The first step is to study Dirichlet’s problem

for the equation (1.5). We use Perron’s method and suitable barrier construction to establish the existence of

A-type weak solutions to Dirichlet’s problem, see Section 12. A crucial step towards proving the higher regularity

of A-type weak solutions is the a priori estimate of C1,1 norm of smooth solution, obtained in Sections 5 and 13.

That done, we can employ the continuity method to conclude the existence of smooth solution in a small ball.

This method is well-known for the classical Monge-Ampère equation, see Pogorelov [17], [15].

It is worthwhile to point out that the higher regularity is expected for the A-type weak solutions, under suitable

assumptions on data. This is because the equation (1.5) is the (local) energy balance condition for Ru generated

by a reflector surface Γu, regarded as a graph over U and u solves the Monge-Ampère type equation (1.3). In

other words, we can think of u as a potential that gives rise to the mapping Ru with Jacobian that satisfies the

equation (1.5).

If we try to derive a similar equation for the mapping Su then the equation will involve the function σ(Z)-the

focal parameter of supporting paraboloids of B-type solution regarded as a function of Z. The study of this

problem will appear elsewhere.

Note that, in the proof of Lemma 11.2 (with the aid of which we are able to prove Theorem 1, c)) we exploit

the countable additivity of measure αu,g, which is an indispensable property of A-type weak solutions.
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Throughout the paper we tacitly assume that the target domain V is a subset of larger smooth receiver Σ.

However in some arguments we take V = Σ if there is no confusion.

To formulate our regularity result it is convenient to define the regularity domain D where all four conditions

(1.7)-(1.10) are satisfied.

The domain D plays a crucial role in the regularity theory. In fact, one can show that if one of the condi-

tions (1.7)-(1.10) is not satisfied then the weak solution may not be C1, see Remark 11.2. The construction of

counterexamples is similar to that of [9, 10] where a the authors have considered the point source of light and

exploits the approximation of a two-point target V via smooth R-convex sets. The corresponding solutions con-

verge to two-paraboloid configuration and hence the C1 regularity breaks down as the approximation proceeds.

We refer the reader to [9, 10] for more details. Notice that the problem studied in [9, 10] can be formulated as an

optimisation problem, see [12].

The class of receivers satisfying (1.10) is considerably large, in particular for any plane (1.10) holds true. More

examples are in Section 4.4. In Section 9 we will see that under condition (1.10) it follows that the local supporting

paraboloid is also global. With the aid of these facts we can prove our main regularity

Theorem 2. Let f, g > 0 be C2 smooth functions and the conditions of Theorem 1 b) and (1.7)-(1.10) are

satisfied. Then A-type weak solutions of (P) are locally C2 regular in U .

The proof uses Pogorelov’s method of comparing the weak solution with upper and lower smooth barriers in a

small ball. We also remark here that to do this we need to consider the (weak) Dirichlet problem for the equation

(1.3) which is done in Section 12.

Recall that in optimal transfer theory one deals with the following Monge-Ampère type equation

det[cxixj (x, y)−D2u(x)] = h(x)

where c(x, y) is the cost function and h is determined from the data. In [14] the A3 condition was introduced

which allows to employ a Pogorelov-type estimate for the second order derivatives of the smooth solution u. In

this context the A3 condition takes the from

∂2
pkplcxixj (x, y)ξiξjηkηl ≥ c0|ξ|2|η|2

where c0 is a positive constant, ξ ⊥ η ∈ Rn and y = y(x, p) is the transport mapping (here p is the dummy

variable denoting Du). For our reflector problem (P) the A3 condition takes the following form

(1.11)
1 + |Du|2

t
∇2ψZpkZpl + 2ψn+1δkl < 0.

We remark that (1.11) is equivalent to (1.10), see Section 4.5.
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2. Notations

C,C0, Cn, · · · generic constants,

U closure of a set U ,

∂U boundary of a set U ,

X̂ X̂ = (x1, . . . , xn, 0) projection of X = (x1, . . . , xn+1) ∈ Rn+1,

〈·, ·〉 inner product in Rn+1,

Br(x) {y ∈ Rn : |y − x| < r}, open ball centered at y,

Br Br(0),

Γu graph of function u,

∂iu,Diu,Du ∂iu = Diu = ∂u
∂xi

and Du = (D1u, . . . ,Dnu),

ψ defining function of receiver Σ = {Z ∈ Rn+1 : ψ(Z) = 0},
∇ψ (n+ 1)-dimensional gradient of receiver ψ : Rn+1 −→ R,

∇̂ψ (ψ1, . . . ψn, 0), projection of ∇ψ,

Π hyperplane {X ∈ Rn+1 : xn+1 = 0},
Sn+1 units sphere in Rn+1,

|E| n−dimensional Lebesgue measure of E ⊂ Π,

HnΣ n−dimensional Hausdorff measure restricted on Σ,

PL(U ,V) see (6.5),

W+(U ,V),W+
0 (U ,V) see Definitions 6.1 and 6.2,

AS+(U ,Σ) see Definition 12.1

3. Main Equation

3.1. Preliminaries. In this subsection we gather some useful facts to be used along the proof of Proposition 3.3.

Lemma 3.1. If µ = Id + αξ ⊗ η,α ∈ R and ξ, η ∈ Rn, then we have

detµ = 1 + α〈ξ, η〉,

µ−1 = Id− αξ ⊗ η
1 + α〈ξ, η〉 .

Here and henceforth Id is the identity matrix.

Proof. To prove the first equality we assume, without loss of generality, that ξ = e1. Then the formula

follows as the matrix µ has triangular form.
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As for the second formula we compute

µ

[
Id− αξ ⊗ η

1 + α〈ξ, η〉

]
= [Id + αξ ⊗ η]

[
Id− αξ ⊗ η

1 + α〈ξ, η〉

]
(3.1)

= Id + αξ ⊗ η − αξ ⊗ η
1 + α〈ξ, η〉 (α〈ξ, η〉+ 1)

= Id.

�

If we write down the energy balance condition utilizing the change of variables formula then the resulted

Jacobian matrix is of (n+ 1)× (n+ 1) dimensions. Our next step is to reduce it to n× n and write the resulted

equation in U ⊂ Rn.

We follow the approach introduced in [9]. Notice that in our definition of stretch function (see Proposition 3.3

below) t > 0 whereas in [9] the stretch function may change its sign. Let Z : U −→ V be C2 smooth. Then for

any i, 1 ≤ i ≤ n the vectors ∂iZ(x) ∈ TZΣ, where TZΣ is the tangent space of the receiver Σ at Z ∈ Σ. Moreover,

the volume of the n+ 1 dimensional parallelepiped spanned by (∂1Z, ∂2Z, . . . , ∂nZ, γ̃) is

∣∣∣∣∣∣∣∣∣∣∣

Z1
1 · · · Z1

n γ̃1

...
. . .

...
...

Zn1 · · · Znn γ̃n

Zn+1
1 · · · Zn+1

n γ̃n+1

∣∣∣∣∣∣∣∣∣∣∣
.

Here γ̃ is the normal of Σ at Z. We use this observation to prove the following

Lemma 3.2. Let us denote Z(x) = (z(x), Zn+1(x)) and assume that the receiver Σ = {X ∈ Rn+1 : ψ(X) = 0}
for a given smooth function ψ : Rn+1 −→ R. Then the following formula is true

J =
dSV
dSU

=

∣∣∣∣∣∣∣∣∣∣∣

Z1
1 · · · Z1

n γ̃1

...
. . .

...
...

Zn1 · · · Znn γ̃n

Zn+1
1 · · · Zn+1

n γ̃n+1

∣∣∣∣∣∣∣∣∣∣∣
(3.2)

= − |∇ψ|
ψn+1

detDz.

Here SU (resp. SV) is the surface area on U (resp. V ⊂ Σ).

Proof. Because of the observation above about the n+ 1 dimensional parallelepipeds we only need to prove

the last equality (3.2). Differentiating the equality ψ(Z) = 0 by xi we find that ∂iZ
n+1 = − 1

∂n+1ψ

n∑
k=1

∂iz
k∂zkψ.
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Using this identity we multiply jth row by ∂zjψ and subtract it from (n+ 1)st row we get

det

∣∣∣∣∣∣∣∣∣∣∣

Z1
1 · · · Z1

n γ̃1

...
. . .

...
...

Zn1 · · · Znn γ̃n

Zn+1
1 · · · Zn+1

n γ̃n+1

∣∣∣∣∣∣∣∣∣∣∣
= − 1

ψn+1
det

∣∣∣∣∣∣∣∣∣∣∣∣

Z1
1 · · · Z1

n γ̃1

...
. . .

...
...

Zn1 · · · Znn γ̃n
n∑
k=1

∂1z
k∂zkψ · · ·

n∑
k=1

∂nz
k∂zkψ −ψn+1γ̃n+1

∣∣∣∣∣∣∣∣∣∣∣∣

= − 1

ψn+1
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

Z1
1 · · · Z1

n γ̃1

...
. . .

...
...

Zn1 · · · Znn γ̃n

0 · · · 0 −
n+1∑
k=1

ψkγ̃k

∣∣∣∣∣∣∣∣∣∣∣∣∣
and the result follows if we note that γ̃ = ∇ψ

|∇ψ| . �

3.2. Main formulae. Now we are ready to derive the main equations manifesting the conservation of energy.

Proposition 3.3. Let u ∈ C2 then

Y (x) =
1

1 + |Du|2 (2Du, |Du|2 − 1),(3.3)

Z(x) = x+ u(x)en+1 + tY (x),(3.4)

J =
|∇ψ|
〈∇ψ, Y 〉 det

[
Id +

2t

1 + |Du|2D
2u

]
,(3.5)

where Y is the unit direction of the reflected ray emanated from x and t = t(x, u,Du) is the stretch function

determined from the implicit relation

ψ(x+ u(x)en+1 + tY (x)) = 0.(3.6)

Proof. Let Y be the unit direction of the reflected ray. According to the reflection law

−en+1 + Y = 2γ〈−en+1, γ〉(3.7)

where γ = 1√
1+|Du|2

(Du,−1) is the unit normal of Γu at x ∈ U . Thus we have

γ =

(
D1u√

1 + |Du|2
,

D2u√
1 + |Du|2

, . . . ,
Dnu√

1 + |Du|2
,− 1√

1 + |Du|2

)
and hence from (3.7)

Y =

(
2D1u

1 + |Du|2 ,
2D2u

1 + |Du|2 , . . . ,
2Dnu

1 + |Du|2 ,
|Du|2 − 1

1 + |Du|2

)
.(3.8)

Thus for y = Ŷ , the projection of Y onto Π, we obtain

Djy
i =

2Diju

1 + |Du|2 − 4
DiuDmuDmju

(1 +Du|2)2
=(3.9)

=
2

1 + |Du|2

{
δim − 2

DiuDmu

1 + |Du|2

}
Dmju.

In order to prove (3.5) we use Lemma 3.2 and (3.9). Thus we want to compute the determinant of n×n matrix

Dz, where Z = (z, Zn+1) and Z is given by (3.4).
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Taking the xj derivative of z we get

zij = (xi + tyi)xj(3.10)

= δij + tjy
i + tyij .

Next, we want to express tj in terms of t, u,Du. Differentiating ψ(x + ty, u + tyn+1) = 0 with respect to xj we

obtain
n∑
k=1

ψk(δkj + tjy
k + tykj ) + ψn+1(uj + tjy

n+1 + tyn+1
j ) = 0.(3.11)

Using the fact that [yn+1]2 = 1− |y|2, we infer yn+1
j = − ylylj

yn+1 , which together with (3.11) yields

tj = − 1

〈∇ψ, Y 〉

{
ψkδkj + ψn+1uj + t(ψky

k
j + ψn+1y

n+1
j )

}
(3.12)

= − 1

〈∇ψ, Y 〉

{
ψkδkj + ψn+1uj + t

(
ψky

k
j − ψn+1

ylylj
yn+1

)}

= − 1

〈∇ψ, Y 〉

{
ψkδkj + ψn+1uj + t

(
ψk − ψn+1

yk

yn+1

)
ykj

}
.

Combining (3.10) and (3.12) we see that

zij = δij −
1

〈∇ψ, Y 〉

{
ψkδkj + ψn+1uj + t

(
ψk − ψn+1

yk

yn+1

)
ykj

}
yi + tyij

= δij −
1

〈∇ψ, Y 〉y
i [ψkδkj + ψn+1uj ]︸ ︷︷ ︸
β1

+t

[
δik −

1

〈∇ψ, Y 〉y
i(ψk − ψn+1

yk

yn+1
)

]
︸ ︷︷ ︸

β2

ykj .

The matrix on the right hand side can be further simplified. Using the notation ∇̂ψ = (∂1ψ, . . . , ∂nψ, 0) we have

the following intrinsic form for the matrix β2Dy,

β2Dy =

[
Id− 1

〈∇ψ, Y 〉y ⊗ (∇̂ψ − ψn+1
y

yn+1
)

]
2

1 + |Du|2

[
Id− 2

Du⊗Du
1 + |Du|2

]
D2u

=
2

1 + |Du|2 µD
2u

where µ is the matrix

µ = β2

[
Id− 2

Du⊗Du
1 + |Du|2

]
=

[
Id− 1

〈∇ψ, Y 〉y ⊗ (∂ψ − ψn+1
y

yn+1
)

]
[Id− y ⊗Du]

= Id− 1

〈∇ψ, Y 〉y ⊗
[
∇̂ψ − ψn+1

yn+1
y + (∇ψ · Y )Du− (∂ψ · y − ψn+1

yn+1
|y|2)Du

]
= Id− 1

〈∇ψ, Y 〉y ⊗
[
∇̂ψ − ψn+1

yn+1
y + ψn+1y

n+1Du+
ψn+1

yn+1
|y|2Du

]
= Id− 1

〈∇ψ, Y 〉y ⊗
[
∇̂ψ − ψn+1

yn+1
y +

ψn+1

yn+1
Du

]
= Id− 1

〈∇ψ, Y 〉y ⊗
[
∇̂ψ + ψn+1Du

]
= β1.
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Returning to Dz we get

Dz = µ

[
Id +

2t

1 + |Du|2D
2u

]
,

µ = Id− 1

〈∇ψ, Y 〉y ⊗
[
∇̂ψ + ψn+1Du

]
.

By Lemma 3.1

detµ = 1− 〈y, ∇̂ψ〉+ ψn+1〈y,Du〉
〈∇ψ, Y 〉 = ψn+1

yn+1 − 〈y,Du〉
〈∇ψ, Y 〉 .

From (3.3) we conclude that yn+1 − 〈y,Du〉 = −1. Thus detµ = − ψn+1

〈∇ψ,Y 〉 because 〈y,Du〉 = 2|Du|2
1+|Du|2 and hence

from (3.2) we obtain

J = − |∇ψ|
ψn+1

detµ det

[
Id +

2t

1 + |Du|2D
2u

]
=

|∇ψ|
〈∇ψ, Y 〉 det

[
Id +

2t

1 + |Du|2D
2u

]
.

Now the proof is complete. �

4. Convexity of G

4.1. Non-Degeneracy. In this section we examine the equation (3.5) manifesting the energy balance condition

for a perfect reflector, see (P). Hence, making use of change of variables formula and computing the Jacobian,

see Lemma 3.2, we infer

1 =
gdSV
fdSU

=
g

f

|∇ψ|
|〈∇ψ, Y 〉|

∣∣∣∣det

[
Id +

2t

1 + |Du|2D
2u

]∣∣∣∣
or equivalently

(4.1)

∣∣∣∣det

[
Id +

2t

1 + |Du|2D
2u

]∣∣∣∣ =
f

g

|〈∇ψ, Y 〉|
|∇ψ| .

Note that the matrix

W = −Id
1 + |Du|2

2t
−D2u(4.2)

is identically zero for any paraboloid P ∈ PL(U ,V), see Section 4.4. Thus, for admissible u ∈ C2 we have

W(u) ≥ 0. Hence (4.1) is degenerate elliptic.

Further, we impose the following non-degeneracy condition

(4.3) 〈∇ψ, Y 〉 6= 0,

say, 〈∇ψ, Y 〉 > 0 (see (1.8)). In particular this condition implies that ∇ψ 6= 0. Note that |〈∇ψ, Y 〉| 6= 0 has a

simple geometric meaning, namely it prevents the reflected rays from approaching Σ tangentially which would

make impossible to detect the scattered data on Σ. We recall the definition of regularity domain D, see (1.7)-(1.10).

Thus if (1.8) holds true then we can write (4.1) as

(4.4) detW =
f

ηg ◦ Z ,

where

(4.5) η =

[
2t

a

]n 〈∇ψ, Y 〉
|∇ψ| , a = |Du|2 + 1.
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4.2. Convexity of G. In this section we formulate a necessary condition for the regularity of weak solution. It

is called the A3 condition and was introduced in [14] with regard to the optimal mass transport problems. Recall

that the if u is the potential function in Kontorovich’s formulation then formally u solves the equation

det[cxixj (x, y)−D2u(x)] = h(x)

where c(x, y) is the cost function and h is determined from the data, see [20]. The A3 condition, in this context,

takes the from

∂pkplcxixj (x, y)ξiξjηkηl ≥ c0|ξ|2|η|2

where c0 is a positive constant, ξ ⊥ η ∈ Rn and y = y(x, p) is the transport mapping. Our equation is not

of variational form (see Introduction) and cannot be formulated as a mass transport problem. However this

condition still plays a crucial role in the regularity theory of weak A-type solutions of (P).

4.3. The general case. Let u be a C2 solution to

det

[
−1

2
GId−D2u

]
= h(x, u,Du), G(x, u(x), Du(x)) =

a

t
(4.6)

where a = |Du|2 + 1, h = f
ηg◦Z (see (4.5)) and t is the stretch function. In what follows we write G =

a

t
for short

and use the dummy variable p = Du for the gradient of u. We start with computing the first and second order

partial derivatives of G as follows

∂pkG = − tpk
t2
a+

1

t
apk ,

∂pkplG =

(
2tpk tpl
t3

− tpkpl
t2

)
a−

− tpk
t2
apl −

tpl
t2
apk

+
1

t
aplpk .

Next, we compute the partial derivatives of t. Recall that by (3.4) Z(x) = x+uen+1 + tY , where Y is the unit

direction of the reflected ray. Let ψ : Rn+1 → R be the defining function of Σ, i.e. Σ = {X ∈ Rn+1 : ψ(X) = 0}.
Since Z(x) ∈ Σ it follows that ψ(Z(x)) = 0. Differentiating ψ(Z(x)) = 0 with respect to pk we get

tpk
t

= −

n+1∑
i=1

ψziY
i
pk

〈∇ψ, Y 〉 .(4.7)
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After differentiating (4.7) by pl we obtain

∂pl

[
tpk
t

]
=

tpkpl
t
− tpk tpl

t2

= − 1

〈∇ψ, Y 〉

[
n+1∑
i,j=1

ψzizjZ
j
plY

i
pk +

n+1∑
i=1

ψziY
i
pkpl

]

+

n+1∑
i=1

ψziY
i
pk

〈∇ψ, Y 〉2

(
n+1∑
i,j=1

ψzizjZ
j
plY

i +

n+1∑
i=1

ψziY
i
pl

)

= − 1

〈∇ψ, Y 〉

[
n+1∑
i,j=1

ψzizjZ
j
plY

i
pk +

tpk
t

n+1∑
i,j=1

ψzizjZ
j
plY

i

]

− 1

〈∇ψ, Y 〉

n+1∑
i=1

ψziY
i
pkpl +

tpk tpl
t2

where to get the last line we used (4.7). Therefore we obtain

2tpk tpl
t3

− tpkpl
t2

=
1

t〈∇ψ, Y 〉

[
1

t
∇2ψZpkZpl +∇ψYpkpl

]
.

Returning to ∂pkplG we get

∂pkplG =
a

t〈∇ψ, Y 〉

[
1

t
∇2ψZpkZpl +∇ψYpkpl

]
(4.8)

− tpk
t2
apl −

tpl
t2
apk

+
1

t
aplpk .

In order to simplify further this identity we utilize (3.3) and rewrite it as aY = (2p, a− 2). Hence, we have

apkY + aYpk = 2ek + en+1apk

apkplY + apkYpl + aplYpk + aYpkpl = en+1apkpl .

Taking the inner product with ∇ψ we obtain

apkpl〈∇ψ, Y 〉+ apk 〈∇ψ, Ypl〉+ apl〈∇ψ, Ypk 〉+ a〈∇ψ, Ypkpl〉 = ψn+1apkpl

and this in view of (4.7) yields

apkpl − apk
tpl
t
− apl

tpk
t

=
ψn+1apkpl
〈∇ψ, Y 〉 −

a〈∇ψ, Ypkpl〉
〈∇ψ, Y 〉 .(4.9)

Substituting the last identity into (4.8) we see that

∂pkplG =
a

t2〈∇ψ, Y 〉∇
2ψZpkZpl +

ψn+1apkpl
t〈∇ψ, Y 〉(4.10)

and after recalling that by definition a = |Du|2 + 1 we finally obtain

∂pkplG =
a

t2〈∇ψ, Y 〉∇
2ψZpkZpl +

2ψn+1

t〈∇ψ, Y 〉δkl.(4.11)
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In what follows we require

(4.12) ∂pkplGξkξl ≤ −c0|ξ|
2, c0 > 0

which is the analogous of (1.11) for the reflector problem (P).

4.4. The case of planar receiver ψ(Z) = 〈Z, n0〉−d0. If Σ is the hyperplane 〈Z, n0〉 = d0 then one can readily

verify that the (1.11) is satisfied. In this spacial case, we have from (3.4)

t =
d0 − 〈x+ uen+1, n0〉

〈Y, n0〉
,

so for u(x) = P (x) = σ
2

+Zn+1− 1
2σ
|x− z|2 to show that W = 0 it is enough to check that σ(1 + |DP |2)− 2t = 0.

From Z ∈ Σ it follows that d0 = 〈Z, n0〉 and hence we have that

t =
〈Z, n0〉 − 〈x+ P (x)en+1, n0〉

〈Y (x), n0〉
.(4.13)

On the other hand

Z − x− P (x)en+1 = Z − x− en+1

(
σ

2
+ Zn+1 − 1

2σ
|x− z|2

)
(4.14)

= z − x− en+1
σ

2

(
1− 1

σ2
|x− z|2

)
= z − x− en+1

σ

2

(
1− |DP |2

)
.

Furthermore, we have from (3.3)

Y =
1

1 + |DP |2

[
− 2

σ
(x− z) + en+1

(
|x− z|2

σ2
− 1

)]
(4.15)

=
1

1 + |DP |2
2

σ

[
(z − x)− en+1

σ

2

(
1− |DP |2

)]
.

Plugging in (4.14) and (4.15) into (4.13) yields

t =
σ(1 + |DP |2)

2
.(4.16)

Next, we verify the condition (1.11) for the linear ψ

∂pkplG =
2nn+1

0

t〈n0, Y 〉
δkl.

In particular if n0 = en+1 and ψ = zn+1 − c, c ∈ R then yn+1 ≤ 0 (see 3.3 and Figure 2) and hence for the

horizontal planar receiver the condition (1.11) does hold.

Another example of receiver is the sheet of hyperboloid of revolution ϕ(z) = `0 + a
b

√
b2 + |z|2 with a, b > 0.

Then ∇2ϕ = a

b
√
b2+|z|2

(
Id + x⊗x

b2+|x|2

)
and hence (1.10) is satisfied.

Remark 4.1. The stretch function in the paper differs from that of introduced in [9, 10], namely in this paper

t > 0 whereas in [9, 10] the stretch function may change its sign. The present derivation of equation is shorter

and simpler than in the early version of the paper [8].
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4.5. Refined (4.12) condition. The condition ∂pkplG < 0 in (4.12) can be reformulated in more geometric way

if one uses the second fundamental form of Σ. Note that it is enough to consider

(4.17) G∗lk =
[a
t
∇2ψZpkZpl + 2ψn+1δkl

]
since

∂pkplG =
a

t2〈∇ψ, Y 〉∇
2ψZpkZpl +

2ψn+1

t〈∇ψ, Y 〉δkl. =
1

t(∇ψ · ξ)G
∗
kl.

Let us fix Z0 ∈ Σ and TZ0Σ denote the tangent space of Σ at Z0. If x0 ∈ U and Z(x0) = Z0 then Zpk (x0) ∈
TZ0Σ since 〈∇ψ(Z0), Zpk (x0)〉 = t〈∇ψ, Ypk 〉+ tpk 〈∇ψ, Y 〉 = 0 thanks to (4.7).

Next, we want to show that Y, Yp1 , . . . , Ypn are mutually orthogonal. From (3.3) we have Y = 1
a

(2p, a−2), |Y | =
1 where a = p2 + 1. Thus Y ⊥ Ypk , k = 1, . . . , n. Moreover

Ypk = −2pk
a2

(2p, a− 2) +
2

a
(ek + pken+1) =(4.18)

= −2pk
a
Y +

2

a
(ek + pken+1).

Therefore

〈Ypk , Ypl〉 =

(
2

a

)2

〈−ppY + ek + pken+1,−plY + el + plen+1〉(4.19)

=

(
2

a

)2 [
−2pkpl

a
+ δkl − pkpl

a− 2

a
+ pkpl

]
=

=

(
2

a

)2

δkl.

In particular, from (4.19) we get |Ypk | = 2
a
.

To compute the second derivatives of ψ, we consider a new coordinate system x̂1, . . . , x̂n, x̂n+1 near Z0, with

xn+1 having direction −Y . Suppose that near Z0, in x̂1, . . . , x̂n, x̂n+1 coordinate system Σ admits a representation

of the form x̂n+1 = ϕ(x̂1, . . . , x̂n). Recall that the second fundamental form of Σ is

II =
∂2
x̂i,x̂j

ϕ√
1 + |Dϕ|2

, i, j = 1, . . . , n(4.20)

if we choose the normal of Σ at Z0 to be
(−Dx̂1ϕ,...,−Dx̂nϕ,1)√

1+|Dϕ|2
, Dϕ = (Dx̂1ϕ, . . . ,Dx̂nϕ, 0).

From now on we denote ψ̃(Z) = Zn+1 − ϕ(z) and assume that near Z0, Σ is given by the equation ψ̃ = 0.

Then

∇2ψ̃ = −

∣∣∣∣∣∣∣∣∣∣∣

ϕ11 · · · ϕ1n 0

...
. . .

...
...

ϕn1 · · · ϕnn 0

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣
.(4.21)

Hence for Z = x+ uen+1 + tY we have

∇2ψ̃ZpkZpl = −∇2ϕ(tYpk + tpkY )(tYpl + tplY )(4.22)

= −t2∇2ϕYpkYpl

= −
(

2t

a

)2

∂2
pkplϕ

= −
(

2t

a

)2√
1 + |Dϕ|2 II.
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Since Y is a unit vector and (4.19) holds true we may assume that Ypk has the direction of x̂k, k = 1, 2, . . . n.

Combining these formulae and noting that the second fundamental form of Σ is II = 1√
1+|Dϕ|2

∂k∂lϕ we arrive

at

(4.23) G∗lk = 2
√

1 + |Dϕ|2
[
−2t

a
II + δkl cos θ

]
where θ is the angle between en+1 and ∇ψ. Summarizing we see that (4.12) is equivalent to (1.10) condition in

the definition of regularity domain D.

Remark 4.2. As one can see from Figure 2 the reflected rays may converge to focus F from either side of the

focal plane. The inequalities yn+1 > 0 or yn+1 < 0 determine the side of the approach to F . Consequently we may

have that for a chosen orientation of Σ the reflected rays strike the target domain from either side making it harder

to verify the condition (1.10) (recall that (1.10) was derived under assumption yn+1 < 0 and for fixed orientation

of Σ). The mixed striking can be ruled out if we assume that Σ is visible from any supporting paraboloid’s focal

plane. In particular this is true if Σ is a graph over Π.

5. Local C2 estimates

The proof of C2 a priori estimate is similar to that of far-field problem with point source, see [9, 10]. The main

idea goes back to [21] and [14], where a general method was introduced to prove such estimates for the smooth

solution. We give a concise proof here for the sake of completeness.

Proposition 5.1. Let u ∈ C4 be a classical solution of (1.5) and matrix W > 0. Assume that right hand side of

(4.4) is C1,1 regular and strictly positive. Then under assumption (1.11) we have C2 a priori local estimate for

the second order derivatives, i.e. for any subdomain U ′ ⊂⊂ U there is C > 0 depending of dist(U ,U ′) such that

sup
U′
|D2u| ≤ C.

Proof. Denote w = −u and W = D2w − 1
2
Gδij . Let F [W] = [detW]

1
n , W = {Wij} and let h̄ = h

1
n , where

h = f/(ηg ◦ Z) and η is given by (4.5). Then (4.4) takes the following form

F [W] = h̄.

Let us differentiate this equation with respect to xk twice. Denoting F ij = ∂F
∂Wij

we obtain

F ijWij,kk = −∂
2 log detW
∂Wij∂Wrs

Wij,kWrs,k +Dkkh̄ ≥ Dkkh̄, k = 1, . . . , n(5.1)

where to get the last inequality we used the concavity of log detW. Note that

(5.2) F ij =
∂F

∂Wij
=

cofW
detW = [W]−1

where cofW is the cofactor matrix of W.

For ξ ∈ Sn consider the auxiliary function z(x, ξ) = ρ2
n∑

ij=1

ξiξjWij , x ∈ B1(0) where ρ is the standard cut off

function of B1/2(0). Assume that sup
Sn×B1(0)

z(x, ξ) is attained at x̄ and ξ = e1. By a rotation of the coordinate
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axis we may assume that {Wij} is diagonal at x̄ and W11 ≥ W22 ≥ · · · ≥ Wnn. At x̄ we have

(log z)i = 2
ρi
ρ

+
W11,i

W11
= 0,(5.3)

(log z)ij = 2
ρij
ρ
− 2

ρiρj
ρ2

+
W11,ij

W11
− W11,iW11,j

(W11)2
(5.4)

= 2
ρij
ρ
− 6

ρiρj
ρ2

+
W11,ij

W11
≤ 0.

Next we have that

W11,i = ∂xiW11 = w11i −
1

2
(Gxi +Guui +Gpkuki),

W11,ii = w11ii −
1

2
Gpipiw

2
ii −

1

2
Gpkwkii +O(1 + w11).(5.5)

Consequently we find that

(5.6) Wii,11 = w11ii −
1

2
(Gp1p1w

2
11 +Gpkwk11) +O(1 + w11).

At x̄ W is diagonal, in particular so is D2w, thus from (5.5) and (5.6) we infer

F iiW11,ii − F iiWii,11 = F iiw11ii −
1

2
F iiGpipiw

2
ii −

1

2
F iiGpkwkii −(5.7)

−F iiw11ii +
1

2
F iiGp1p1w

2
11 +

1

2
F iiGpkwk11 +

+F iiO(1 + w11) =

=
1

2
F iiGp1p1w

2
11 −

1

2
F iiGpipiw

2
ii +

+
1

2
F iiGpkwk11 −

1

2
F iiGpkwkii +

+F iiO(1 + w11).

It follows from the identity (5.3) that |w11k| ≤ C(1 +W11)/ρ at x̄ therefore

F iiGpkwk11 ≤ F iiGpkC
1 +W11

ρ
≤ CTrF ij

1 +W11

ρ
.(5.8)

As for the the quadratic term we estimate

F iiw2
ii = F ii(Wii +

1

2
G)2(5.9)

= F ii
(

(Wii)
2 +WiiG+

1

4
G2

)
=

1

detW
∂ detW
∂Wii

(
(Wii)

2 +WiiG+
1

4
G2

)
= O(1 + TrF ij + TrWij)

where to get the last line we used (5.2).
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Utilizing the estimates (5.8) and (5.9) we get from (5.7)

F iiW11,ii ≥ F iiWii,11 +
F ii

2
Gp1p1w

2
11(5.10)

−O(1 + TrF ij + TrWij)− CTrF ij
1 +W11

ρ
+ F iiO(1 + w11)

= F iiWii,11 +
F ii

2
Gp1p1w

2
11 +O

(
1 + (TrF ij)(TrWij)

ρ

)
.

By (5.4) we have at x̄

0 ≥ F ii(log z)ii =

=
F iiWii,11

W11
−O

(
TrF ij

ρ

)
.

This in conjunction with (5.10) and (5.1) yields

O

(
TrF ij

ρ

)
≥ 1

W11

[
D11h̄+

TrF ij

2
Gp1p1w

2
11 +O

(
1 + (TrF ij)(TrWij)

ρ

)]
≥ TrF ij

c0
2
W11 +

h̄11

W11
+

1

W11
O

(
1 + (TrF ij)(TrWij)

ρ

)
.

Here c0 is the constant from (4.12).

It remains to estimate h̄11. We have h̄11 = h̄psprwr1ws1 + h̄psws11 + O(1) and utilizing (5.3) we conclude

h̄11 ≥ −CW11(1 +W11) +O(1).

Now if W11 is sufficiently large then TrF ij � 1 at x̄ because by (5.2) at x̄ we have F ij = diag[W−1
11 , . . . ,W−1

nn ].

Therefore

O

(
1

ρ

)
+
C(1 +W11)

TrF ij
+O

(
1 + TrF ij

ρTrF ij

)
≥ c0

2
W11

implying the estimate W11 ≤ C1 and the result follows. �

6. R−concave or admissible functions

6.1. Paraboloids of revolution. Let Z be a given point in Rn+1 and σ > 0. A paraboloid of revolution with

focus Z, focal parameter σ and focal axis parallel to xn+1 axis is denoted by

(6.1) P (x, σ, Z) = h−m|x− z|2 with z = Ẑ.

Constants h and m can be expressed in terms of σ and Z as follows (see Figure 2); the height of the paraboloid

measured from the hyperplane Π = {X ∈ Rn+1 : xn+1 = 0} is equal to h, hence

(6.2) h =
σ

2
+ Zn+1.

To determine m we first notice that if P (x0, σ, Z) = 0 at x0 ∈ Π, i.e. paraboloid intersects the hyperplane

Π, then m = h/|x0 − z|2. By definition x0 is equidistant from the directrix and the focus Z. Thus from the

Pythagorean theorem

|x0 − z|2 = (σ + Zn+1)2 − (Zn+1)2

implying

m =
h

|x0 − z|2
=

σ
2

+ Zn+1

σ2 + 2σZn+1
(6.3)

=
1

2σ
.
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In what follows we write P (x) instead of

(6.4) P (x, σ, Z) =
σ

2
+ Zn+1 − 1

2σ
|x− z|2

if there is no ambiguity. For L > 0

(6.5) PL(U ,Σ) = {P (x, σ, Z) : P (x, σ, Z) > L}.

denotes the class of paraboloids of revolution that lie above the hyperplane {X ∈ Rn+1 : xn+1 > L} in U .

Definition 6.1. Let u be a nonnegative continuous function defined in U .

1) Let x0 ∈ U . Then a paraboloid of revolution P (x) = P (x, σ, Z) ∈ PL(U ,V) is said to be an upper

supporting paraboloid of u at x0, if

P (x0) = u(x0)

P (x) ≥ u(x), ∀x ∈ U .

2) A function u is said to be upper admissible or R−concave with respect to V if for any x ∈ U there exist

Z ∈ V and a supporting paraboloid P (x, σ, Z) ∈ PL(U ,V) at x.

3) The class of all upper admissible functions is denoted by W+(U ,V).

For instance, any paraboloid in PL(U ,V) is admissible. Furthermore it is easy to see that if u1(x) and

u2(x) are R−concave then so is min(u1(x), u2(x)). In fact, if ui, i = 1, . . . , N are R−concave then so is

u = min
1≤i≤N

(u1, . . . , uN ). In particular, if ui ∈ PL(U ,V) then u = min
1≤i≤N

(u1, . . . , uN ) is called R−concave

polyhedron or R−polyhedron for short. The graph of R−polyhedron is a finite union of pieces of paraboloids

P (x, σ, Z) ∈ PL(U ,V).

Definition 6.2. The class of R−polyhedrons is denoted by W+
0 (U ,V).

Remark 6.1. It is easy to see that upper admissible functions are concave in the classical sense and hence locally

Lipschitz continuous.

Next, we prove that R−concave functions can be approximated via R−concave polyhedrons.

Lemma 6.3. Let u ∈ C0(U) be an R−concave function. Then there is a sequence of R−concave polyhedrons uk

such that uk → u uniformly in U .

Proof. Let Qn be the set of points of Π with rational coordinates. Denote E = Qn∩U . Since Qn is countable

we have E =
⋃∞
k=1 Ek where Ek = {m1,m2, . . . ,mk},mi ∈ Qn ∩ E, i = 1, . . . , k. Because u is R−concave, there

are supporting paraboloids Pi(x) at the points mi ∈ Ek. Then uk(x) = min(P1(x), . . . , Pk(x)) is an R−polyhedron

and u ≤ uk. Let us show that uk converges to u uniformly in U .

Take any ε > 0 and fix a compact set K ⊂ U . Suppose that there is a sequence xk ∈ K such that uk(xk) −
u(xk) > ε. Since K is compact then there is a subsequence {xkj} ⊂ {xk} such that xkj → x0 ∈ K. Let

δ > 0 be a small positive number to be fixed below. By choosing j large enough we get |zkj − x0| < δ for some

zkj ∈ Ekj ⊂ Qn. This implies |xkj − zkj | < 2δ if kj is sufficiently large. Therefore we get

ε < ukj (xkj )− u(xkj )

≤ ukj (xkj )− u(zkj ) + |u(zkj )− u(xkj )|.
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It follows from Remark 6.1 that u ∈ C0,1(K) and hence |u(zkj ) − u(xkj )| < C|zkj − xkj | < 2δC. On the other

hand it follows from Lemma 7.2 that |ukj (xkj )− u(zkj )| = |ukj (xkj )− ukj (zkj )| ≤ 2δC, with C > 0 independent

of j. Combining these estimates we conclude that ε < 4Cδ which gives a contradiction if we take δ < ε
4C

. �

Lemma 6.4. If the sequence of admissible functions uk uniformly converges to a function u and the sequence

Xk ∈ Γuk converges to X0 ∈ Γu then the limit of any converging sequence of supporting paraboloids of uk at

Xk ∈ Γuk converges to a supporting paraboloid of u at X0.

Proof. Let Pk(x) be an upper supporting paraboloid of Γk = Γuk at Xk ∈ Γk. Then Γuk is a subset of the solid

{X ∈ Rn+1 : Xn+1 ≤ Pk(x)}. Therefore if Pk converges to a paraboloid P then Γu ⊂ {X ∈ Rn+1 : Xn+1 ≤ P (x)}.
On the other hand P (x0) = u(x0) implying that P is an upper supporting paraboloid of Γu at X0 where X̂0 = x0.

�

Remark 6.2. The lower admissible function can be defined accordingly. Notice that lower admissible functions

are only semiconvex. Moreover, their graphs may contain saddle points and hence one cannot expect to obtain full

regularity results.

7. Paraboloids of revolution

7.1. Properties of P (x, σ, Z). The following property of P (x, σ, Z) is well-known: all rays issued from Π parallel

to en+1 and lying in the epigraph of P (x, σ, Z) after reflection converge to the focus Z. Thus P (x, σ, Z) is a solution

to our problem (P) when the receiver Σ consists of one point i.e. Σ = {Z}.
If the rays emanate from U ⊂ Π in the direction of en+1 then we require P (x, σ, Z) ≥ 0 for all x ∈ U . This

is a natural condition stating that P (x, σ, Z) is visible from each point of U in en+1−direction. If we demand a

stronger condition, P (x, σ, Z) ≥ L for some positive L, then it will imply a lower bound for the focal parameter

σ. Indeed, if P (x, σ, Z) ≥ L then we have from (6.2) that σ
2

+ Zn+1 −m|x− Ẑ|2 ≥ L or equivalently

(7.1)
σ

2
≥ L− Zn+1 ≥ L− sup

Z∈V
|Zn+1| ≥ L

2

Thus the lower estimate for σ follows if we choose L large enough.

Notice that for fixed Z ∈ Σ the curvature of P (x, σ, Z) decreases as σ → ∞ because D2P = mId = 1
2σ

Id,

where Id is the identity matrix. Thus the paraboloids become flatter as σ increases.

7.2. Continuous expansion of confocal paraboloids. Let Z be fixed then P (x, σ, Z) is a one parameter

family of surfaces with respect to σ. If σ increases then P (x, σ, Z) moves away from Π = {X ∈ Rn+1 : Xn+1 = 0}.
We want to introduce the pointwise intensity at fixed Z ∈ Σ and determine its dependence from σ.

Let w ∈ W+
0 (U ,V) be an R−concave polyhedron and Ωi ⊂ Γw be a piece of a paraboloid of revolution

P (x, σi, Zi), Zi ∈ V. Let Ui ⊂ U be the projection of Ωi onto Π. For each ray `x emitted from x ∈ Ωi in the

direction of en+1 let Y be the unit direction of `x’s reflection from Ωi. Let Si be the set of all unit directions Y on

the unit sphere centered at Zi, corresponding to `x with x ∈ Ωi. The reflection will give rise the atomic measure

ciδZi with ci > 0. By energy balance condition and the formula (3.9) we get

ci =

ˆ
Si

gi(Y )dS =

ˆ
Ŝi

gi(Y )
dy

−Y n+1
=

ˆ
Ωi

f(x)dx ≥ 0.(7.2)

implying

g(Y ) detDy = −yn+1f(x).(7.3)
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Figure 2. The reflection property of paraboloids of revolution.

Let Ωi be the graph of ui(x) = Ai −Bi|x− zi|2, x ∈ Ui. Then

detDy =
2n

(1 + |Du|2)n

[
1− 2|Du|2

1 + |Du|2

]
| detD2u|(7.4)

= −yn+1 2n

(1 + |Du|2)n
| detD2u|

hence from (7.3) and (3.8) we infer

gi(Y ) =
f(x)

2n

(1+|Du|2)n
| detD2u|

(7.5)

=
f(x)

2n

(1+4B2
i |x−zi|

2)n
(2Bi)n

= f(x)

[
1 + 4B2

i |x− zi|2

4Bi

]n
.

Recall that Bi = 1
2σ

, and hence

gi(Y (x)) = f(x)

[
σ

2
+

1

2σ
|x− zi|2

]n
.

Differentiating gi by σ we get

d

dσ
gi =

n

2
f(x)

[
σ

2
+

1

2σ
|x− zi|2

]n−1

(1− 1

σ2
|x− zi|2).

Thus gi is increasing in σ if |x − zi| < σ and decreasing in |x − zi| > σ. As the Figure 2 shows Y n+1 may have

different signs (regarding Y as a vector on the units sphere) depending on whether the point on the reflector is

above or below the focal plane passing through F and perpendicular to en+1. If F = Z is the focus then for M1

we have |x− zi| > σ, whereas for M2, |x− zi| < σ, see Figure 2.
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7.3. Touching poraboloids. Let P1(x) = P (x, σ1, Z1) be a paraboloid of revolution and 0 6= Z2. It is easy to see

that there is P2(x) = P (x, σ2, Z2) such that P2 is the upper supporting of P1 at M where M,Z1 and Z2 lie on the

same line, see Figure 3. Without loss of generality we assume that Z1 = 0. If Xn+1 = d1 > 0 is the directrix of the

parabola generating P1 and σ1 its focal parameter then the distance of M from the directrix is |MA1| = |MZ1|.
Thus, if Xn+1 = d2 is the directrix of P2 then d2 = d1−Zn+1

2 +|Z2|, hence σ2 = d1−Zn+1
2 +|Z2| = σ1−Zn+1

2 +|Z2|.
Let us show that P2(x) = P (x, σ1 − Zn+1

2 , Z2) touches P1 at M .

Indeed, we have that

P2(x)− P1(x) =
σ2

2
+ Zn+1

2 − |x− Ẑ2|2

2σ2
− σ1

2
+
|x|2

2σ1

=
σ2 − σ1

2
+ Zn+1

2 +
|x|2

2σ1
− |x− Ẑ2|2

2σ2

=
|Z2|+ Zn+1

2

2
+
|x|2

2σ1
− |x− Ẑ2|2

2σ2

=
|Z2|+ Zn+1

2

2
+

(σ2 − σ1)|x|2 + 2σ1〈x, Ẑ2〉 − σ1|Ẑ2|2

2σ1σ2
.

Note that σ2 − σ1 = |Z2| − Zn+1
2 using which we can transform the last term as follows

(σ2 − σ1)|x|2 + σ1(2〈x, Ẑ2〉 − |Ẑ2|2)

2σ1σ2
=
|Z2| − Zn+1

2

2σ1σ2

[(
x+ σ1

Ẑ2

|Z2| − Zn+1
2

)2

−

− σ1|Ẑ2|2

|Z2| − Zn+1
2

(
σ1

|Z2| − Zn+1
2

+ 1

)]

=
|Z2| − Zn+1

2

2σ1σ2

(
x+ σ1

Ẑ2

|Z2| − Zn+1
2

)2

−

−|Ẑ2|2

2σ2

(
σ1

|Z2| − Zn+1
2

+ 1

)
.

On the other hand

|Z2|+ Zn+1
2

2
− |Ẑ2|2

2σ2

(
σ1

|Z2| − Zn+1
2

+ 1

)
=
|Z2|+ Zn+1

2

2
− |Ẑ2|2

2σ2

σ1 + |Z2| − Zn+1
2

|Z2| − Zn+1
2

=
|Z2|+ Zn+1

2

2
− |Ẑ2|2

2

1

|Z2| − Zn+1
2

=
|Ẑ2|2

2

1

|Z2| − Zn+1
2

− |Ẑ2|2

2

1

|Z2| − Zn+1
2

= 0.

Thus we conclude that

P2(x)− P1(x) =
|Z2| − Zn+1

2

2σ1σ2

(
x+ σ1

Ẑ2

|Z2| − Zn+1
2

)2

≥ 0.

Note that x = −σ1
Ẑ2

|Z2|−Zn+1
2

is the projection of M onto Π and we have that

(7.6) P2(x) = P (x, σ1 + |Z1Z2| − (Zn+1
2 − Zn+1

1 ), Z2)

is the upper support of P1(x) = P (x, σ1, Z1) at x = −σ1
Ẑ2−Z1

|Z2−Z1|−(Zn+1
2 −Zn+1

1 )
.
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Figure 3. The touch of two paraboloids P1 and P2 at M .

Remark 7.1. In Section 12 we will use this argument to show that if u ∈W+(U ,Σ) then u+ ε ∈W+(U , Σ̃) for

ε > 0, provided that Σ satisfies the visibility condition (12.4), i.e. Σ is visible from any focal plane, see Remark

4.2. Here Σ̃ = Σ−Men+1,M > 0 is a downwards translation of Σ in en+1 direction (see also Lemma 12.2).

7.4. Uniform estimates. It is convenient to work with particular classes of paraboloids. Let L > 0 and define

(7.7) PL(U ,Σ) = {P (x, σ, Z) : P (x, σ, Z) > L}.

Note that PL(U ,V) is not empty since for fixed L > 0, Z ∈ V and sufficiently large σ we have P (x, σ, Z) ∈ PL(U ,V),

see (7.1).

We will be rather sloppy with the definition of PL(U ,V) in Section 8.1 where PL(U ,V) is defined as the set of

all paraboloids P (x, σ, Z) such that (7.1) holds for all x ∈ U and Z ∈ V with some L > 0. Clearly, this slight

modification is coherent with the inequality (7.1).

Lemma 7.1. Let d0 = sup
Z∈V
|Zn+1| and d1 = sup

X∈U
Z∈V

|X − Z|. For every P (x, σ, Z) ∈ PL(U ,V) we have

sup
U
P (x, σ, Z) ≤ inf

U
P (x, σ, Z) + d1 + 2d0.(7.8)

Proof. Let x0 ∈ U be a point where the infimum is realized and X0 ∈ Rn+1 is the corresponding point on the

graph of P (x, σ, Z). Then X0 is equidistant from Z and the directrix. But the distance of X0 from the directrix

is bigger than σ
2

hence

σ

2
≤ |X0 − Z|.

Notice that sup
U
P (x, σ, Z) ≤ |h| =

∣∣σ
2

+ Zn+1
∣∣, thus
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sup
U
P (x, σ, Z) ≤ σ

2
+ |Zn+1|

≤ |X0 − Z|+ |Zn+1|

=

√
|x0 − z|2 +

[
inf
U
P (x, σ, Z)− Zn+1

]2
+ |Zn+1|

≤ sup
X∈U
Z∈V

|X − Z|+ inf
U
P (x, σ, Z) + 2 sup

Z∈V
|Zn+1|

= inf
U
P (x, σ, Z) + d1 + 2d0.

�

Next we prove a gradient estimate

Lemma 7.2. Retain the assumptions of previous lemma. Let P (x, σ, Z) ∈ PL(U ,V) then

sup
x∈U
|DP | ≤ d1

2(L− d0)
.(7.9)

Proof. We have that

|DP | = |x− z|
σ

≤ d1

σ
.

Now the desired estimate follows from (7.1). �

8. Weak solutions of B-type: Proof of Theorem 1 a)

We develop our approach along the lines of the classical Monge-Ampère equation [1, 16] where in order to

construct a weak solution one uses the method of approximation by convex polyhedrons. Since the supporting

functions for the reflector problem (P) are paraboloids of revolution then one has to consider the “paraboloidal

polyhedrons“. For the ”ellipsoidal” case we refer to [9, 10] (see also [21] and [11]).

Let u ∈W+(U ,V). Consider the mapping

Su(Z) = {x ∈ U : ∃ a supporting paraboloid of u at x with focus at Z ∈ V}.

For any Borel set ω ⊂ V we put

Su(ω) =
⋃
Z∈ω

Su(Z).(8.1)

Below we establish some properties of Su. We will also use the notation S (E) instead of Su(E) if there is no

ambiguity.

Lemma 8.1. S : V −→ Π maps the closed sets to closed sets.

Proof. The proof follows from Lemma 6.4. �

Lemma 8.2. Let u ∈W+(U ,V). Then∣∣{x ∈ Π : x ∈ S (Z1) ∩S (Z2) for Z1 6= Z2, Zi ∈ V, i = 1, 2
}∣∣ = 0.

Proof. Denote A =
{
x ∈ Π : x ∈ S (Z1) ∩S (Z2) for Z1 6= Z2, Zi ∈ V, i = 1, 2

}
. If x ∈ A then u cannot be

differentiable at x. By Aleksandrov’s theorem the concave function u is twice differentiable a.e. Hence |A| = 0.�

Lemma 8.3. Let u ∈W+(U ,V). Consider F = {E ⊂ V such that S (E) is measurable}. Then F is a σ−algebra.
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Proof. We want to show that the following three conditions hold

a) V ∈ F ,

b) if A ∈ F then V \A ∈ F ,

c) if Ai ∈ F then
⋃∞
i=1 Ai ∈ F .

We first prove a). Note that if Ai ∈ V is any sequence of subsets of V then S (∪∞i=1Ai) = ∪∞i=1S (Ai). Hence,

writing V = ∪∞i=1Ei, where Ei ⊂ V are closed subsets we conclude that S (V) = S (∪∞i=1Ei) = ∪∞i=1S (Ei). By

Lemma 8.1 it follows that S (Ei) is closed for any i, and hence measurable, implying that S (V) is measurable.

Let A ∈ F . We use the following well known identity

(8.2) S (V \A) = [S (V) \S (A)]
⋃

[S (V \A) ∩S (A)].

From Lemma 8.2 it follows that |S (V \ A) ∩ S (A)| = 0. Therefore |S (V \ A)| = |S (V) \ S (A)| and b) is

proven.

It remains to check c). Without loss of generality we assume that Ai’s are disjoint, see [2]. Thus, let Ai ∈
F , Ai ∩Aj = ∅, i 6= j. Then

∞∑
i=1

|S (Ai)| ≥ |S (∪∞i=1Ai)| ≥
∞∑
i=1

|S (Ai)| −
∞∑
ij=1

|S (Ai) ∩S (Aj)| ≥

≥
∞∑
i=1

|S (Ai)|.

�

For u ∈W+(U ,V) introduce the set function

βu,f (ω) =

ˆ
S (ω)

f(8.3)

for any Borel subset ω ⊂ V. Since F contains the closed sets (see Lemma 8.1) we infer that βu,f is a Borel

measure. Moreover, from the proof of Lemma 8.3 we conclude that βu,f is countably additive.

Definition 8.4. A function u (or its graph Γu) is said to be a B-type weak solution to (P) if u ∈W+(U ,V) and

for any Borel set ω ⊂ V the following identity holds

βu,f (ω) =

ˆ
ω

gdHnΣ, Su(V) = U .(8.4)

Two classes of receivers are of particular interest to us: vertical, where Σ is a cylinder in en+1 direction,

and planar receivers. Verticals are more natural for upper admissible solutions whereas for lower admissible u

horizontal plane is more natural since the regularity theory, developed in Section 13 can be applied to establish

the smoothness of weak solutions in this case.

8.1. Existence of weak solutions of B-type. The measure β, defined in (8.3), enjoys a number of interesting

properties, notably it is weakly continuous. We have

Lemma 8.5. Let uk be a sequence of B-type weak solutions and βk is the corresponding measure, defined by

(8.3). If uk → u uniformly on compact subsets of U then u is R−concave and βk weakly converges to βu,f .

Proof. That u is admissible follows from Lemma 6.4. Recall that the weak convergence is equivalent to the

following two inequalities (see [2] Theorem 4.5.1)



REFLECTOR SURFACES IN Rn+1 25

1) lim sup
k→∞

βk(E) ≤ β(E) for any compact E ⊂ V,

2) lim inf
k→∞

βk(H) ≥ β(H) for any open H ⊂ V.

Take a closed set E and let E∗ε be an ε−neighbourhood of the closed set E∗ = S (E), see Lemma 8.1. We claim

that for any ε > 0 there is i0 ∈ N such that Si(E) ⊂ E∗ε whenever i > i0, where Si is the mapping corresponding

to ui. If this fails then there is ε > 0 and a sequence of points xi ∈ Si(E) such that xi ∈ {E∗ε . By definition

there is Zi ∈ E such that xi ∈ Si(Zi). We can assume that xi → x0 and Zi → Z0 ∈ E at least for a subsequence.

Thus, x0 ∈ {E∗ε , x0 ∈ S (Z0) and Z0 ∈ E which is a contradiction.

To prove the second inequality, let H ⊂ V be an open subset and denote H∗ = S (H). By Lemma 8.3 H∗ is

measurable, hence there is a closed set H∗ε such that H∗ε ⊂ H∗ and |H∗| − ε ≤ |H∗ε | ≤ |H∗| for a small ε > 0.

Let Nε be an open set, |Nε| < ε containing the points where the inverse of S is not defined. By Lemma 8.2 S

is one-to-one modulo a set of measure zero. We claim that

(8.5) H∗ε \Nε ⊂ H∗k
def≡ Sk(H).

Here Sk is the mapping generated by uk. We argue towards a contradiction. If 8.5 fails then there is xk ∈ H∗ε \Nε
but xk 6∈ H∗k . We can assume that xk → x0. Since H∗ε \Nε is closed it follows that x0 ∈ H∗ε \Nε. By definition

of Nε the inverse of S is one-to-one on H∗ε \Nε. Thus there is unique Z0 ∈ H such that x0 = S (Z0). There is

an open neighborhood of Z0 contained in H because H is open. If P (x, σk, Zk) is a supporting paraboloid of uk

at xk it follows from Lemma 6.4 that xk ∈ Sk(Zk), Zk → Z0. Thus for large k, {Zk} is in some neighborhood of

Z0 ∈ H implying that xk ∈ H∗k which contradicts our supposition. �

Proposition 8.6. Let f and g be two nonnegative integrable functions. If U ⊂ Π and V ⊂ Σ are bounded domains

such that the energy balance condition (1.1) holds then there exists a B−type weak solution to the problem (P).

The proof is based on an approximation argument, namely we take gN =
∑N
i=1 CiδZi with Ci ≥ 0 such that∑N

i=1 Ci =
´
U f(x)dx, Zi ∈ Σ and gN weakly converges to g. For each gN we construct a B−type solution uN .

Then the existence for general case follows from the compactness argument and weak convergence Lemma 8.5.

8.2. The case of V = {Z1} ∪ {Z2}. In order to construct a B-type weak solution for the problem (P) we use an

approximation method that utilizes the weak convergence of β measure, established in Lemma 8.5.

First, we examine the case of two point receiver. Assume that g = C1δZ1 + C2δZ2 is a discrete measure

supported at Z1 and Z2. Here C1 and C2 are two nonnegative constants such that the energy balance condition

holds C1 +C2 =
´
U f(x)dx. Let Pi(x) = P (x, σi, Zi) ∈ PL(U ,V), i = 1, 2 and L > 0 be fixed. If we choose σ2 � L

to be sufficiently large it follows that P2(x) ≥ P1(x). Henceˆ
Eσ1

f(x)dx ≥ C1 and

ˆ
Eσ2

f(x)dx ≤ C2,(8.6)

where Eσi = {x ∈ U : min[P1(x), P2(x)] = Pi(x)} is the i−th visibility set, i = 1, 2. We note the following simple

property of visibility sets: if P1 is fixed then

(8.7) Eσ2+δ ⊂ Eσ2

for any δ > 0. This follows from the confocal expansion of paraboloids, see Section 7.2.

Let’s fix σ1, Z1, Z2 and consider the set

I = {σ2 > 0 such that (8.6) is satisfied}.
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We denote σ̂2 = inf
I
σ2 and claim that

u2(x) = min
[
P (x, σ1, Z1), P (x, σ̂2, Z2)

]
is a B-type weak solution of the two point receiver problem. Indeed, if it’s not true thenˆ

Eσ̂2

f(x)dx < C2.

On the other hand, by (8.7), the visibility set can only increase as σ decreases. Hence we see that the function

F (δ) =
´
Eσ̂2−δ

f(x)dx is continuous, F (0) < C2 and F (2L) = C1 +C2. Thus there is δ0 > 0 such that F (δ0) = C2.

Therefore σ̂2 − δ0 ∈ I which is a contradiction.

8.3. The case V = {Z1, Z2, . . . , ZN}. Let’s choose σ1 > 0 so that 3L ≤ P (x, σ1, Z1) ≤ λL where λ > 0 is a large

but fixed constant. If σi > ΛL, i = 2, 3, . . . , N , for suitable Λ� λ such that P (x, σi, Zi) ≥ λL, i = 2, . . . , N , then

(8.8)

ˆ
E1

f ≥ C1,

ˆ
Ei

f ≤ Ci, i = 2, 3, . . . , N.

Here Ei = {x ∈ U : P (x, σi, Zi) = uN (x)} is the i− th visibility set with

uN (x) = min
[
P (x, σ1, Z1), . . . , P (x, σN , ZN )

]
.

It is convenient to define the following sets

Ik = {σk > 0 such that (8.8) is satisfied}, k = 1, 2, . . . , N.

We want to check that if σ̂k = inf
Ik
σk then

uN (x) = min
[
P (x, σ̂1, Z1), . . . , P (x, σ̂N , ZN )

]
is the desired solution for V = {Z1, Z2, . . . , ZN}. Indeed, if for some k, 2 ≤ k ≤ N we have

´
Ek
f(x)dx < Ck

then Fk(δ) =
´
Eσ̂k−δ

f(x)dx is continuous function of δ and at the endpoints Fk(0) < Ck and Fk(2L) =
N∑
i=1

Ci.

Applying the intermediate value theorem for continuous functions it follows that there is δ0 such that Fk(δ0) = Ck.

This implies that σ̂k − δ0 ∈ Ik which is a contradiction.

Now the proof of Theorem 1 a) follows if we take a dense sequence {Zn}∞n=1 ⊂ V, construct a solution

uN , 3L ≤ uN ≤ λL for each finite collection {Z1, Z2, . . . , ZN} and utilizing the weak convergence of measures,

Lemma 8.5, pass to the limit as N →∞. �

9. Local and global supporting paraboloids

In this section we discuss some of the properties of supporting paraboloids that will be used in the definition

of the A-type weak solutions, see Section 10. Throughout this section we assume that the condition in Theorem

1 b) are satisfied.

9.1. R−convexity of target domain.

• Reflection cone. Let QU = {Z ∈ Rn+1, Ẑ ∈ U} and q ∈ QU , then Cq,γ1,γ2 denotes the reflection cone

at q defined as the set of all Z ∈ Rn+1 such that

(9.1)
Z − q
|Z − q| = en+1 − 2

c1γ1 + c2γ2

|c1γ1 + c2γ2|

〈
c1γ1 + c2γ2

|c1γ1 + c2γ2|
, en+1

〉
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for a pair of unit vectors γ1, γ2 and all constants c1, c2. Here 〈, 〉 denotes the scalar product in Rn+1. It is easy to

see that Cq,γ1,γ2 is a convex cone in Rn+1. Indeed, if γ0 ⊥ Span{γ1, γ2} then
〈
Z−q
|Z−q| , γ0

〉
= 〈en+1, γ0〉

def≡ C0.

• R−convexity of V. We say that V is R−convex with respect to a point q ∈ QU , if for any γ1, γ2 the

intersection Cq,γ1,γ2 ∩ V is connected. If V is R−convex with respect to any q ∈ QU then V is said to be

R−convex with respect to QU , or simply R−convex.

Remark 9.1. The formula (9.1) has a simple geometric interpretation. Indeed, let us think that q = (x, u(x)),

then Y = Z−q
|Z−q| where Z ∈ Σ, see Figure 1. From the reflection law (1.2) we have that Y = en+1 − 2γ〈en+1, γ〉.

If at q the surface Γu is not differentiable and γ1, γ2 are the normals of any two supporting planes of Γu at q

then any unit vector tγ1+(1−t)γ2
|tγ1+(1−t)γ2|

, t ∈ (0, 1) is also a normal to some supporting plane of Γu at q (recall that u

is concave). Hence the R−convexity of V means that V can capture the reflected rays even for the non-smooth

reflector Γu.

9.2. The behaviour of supporting paraboloids near contact point. Let P0, P1 ∈ PL(U ,V) and consider

the contact set

Λ =

{
x ∈ Rn :

σ1

2
+ Zn+1

1 − 1

σ1
|x− z1|2 =

σ0

2
+ Zn+1

0 − 1

σ0
|x− z0|2

}
.

Here Pi = σi
2

+Zn+1
i − 1

2σi
|x− zi|2, i = 0, 1. We want to show that Λ is either a sphere or plane. Indeed, we have

σ1σ0[σ1 − σ0 + 2(Zn+1
1 − Zn+1

0 )] =

=
[
(σ0 − σ1)|x|2 − 2〈x, σ0z1 − σ1z0〉+ (σ0|z1|2 − σ1|z0|2)

]
= (σ0 − σ1)

(
x− σ0z1 − σ1z0

σ0 − σ1

)2

+ (σ0|z1|2 − σ1|z0|2)− |σ0z1 − σ1z0|2

(σ0 − σ1)

Thus we see that if Λ 6= ∅ then it is ether a sphere (if σ1 6= σ2) or a plane (σ1 = σ2). Consequently if P1 > P0

then

σ1σ0[σ1 − σ0 + 2(Zn+1
1 − Zn+1

0 )] > (σ0 − σ1)(x− z̃)2 + (σ0|z1|2 − σ1|z0|2)− |σ0z1 − σ1z0|2

(σ0 − σ1)

where

(9.2) z̃ = z1 + (z1 − z0)
σ1

σ0 − σ1

is the centre of contact sphere. Note that z̃ lies on the line passing through z0 and z1.

Lemma 9.1. The local supporting paraboloid is also global.

Proof. Let Λ be the contact set of P0 and P1, Zi ∈ Σ is the focus of Pi, i = 0, 1 and x0 ∈ Λ. Denote by

γi, i = 0, 1 the normal of Pi at x0. Let CX0,γ1,γ2 be the reflection cone for X0 = (x0, P0(x0)), see (9.1). Consider

K = Σ ∩ CX0,γ1,γ2 be the intersection of Cp,γ1,γ2 and Σ. Then for any point Z ∈ K between Z0 and Z1, there is a

unique paraboloid PX0,Z with focus Z, passing through the point X0 and tangent to ΓP0 ∩ ΓP1 ⊂ Rn+1.

Since PX0,Z is tangent to Λ at X0, we have

DPX0,Z(X0) = θDP1(X0) + (1− θ)DP0(X0)

for some θ ∈ (0, 1). The correspondence θ 7→ Z is one-to-one, so now we can consider PX0,Z to be a function of

θ, i.e. from now on Pθ is the paraboloid with focus Z ∈ K and tangential to Λ at X0. By choosing a suitable

coordinate system we can take X0 = 0 so that

D(P1 − P0) = (0, · · · , 0, α)
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for some α 6= 0 depending on Z. Note that the matrix W ≡ 0 at any paraboloid in PL(U ,V), which yields

(9.3) D2Pθ = −1

2
G(Pθ)Id

where G(Pθ) = |DPθ|2+1
t(·,Pθ,DPθ)

, see (4.6). Suppose that (1.11) holds. Twice differentiating (9.3) with respect to θ , we

obtain
d2

dθ2
D2Pθ = −1

2
∂pnpnG|D(P1 − P0)|2 < 0,

therefore

D2Pθ(x̄) > θD2P1(x̄) + (1− θ)D2P0(x̄)

for all x̄ ∈ Λ and close to 0. This, in particular, implies that near x = 0

Pθ(x̄) < θP1(x̄) + (1− θ)P0(x̄)

for x̄ ∈ Λ, x̄ 6= 0 and x̄ is close to the origin. Thus we have

(9.4) Pθ(x̄) > min(P1(x̄), P0(x̄)) for x̄ ∈ Λ near 0, x̄ 6= 0.

By Taylor’s expansion we can extend (9.4) to some neighbourhood of 0. Hence we obtain

(9.5) Pθ(x) > min(P1(x), P0(x)) for x near 0, x 6= 0.

This is Leoper’s characterization of the (1.11) condition, see [13].

This leads to the following conclusion: the local supporting paraboloids are global. Indeed, assume that we are

given two paraboloids Pi(x) = cki x
k − c∗i |x|2, i = 0, 1 and P (x) = ckxk − c∗|x|2. Since D(P1 − P0) = (0, · · · , 0, α)

it follows that

ck = ck0 = ck1 , 1 ≤ k ≤ n− 1, cn = θcn1 + (1− θ)cn0 .

By (9.4) we have −c∗|x̄|2 > θ(−c∗0|x̄|2)+(1−θ)(−c∗0|x̄|2) near the origin and x̄ ∈ Λ implying c∗ < θc∗1 +(1−θ)c∗0.

Thus combining the inequalities for the coefficients of the quadratic polynomials P, P0 and P1 we infer that

Pθ(x) > min(P1(x), P0(x)) globally in U .

Note that we needed (1.11) or (4.11) only in some neighborhood of x0. �

Remark 9.2. Notice that to derive the inequality c∗ < θc∗1 + (1− θ)c∗0 we only need to have a closed subset of Λ

near the origin.

10. Weak solutions of A-type: Proof of Theorem 1 b)

For a given u ∈ W+(U ,Σ) we define the following multiple valued map Ru : U → V as follows: for any x ∈ U
we set

Ru(x) = {Z ∈ Σ : Z is the focus of an upper supporting paraboloid of u at x ∈ U}.

If u is differentiable at x0 ∈ U then Ru(x0) = Z(x0) and Z(x0) is given by the formula (3.4). For any subset

E ⊂ U we denote

Ru(E) =
⋃
x∈E

Ru(x).

Lemma 10.1. Ru(E) is closed for any closed subset E ⊂ U .
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Proof. Let Zk ∈ Ru(E) and Zk → Z0. We wish to show that Z0 ∈ Ru(E). It follows from the definition

of Ru that there is xk ∈ E such that Zk ∈ Ru(xk). Let Pk(x, σk, Zk) be a supporting paraboloid of Γu at xk.

Applying Lemma 6.4 to u = uk we conclude that for a subsequence xkj → x0 ∈ E, Pkj (x, σkj , Zkj ) converges to

a supporting paraboloid P (x, σ, Z0) of u at x0 ∈ E. Hence Z0 ∈ Ru(E). �

For a given nonnegative g : Σ→ R and u ∈ C2(U) introduce the set function

αu,g(E) =

ˆ
R(E)

gdHnΣ.(10.1)

Note that αu,g is well-defined for polyhedral u ∈W+
0 (U ,Σ). In fact, it follows from Lemma 10.1 that αu,g is also

well defined for closed subset E ⊂ U .

Our intention is to establish that any u ∈W+(U ,Σ) defines a Radon measure defined by (10.1). This is done

with the help of Proposition 10.5 below.

10.1. Legendre-like transformation of admissible function. In this section we consider a Legendre-like

transformation for the admissible function u which will be used in the construction of the A-type weak solutions

for (P).

Definition 10.2. Suppose that Σ = {Z ∈ Rn+1 : Zn+1 = ψ(z), z = Ẑ}. Let u ∈W+(U ,V). Then

(10.2) u?(z) = sup
x∈U

{
u(x)− ψ(z) + c(x, z)

}
is called the R−transform of u. Here c(x, z) is the distance between the points on the surfaces Γu and Σ, given by

(10.3) c(x, z) =

√∣∣x− z∣∣2 +
[
u(x)− ψ(z)

]2
.

Recall that the paraboloid of revolution is given explicitly by P (x, σ, Z) = σ
2

+ ψ(z) − 1
2σ
|x − z|2, where

Z = (z, ψ(z)) is the focus and σ > 0 the focal parameter, see (6.4). If z is fixed and u ∈W+(U ,V) then the focal

parameter σ0 of supporting paraboloid with focus Z = (z, ψ(z)) is characterized by the following condition

(10.4) σ0(z) = inf
P (x,σ,Z)≥u(x)

σ.

At the point x0, where P and u touch, we have that u(x0) = σ0
2

+ ψ(z) − 1
2σ0
|x0 − z|2. Hence by solving the

quadratic equation σ2
0 + 2σ0[ψ(z)− u(x0)]− |x0 − z|2 = 0 we find that

(10.5) σ0 = u(x0)− ψ(z) +

√∣∣x0 − z
∣∣2 +

[
u(x0)− ψ(z)

]2
is the only nonnegative solution. Thus, for given admissible u we can consider the smallest focal parameter of

paraboloid with focus Z = (z, ψ(z)), defined by (10.4), as a function of z.

Lemma 10.3. Let L (y) = u(x0)−ψ(z)+c(x0, y). Then L is C2 smooth provided that ψ ∈ C2 and dist(U ,V) > 0.

Proof. Denote Q(y) = |y − x0|2 + ψ2(y) − 2ψ(y)u(x0) + u2(x0) then L (y) = u(x0) − ψ(y) +
√
Q(y). We

compute

DiL = −Diψ +
DiQ

2
√
Q
,

DijL = −Dijψ +
1

2
√
Q

(
Qij −

QiQj
2Q2

)
,

Qi(y) = 2(y − x0) + 2ψ(y)Dψ(y)− 2Dψ(y)u(x0),

Qij(y) = 2δij + 2ψi(y)ψj(y) + 2ψ(y)ψij(y)− 2ψij(y)u(x0).



30 ARAM L. KARAKHANYAN

Using the formulae above we obtain

D2L (y) = −D2ψ +
1

2
√
Q

(
D2Q− DQ⊗DQ

2Q2

)
= −D2ψ(y)

(
1 +

u(x0)− ψ(y)√
Q(y)

)
+

Id +Dψ(y)⊗Dψ(y)√
Q(y)

− DQ(y)⊗DQ(y)

4Q
3
2 (y)

which yields the estimate |D2L | ≤ C with C > 0. �

In what follows we call Lx0 the ψ−support function of u? at z.

Lemma 10.4. Let u? be the R−transform of u ∈W+(U ,Σ). Then

• u?(z) = u(x0)− ψ(z) + c(x0, z) if Z = (z, ψ(z)) ∈ Ru(x0),

• u? is semi-convex.

Proof. First, we observe that by definition u?(z) is locally bounded, non-negative, lower semi-continuous

function. Let us show that if Z ∈ R(x0) then u?(z) = u(x0) − ψ(z) + c(x0, z). By definition of u? we have

u?(z) ≥ u(x0)− ψ(z) + c(x0, z). Suppose that u?(z) > u(x0)− ψ(z) + c(x0, z)
def≡ σ0 for Z ∈ Ru(x0) ⊂ Σ. From

(10.3) we see that σ0 > 0. From (10.5) it follows that P (x, σ0, Z) is a supporting paraboloid of u at x0.

On the other hand if σ1
def≡ u?(z) then σ1 > σ0 and by (10.2) there is a sequence {xk} ∈ U such that

xk → x1 ∈ U and σ1 = u(x1)− ψ(z) + c(x1, z). From (10.5) we infer that P (x, σ1, Z) is a supporting paraboloid

of u at x1 ∈ U . Thus we have that P (x, σ1, Z) and P (x, σ0, Z) are supporting paraboloids of u at respectively x1

and x0 such that σ1 > σ0 implying P (x1, σ1, Z) > P (x1, σ0, Z) ≥ u(x1) = P (x1, σ1, Z) which is a contradiction.

To prove the second statement we let Lx0(y) = u(x0)− ψ(y) + c(x0, y). Then

u?(y) = sup
x∈U

{
u(x)− ψ(y) + c(x, y)

}
≥ u(x0)− ψ(y) + c(x0, y)

which implies that u?(y) ≥ Lx0(y) and u?(z) = Lx0(z), where Z ∈ Ru(x0). We can regard Lx0(y) as an lower

supporting function of u? at z. By Lemma 10.3 Lx0 is C2 smooth hence u?(z) + C|z|2 is convex for sufficiently

large C > 0. �

Proposition 10.5. Let Ru be the reflector mapping corresponding to u ∈ W+(U ,Σ) and set S = {Z ∈ Σ : Z ∈
Ru(x1) ∩Ru(x2), x1 6= x2}. Then

• the surface measure of S on Σ is zero,

• furthermore, αu,g(E) =
´

Ru(E)

gdHnΣ is Radon measure.

Proof. Let u? be the R−transform of u. If (z, ψ(z)) = Z ∈ S then there are x1, x2 ∈ U such that

Lxi(y) = u(xi) − ψ(y) + c(xi, y), i = 1, 2 are the ψ−support functions of u?(y) at z. Let us show that u?(y) is

not differentiable at z.

Indeed, if u? is differentiable at z then we have

Du?(z) = −Dψ(z) +
(z − x1)−Dψ(z)(u(x1)− ψ(z))

c(x1, z)
,

Du?(z) = −Dψ(z) +
(z − x2)−Dψ(z)(u(x2)− ψ(z))

c(x2, z)
.

The condition Lx1(z) = Lx2(z) implies that u(x1)− u(x2) = c(x2, z)− c(x1, z). From this identity we deduce

(z − x1)−Dψ(z)(u(x1)− ψ(z))

c(x1, z)
=

(z − x2)−Dψ(z)(u(x2)− ψ(z))

c(x2, z)
.(10.6)
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From the definition of stretch function t it follows that (z − x, ψ(z)− u(x)) = Y c(x, z) where Y = (y, yn+1) is

the unit direction of the reflected ray. With the aid of this observation we can rewrite (10.6) as follows

y1 +Dψ(z)yn+1
1 = y2 +Dψ(z)yn+1

2 ⇒ Y1 + (Dψ(z),−1)yn+1
1 = Y2 + (Dψ(z),−1)yn+1

2 .

The last identity implies that Y1 − Y2 is collinear to the normal of Σ at Z. Consequently, from the assumption

(1.8) we obtain that this is possible if and only if Y1 = Y2. From this equality we can infer that x1 = x2 which

will be a contradiction. Indeed, from Y1 = Y2 we have y1 = y2 and consequently we conclude that

(10.7)
z − x1

c(x1, z)
=

z − x2

c(x2, z)
.

Taking the reciprocal of both sides in the last identity and recalling the definition of c(x, z) we see that

u(x1)− ψ(z)

|x1 − z|
=

u(x2)− ψ(z)

|x2 − z|
(10.8)

and this yields

u(x1) = ψ(z) +
|z − x1|
|z − x2|

(u(x2)− ψ(z))

= ψ(z) +
c(x1, z)

c(x2, z)
(u(x2)− ψ(z)).

Now the condition u(x1)− u(x2) = c(x2, z)− c(x1, z) implies

ψ(z)
c(x2, z)− c(x1, z)

c(x2, z)
− u(x2)

c(x2, z)− c(x1, z)

c(x2, z)
= c(x1, z)− c(x2, z).(10.9)

If c(x2, z) 6= c(x1, z) then from the last equality it follows that u(x2) − ψ(z) =
√

(u(x2)− ψ(z))2 + (z − x2)2.

Hence x2 = z and by (10.7) x1 = x2 which is a contradiction. Thus we must have c(x2, z) = c(x1, z) and in view

of (10.7) this implies that x1 = x2, again contradicting our supposition. Therefore we infer that u? cannot be

differentiable at z. By Rademacher’s theorem u? is differentiable a.e. in z. Thus S has vanishing surface measure.

In order to show that αu,g is Radon measure it suffices to check that F̃ = {E ⊂ U : Ru(E) is measurable} is

a σ−algebra. This can be done exactly in the same way as in the proof of Lemma 8.3. It remains to recall that

by Lemma 10.1, F̃ contains the closed sets. �

Remark 10.1. In the definition of u? it was assumed that Σ is the graph Zn+1 = ψ(z) and ψ is a smooth

function. One can easily amend this definition if, say, Z1 = ψ̃(z̃), z̃ = (0, Z2, Z3, . . . , Zn, Zn+1) as follows

u?(z̃) = sup
x∈U

u(x)− Zn+1 +

√√√√n−1∑
i=2

(xi − Zi)2 +
[
u(x)− Zn+1

]2
+
[
x1 − ψ̃(z̃)

]2 .

This is particularly useful for the cylindrical receivers with generators perpendicular to Π.

10.2. A-type weak solutions. Now we are ready to define the A-type weak solutions of the problem (P).

Definition 10.6. A function u ∈W+(U ,Σ) (or its graph Γu) is said to be an A-type weak solution to the equation

(1.3), if Ru(U) ⊂ Σ and for any Borel set E ⊂ U we have

αu,g(E) =

ˆ
E

f(x)dx.(10.10)
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It is worth pointing out that the notion of A-type weak solution stems from Aleksandrov’s concept of generalized

solution for the classical Monge-Ampère equation. Here Ru replaces the normal mapping ∂+w of convex function

w. Accordingly, the paraboloids replace the supporting planes. In order to show that Aleksandrov’s measure,

defined as µw(E) = |∂+w(E)|, is indeed a Radon measure, it is enough to check that µw(E) is countably additive,

see [1],[17]. This property follows once we establish that the normal mapping ∂+w of convex function w is one-

to-one modulo a set of measure zero. This was shown by Aleksandrov for the classical Monge-Ampère equation,

see [1], Chapter 5.2.

Definition 10.7. A function u ∈ W+(U ,V) is said to be A-type weak solution of (P) if u is a A-type weak

solution of (10.10) and

(10.11) V ⊂ Ru(U), |{x ∈ U : Ru(x) 6⊂ V}| = 0

This definition is natural, stating that the target domain V is covered by the reflected rays and the endpoints

of those rays that after reflection do not strike V constitute a null set on U .

10.3. Comparison principle. An immediate consequence of Lemma 9.1 is the following comparison principle.

Proposition 10.8. Let ui be weak solutions of (4.4) in Ω with f = fi, i = 1, 2, where Ω is a smooth, bounded

domain in Π. Suppose that Ru1(Ω) ⊂ Σ, f1 < f2 in Ω and u1 ≤ u2 on ∂Ω. If Γ1, the graph of u1, lies in the

region D then we have u1 ≤ u2 in Ω.

Proof. Suppose that Ω1 = {x ∈ Ω : u1(x) > u2(x)} is not empty. Let x0 ∈ Ω1 and P (x, σ0, Z0), Z0 ∈ Σ is a

supporting paraboloid of u2 at x0. From the confocal expansion of paraboloids (see subsection 7.2) we infer that

P (x, σ0 +ε, Z0) is a supporting paraboloid of u1 at an interior point x1 ∈ Ω1 for some ε > 0. Thus P (x, σ0 +ε, Z0)

is a local supporting paraboloid of u1. Since Γu1 is in the regularity domain D we can apply Lemma 9.1 to

conclude that P (x, σ0 + ε, Z0) is also a global supporting paraboloid of u1. Therefore

Ru2(Ω1) ⊂ Ru1(Ω1)

implying

ˆ
Ω1

f1dx <

ˆ
Ω1

f2dx =

ˆ
Ru2

(Ω1)

gdHnΣ ≤
ˆ

Ru1
(Ω1)

gdHnΣ =

ˆ
Ω1

f1dx

which gives a contradiction. Thus Ω1 = ∅. �

In closing this section we state the weak convergence result for the α-measures.

Lemma 10.9. Let uk be a sequence of A-type weak solutions and αk is the corresponding measure, defined by

(10.1). If uk → u uniformly on compact subsets of U then u is R−concave and αk weakly converges to αu,g.

The proof is very similar to that of Lemma 8.5 (modulo minor adjustments) and hence omitted.
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11. Comparing A and B type solutions

Let ϕ : RN → Rn be a Borel mapping and µ(RN ) = ν(Rn) < ∞ with µ, ν being two Radon measures on

respectively RN and Rn. Then ϕ induces a (push-forward) measure on Rn defined by ϕ#µ(E) = µ(ϕ−1(E)) for

Borel subsets E ⊂ Rn. A Borel mapping ϕ is said to be measure preserving if

(11.1) ϕ#µ(E) = ν(E) for any Borel set E ⊂ Rn.

By the change of variables formula (11.1) can be rewritten in the following equivalent form

(11.2)

ˆ
h(ϕ(x))dµ =

ˆ
h(y)dν, ∀h ∈ C(Rn).

The integral identity (11.2) was used by Brenier to give a weak formulation for optimal mass transfer problems

[4], [5].

If u ∈ W+(U ,Σ) is the B-type solution of (P), the existence of which is established in Section 8, then taking

ϕ(Z) = Su(Z), N = n+ 1, dµ = gdHnΣ, and ν being the Lebesgue measure one immediately observes that Su is

measure preserving in the sense of (11.1) or (11.2).

Lemma 11.1. If Ru(x) ⊂ V for a.e. x ∈ U then Ru(E) ⊂ Hull(V), where Hull(V) is the R-convex hull of V
defined as the smallest R-convex subset of Σ containing V.

Proof. We only have to consider the points where u is non-differentiable. Let u be non-differentiable at

x0 ∈ U . and suppose that γ1, γ2 are the normals of two supporting planes of u at x0. The ray with endpoint x0

after reflection will lie in the reflector cone Cx0,γ1,γ2 and a fortiori the reflected ray will strike Hull(V), because

Cx0,γ1,γ2 ∩Hull(V) is connected. Considering all normals of supporting planes at x0 we obtain the desired result.

�

Proposition 11.2. Let Σ be R−convex with respect to Qm = U×(0,m),m > 0 and the densities f, g are positive.

Then B-type weak solution is also of A-type.

Proof. First we show that for any compact K1 ⊂ U there holds
´
K2

gdHnΣ ≥
´
K1

f(x)dx with K2 = Ru(K1).

In other words the B-type solution is A-type subsolution. For the proof of this inequality we don’t need V to be

R−convex. Let η ∈ C(Σ) such that η ≡ 1 on K2 ⊂ Σ and 0 ≤ η ≤ 1. Consequently we obtain from (11.2)
ˆ
V
ηgdHnΣ =

ˆ
U
η(Ru(x))f(x)dx ≥

ˆ
K1

f(x)dx.

Letting η to decrease to the characteristic function of K2, h ↓ χK2 we conclude the inequality

(11.3)

ˆ
K2

gdHnΣ ≥
ˆ
K1

f(x)dx.

In this argument K1 can be replaced by any Borel subset of U since by Proposition 10.5 the measure αu,g is Borel

regular. As a consequence we infer from (11.3) that

(11.4) if HnΣ(Ru(E)) = 0 then |E| = 0.

To prove the converse estimate of (11.3) we utilize the R−convexity of V. Take any compact K1 ∈ U and

apply Proposition 10.5 to conclude HnΣ
(
Ru(K1) ∩Ru(U \K1)

)
= 0. We claim that

(11.5) |R−1
u (Ru(K1)) \K1| = 0
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where R−1
u (Ru(K1)) is the pre-image of Ru(K1). Denote E = R−1

u (Ru(K1)) and G = K1. In view of (11.4) it is

enough to check that HnΣ(E \G) = 0. Indeed, form the identity (8.2) it follows that

|Ru(E \G)| =
∣∣∣[Ru(E) \Ru(G)]

⋃
[Ru(E \G) ∩Ru(G)]

∣∣∣(11.6)

= |Ru(E \G) ∩Ru(G)|

= 0

where to get the last line we used the definitions of E andG in order to obtain Ru(E)\Ru(G) = Ru(K1)\Ru(K1) =

∅ and Proposition 10.5. Hence (11.4) implies 0 = |E \G| = |R−1
u (Ru(K1)) \K1|.

Now we are ready to finish the proof and establish the converse of the inequality (11.3). Let h ∈ C(Σ) such

that 0 ≤ h ≤ 1 and h ≥ χRu(K1). Since V is R−convex it follows that Ru(K1) ⊂ HullV, see Lemma 11.1. From

the definition of B-type solutions we have

ˆ
U
η(Ru(x))f(x)dx =

ˆ
V
ηgdHnΣ

=

ˆ
Hull(V)

ηgdHnΣ

≥
ˆ

Ru(K1)

gdHnΣ.

If η → 0 on compact subsets of V \Ru(K1) then η(Ru(x)) uniformly converges to zero one the compact subsets

of U \R−1
u (Ru(K1)). Therefore from (11.5) we inferˆ

Ru(K1)

gdHnΣ ≤
ˆ
U
η(Ru(x))f(x)dx −→

ˆ
R−1(Ru(K1))

f(x)dx =

ˆ
K1

f(x)dx

which in view of (11.5) implies the desired estimate. It remains to check that u verifies the boundary condition

(10.11). Suppose that there is Z0 ∈ V such that Z0 6∈ Ru(U). Since u is of B-type, it follows that Su(V) = U
implying x0 ∈ Su(Z0) (in other words, there is a supporting paraboloid P (x, σ0, Z0) at x0). Thus Z0 ∈ Ru(x0).

Therefore V ⊂ Ru(U). From energy balance condition we haveˆ
Ru(U)

gdHnΣ =

ˆ
U
f(x)dx =

ˆ
V
gdHnΣ.

This yields |{x ∈ U : Ru(x) 6⊂ V}| = 0 for f, g > 0. �

Remark 11.1. Since V is R−convex it follows that Ru(U) ⊂ V. Thus we get the equality Ru(U) = V for R-convex

V.

11.1. Existence of A-type weak solutions: Proof of Theorem 1 c). Suppose that V ⊂ Σ and let Hull(V)

be the R−convex hull of V. For small ε, ε′ > 0 we consider

(11.7) gε(Z) =

{
g(Z)− ε if Z ∈ V
ε′ if Z ∈ Hull(V) \ V

where we choose ε, ε′ so that gε satisfies the energy balance condition (1.1). By Proposition 8.6 for each gε there

is a B-type weak solution which according to Proposition 11.2 is also of A-type. Moreover, from Remark 11.1 we

infer

(11.8) Ruε(U) = V.

Sending ε→ 0 we obtain from Lemma 10.9 that uε → u and u is an A-type solution to (10.10) and
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(11.9) V ⊂ Ru(U).

Since u is second order differentiable a.e. in U it follows that Ru is defined for a.e. x ∈ U . Finally we want to

show that |S| = 0 where

S = {x ∈ U : ∃Z ∈ Ru(x) such that Z ∈ Ru(U) \ V}.

Indeed, from energy balance condition (1.1) we haveˆ
S

f(x)dx =

ˆ
U
f(x)dx−

ˆ
U\S

f(x)dx =

=

ˆ
U
f(x)dx−

ˆ
V
gdHnΣ = 0.

Since f > 0 we conclude that |S| = 0 and hence (10.11) holds and u is a weak A-type weak solution of (P). �

Remark 11.2. In the proof of Proposition 11.2 (see also Remark 11.1) we used the fact that if V is R−convex

then S = ∅. Notice that if S 6= ∅ then u is only Lipschitz continuous. In other words, if V is not R-convex then

u may not be C1 smooth. Such example can be constructed by approximation of two-point receiver problem via

smooth R-convex sets in Σ which in the limit converge to a polyhedral solution formed by two paraboloids, see

[9, 10] for similar examples with regard to point source far-field problem. It is worthwhile to point out that even if

S = ∅ then u may not be C1, and hence further assumptions must be imposed to assure the smoothness of u.

Remark 11.3. The existence of lower admissible solutions can be established analogously. However for the A-type

weak solutions we need to modify (1.11) (or its equivalent (1.10)) and require

− 2t

1 + |Du|2 II + Id cos θ > 0.

12. Dirichlet’s problem

In this section we will discuss the existence and uniqueness of solutions to Dirichlet’s problem. Notice that in

the construction of either types of weak solutions we have not used the explicit form of the equation, which was

derived for u ∈ C2(U) in Section 3. If u ∈ C2(U) then Ru(x), x ∈ U and its Jacobian matrix are well defined.

It is convenient to write the equation (4.4) in the following concise form

(12.1) Fu(x) =
f(x)

g ◦Ru(x)
, x ∈ U .

Definition 12.1. A function u ∈W+(U ,Σ) is said to be a weak A-subsolution of (12.1) if for any Borel set E

(12.2)

ˆ
Ru(E)

gdHnΣ ≥
ˆ
E

f(x)dx.

If αu,g(E) =
´
E
f(x)dx then we say that u is a weak A-solution. The class of all generalized A-subsolutions is

denoted by AS+(U).

Let D ⊂ Σ and ϕ be a smooth function. Consider the Dirichlet problem with boundary data ϕ Fu(x) =
f(x)

g ◦Ru(x)
, x ∈ D,

u = ϕ x ∈ ∂D.
(12.3)

We will show the existence of weak A-solution to (12.3) by employing Perron’s method.
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12.1. Shifting Σ. We start from the following observation. Let u be a solution to (12.1) and ε > 0. Suppose

that Σ is the plane 〈Z, γ0〉 = d0 with γ0 ∈ Sn+1. One can easily verify that if uε = u + ε and u is differentiable

at x ∈ U then

Ruε(x) = Ru(x) + ε

(
en+1 − Y (x)

〈γ0, en+1〉
〈γ0, Y (x)〉

)
,

see (3.3) and (3.4). Hence, uε may not be a solution to (12.1). Furthermore, it is not clear whether uε is upper

admissible in the sense of Definition 6.1.

We address a more general question here: Under what conditions u(x) + K(r2 − |x − x0|2),K > 0 is upper

admissible in Br(x0) (for small r > 0)? This question is directly connected to the proof of Theorem 2.

We recall the visibility condition for Σ, namely that Σ must be visible from any focal plane of supporting

paraboloid (it was mentioned in Remark 4.2). Consequently with the aid of Remark 7.1 we conclude

(12.4) u ∈W+(U ,Σ) then u ∈W+(U , Σ̃) where Σ̃ = Σ−Men+1,M > 0.

Notice that the condition (4.3) implies (12.4).

Lemma 12.2. Let u ∈W+(D,Σ) and Br ⊂ D. The following is true:

1◦ the function ũε = uε + K(r2 − |x|2) ∈ W+(Br, Σ̃) for any ε > 0, where K > max
{

1
L
, 2
|L0|

}
and uε is a

mollification of u.

2◦ ũε ∈ AS+(Br, Σ̃), i.e. uε is a subsolution of (12.1) in Br.

Proof. 1◦ Let w = u+K(r2 − |x|2) and P (x, σ, Z) be a supporting function of u at some point ξ ∈ Br. We

have

P (x, σ, Z) +K(r2 − |x|2) =
σ

2
+ Zn+1 − 1

2σ
|x− z|2 +K(r2 − |x|2)

=
σ

2
+ Zn+1 +Kr2 − |z|

2

2σ
−
(

1

2σ
+K

)
|x|2 +

1

σ
〈x, z〉

=
σ

2
+ Zn+1 +Kr2 − |z|2 K

1 + 2σK
− 1 + 2σK

2σ

∣∣∣∣x− z

1 + 2σK

∣∣∣∣2
=

σ̃

2
+ Z̃n+1 − 1

2σ̃
|x− z̃|2 def≡ P̃ (x, σ̃, Z̃)

where

(12.5) σ̃ =
σ

1 + 2σK
, z̃ =

z

1 + 2σK
, Z̃n+1 =

σ

2
+ Zn+1 +Kr2 − |z|2 K

1 + 2σK
− σ

2(1 + 2σK)
.

With the aid of (12.5) and the estimates from Section 7.4 we infer that for P ∈ PL(U ,Σ) it follows

Z̃n+1 ≥ L− |z|2 K

1 + 2σK
− σ

2(1 + 2σK)
≥(12.6)

≥ L− |z|
2

2σ
− 1

4K
≥ 3L

4
− sup

[
|z|2

2σ

]
def≡ L0

with some fixed L0 provided that K > 1
L

.

The mollified function uε is concave and therefore D2ũε = D2uε−2KId ≤ −2KId. Consequently ũε is strictly

concave and ũε ∈ C∞(D). Therefore for any x0 ∈ Br there is a local supporting paraboloid P0(x, σ0, Z0) at

x0. Since the curvature of ũε is uniformly bounded by below it follows that we can choose the local supporting

paraboloids P0 such that Zn+1
0 ≥ L0−1 for small ε. Now take Σ̃ = Σ− (L0 +10)en+1 then applying the argument

from Section 7.3 and Lemma 9.1 we see that ũε ∈W+(Br, Σ̃).
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2◦ Since ũε is C∞ smooth it is enough to show that it is a subslution of (1.5) in classical sense. We have

W̃ = Id− (D2uε − 2KId)
2t(x, ũε, Dũε)

1 + |Dũε|2
≥ Id

[
K

4t(x, ũε, Dũε)

1 + |Dũε|2
− 1

]
where t is the stretch function corresponding to Σ̃. From (12.6) we see that t ≥ |L0|. Moreover |Dũε| =

|Duε − 2Kx| ≤ 3 if rK ≤ 1 implying

W̃ ≥ Id[K|L0| − 1] ≥ Id
K|L0|

2

provided that K > 2
|L0|

. Consequently

det W̃
|∇ψ|

〈|∇ψ, Y 〉| ≥
Kn|L0|n

2n
inf

[
|∇ψ|

|〈∇ψ, Y 〉|

]
≥ f

g

if K is large enough. �

12.2. Discrete Dirichlet problem. In order to show that the weak solutions to the reflector problem (P) are

locally smooth we will first establish the smoothness of u in a small ball. This is done via the continuity method

and standard mollification argument, see [15]. Then from Proposition 10.8 it follows that the smooth solution,

obtained via the continuity method must coincide with the weak solution u in small ball, see Section 13 for more

details.

Our first aim here is to construct a weak solution to the discrete Dirichlet problem. To do so we follow the

approach of Xu-Jia Wang [21]. Let {bi} ⊂ ∂D be a sequence of points on the boundary of D and {ai} ⊂ D. For

each fixed N ∈ N we set AN = {a1, . . . , aN} and BN = {b1, . . . , bN} ⊂ ∂D. Suppose that νk(x) is a measure

supported at ak, 1 ≤ k ≤ N and consider

(12.7) Fv(x) = νk(x)
f(x)

g ◦Rv(x)
.

Proposition 12.3. Let u ∈W+
0 (D,Σ) be a polyhedral subsolution of (12.7), i.e. Fv(x) ≥ νk(x) f(x)

g◦Rv(x)
, ak ∈ AN .

Then there is a unique A-type weak solution to (12.7) verifying the boundary condition u = u on BN .

Proof. Denote u0 = u. From u0 we want to execute a new function u1 such that u1 ≤ u0 in AN , u1(bi) =

u0(bi), bi ∈ BN and αu1,g(ai) ≤ αu0,g(ai) for ai ∈ AN .

Introduce the class of paraboloids

Φ0,ε(a1) =

P ∈ PL(D,Σ) :

P (ai) ≥ u0(ai), i 6= 1,

P (a1) ≥ u0(a1)− ε,
P (bj) ≥ u0(bj), 1 ≤ j ≤ N


for ε > 0 and consider

T ε1 u0 = inf
P∈Φ0,ε(a1)

P.

Let ε1 > 0 be the largest ε for which T ε11 u0 is a subsolution to (12.7) on AN . Then we denote u0,1 = T ε11 . We

now consider

Φ0,ε(ak) =

P ∈ PL(D,Σ) :

P (ai) ≥ u0,k−1(ai), i 6= k,

P (ak) ≥ u0,,k−1(ak)− ε,
P (bj) ≥ u0,,k−1(bj), 1 ≤ j ≤ N


and take T εku0 = inf

P∈Φ0,ε(ak)
P . Thus we can successively construct the functions u0,k = T

εk
k u0,k−1 where εk is the

largest number for which T εku0,k−1 is a subsolution to (12.7) in AN .
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Set u2(x)
def≡ T εNN u0,N−1. Then by construction αu0,g(ai) ≤ αu1,g(ai), since the Φ classes may only shrink at

ak as we proceed. Therefore we have a sequence of solutions um to the Dirichlet problem in AN such that

αum,g(ai) ≤ αum−1,g(ai),

um(ai) ≤ um−1(ai),

um(bi) = um−1(bi).

The first two inequalities are obvious. As for the boundary condition we note that u0(bi) ≤ u1(bi) by construction.

If u0(bi) < u1(bi) then by taking min[Pi(x), u1(x)], where Pi(x) ∈ PL(D,Σ) is a supporting paraboloid of u0 at

bi we see that min[Pi(x), u1(x)] belongs to the corresponding Φ class. Thus u0(bi) = u1(bi).

Let us show that u = lim
m→∞

um is a solution to the discrete problem in AN with u(bi) = u(bi), bi ∈ BN . Indeed,

by employing Lemma 6.4 we conclude that u ∈W+(D,Σ) and in view of Lemma 10.9 αum,g ⇀ αu,g weakly. Thus

the result follows. �

12.3. General case. Below we use Perron’s method to establish the existence for the general Dirichlet problem.

We take {ai}∞i=1 ⊂ D and {bi}∞i=1 ⊂ ∂D to be dense subsets and AN = {a1, . . . , aN} ⊂ D,BN = {b1, . . . , bN} ⊂
∂D.

Proposition 12.4. Let u ∈ AS+(D,Σ). Then there exists unique weak solution u to the Dirichlet problem Fu =
f(x)

g ◦Ru(x)
in D,

u(x) = u(x) on ∂D.
(12.8)

Proof. For δ > 0 we denote Dδ = {x ∈ D : dist(x, ∂D) > δ} and take η(x) to be a smooth function such that

0 ≤ η(x) ≤ 1, η ≡ 1 in D2δ and η ≡ 0 in D \Dδ. Consider the equation

(12.9) Fv(x) = νk(x)H(v(x))ηδ(x)
f(x)− δ
g ◦Rv(x)

where νk(x) is a measure supported at ak ∈ AN and

(12.10) H(t) =


1 if 0 ≤ t ≤ sup

D
u,

2 sup
D
u−t

sup
D
u

if sup
D
u ≤ t ≤ 2 sup

D
u,

0 if t > 2 sup
D
u.

Consider the class

(12.11) W+
N,u =

{
v ∈W+

0 (D,Σ) : Fv ≥ νkH(v)ηδ
f − δ
g ◦Ru

and v ≥ u on BN

}
.

Clearly W+
N,u is not empty since P (·, σ, Z) is in this class if σ > 0 is sufficiently large. Set vN,δ = inf

W+
N,u

v. We

claim that vN,δ solves (12.1) in the sense of Definition 12.1 and vN,δ(bi) = u(bi), bi ∈ BN .

It is easy to see that αvN,δ,g(ak) = vk(ak)H(vN,δ)ηδ(ak) (f(ak)− δ). Indeed, if vN,δ is a strict subsolution at

ai, i.e. for some ai we have αvN,δ,g(ai) > vk(ai)H(vN,δ)ηδ(ai)(f(ai)− δ), then we can push ΓvN,δ down by some

ε > 0, decreasing the α measure at ai, which, however, will be in contradiction with the definition of vN,δ. Thus

vN,δ is a solution of the equation (12.9).
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Next, we check the boundary condition. Choose Pi ∈ PL(U ,Σ) such that Pi > vδ in Uδ and passes through

(bi, u(bi)). Such Pi exists because by construction vN,δ(ai) ≤ u(ai) and δ > 0.

For P̃i = min[Pi, vN,δ], by construction, we see that F P̃i ≥ νkH(P̃i)ηδ
f−δ
g◦R

P̃i

at ai. Thus P̃i ∈W+
N,u. Hence

vN,δ(bi) = inf
P∈W+

N,u

P (bi) ≤ P̃i(bi) = u(bi).

Now the desired solution can be obtained via a standard compactness argument that utilizes the estimates

from Section 7.4 and Lemma 10.9. More precisely, for fixed δ > 0 we send N → ∞ and obtain a function vδ

that solves the equation Fvδ = H(vδ)ηδ
f

g◦Rvδ
. To show that vδ = u on ∂D we take x0 ∈ ∂D and again use the

comparison with min[P0, vδ] for a suitable P0 ∈ PL(U ,Σ) such that P0(x0) = u(x0). Thus, from Proposition 10.8

we conclude that vδ ≤ u in D. Finally sending δ ↓ 0 and employing the estimate (7.8) and Lemmas 7.2 and 10.9

we complete the proof. �

To control the boundary behaviour for the constructed family of approximations vδ we used Bakelman’s

construction and Perron’s method, see [3] page 218. For the classical Monge-Ampère equation in two spatial

dimensions it was observed there that if the equation’s right had side is not localized by the cutoff function ηδ,

then the boundary curve γ (given beforehand) may not be the boundary of the limit surface constructed by

Perron’s method. Thus, it was necessary to multiply the right hand side of the equation by the cut-off function ηδ

to gain control near ∂D, see [15] page 31. We also note that H(v) was introduced for technical reasons, namely

it absorbs the values of sufficiently large paraboloids used in the construction.

Remark 12.1. For lower admissible functions the solution to Dirichlet’s problem can be constructed analogously.

The necessary condition then will be the existence of a lower admissible supersolution u ∈ W−(D,Σ), i.e. Fu ≤
f

g◦Ru
, such that u = u on ∂D.

13. Proof of Theorem 2

In this section we prove our main regularity result Theorem 2. We first establish global a priori C2,α estimates

in any small ball contained in U . Then using the continuity method we conclude the existence of locally smooth

A-type weak solutions.

Let u±ε be the solutions to

(13.1)

 Fu
±
ε,δ = f±δ

ηg◦Z
u
±
ε,δ

in Br

u±ε,δ = ũε on ∂Br

where ũε = uε + K(r2 − |x|2), K > 0 and uε is a mollification of the weak solution u. By Lemma 12.2 ũε is a

subsolution and hence by Proposition 12.4 the solution to Dirichlet problem exists. Note that for the Dirichlet

problem we have to consider the modified receiver Σ̃, see Lemma 12.2. Letting ε→ 0 and applying the comparison

principle (see Proposition 10.8) we have that u−0,δ ≤ u ≤ u+
0,δ and u±0,δ = u on ∂Br. It follows from the a priori

estimates established in Section 5 that u±0,δ are locally uniformly C2 in Br for any small δ > 0. After sending

δ → 0 we will conclude the proof of Theorem 2. Thus the result will follow once we establish the existence of C2

solutions u±ε,δ of (13.1) in Br.
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Estimates for the Dirichlet problem. Let w ∈ AS+(Br,V)∩C∞(Br) and for t ∈ [0, 1] consider the solutions

to the Dirichlet problem

(13.2)

{
Fwt = t f

hg◦Zw + (1− t)Fw in Br,

wt = w on ∂Br.

Using the implicit function theorem, see [19] Theorem 5.1 we can see that the set of t’s for which (13.2) is

solvable is open.

To show that it is also closed we need to establish global C1,1 a priori estimates in Br. Recall that if ∂Ω ∈
C3, u ∈ C4(Ω) ∩ C3(Ω) and u ∈ C4 then from global C1,1 estimates and the elliptic regularity theory we obtain

that w ∈ C2,α(Ω). Therefore the existence of smooth u±ε,δ will follow once we establish the global C1,1 estimate

for w. We have

Proposition 13.1. Let h,w ∈ C∞(Br(x0)) and w solves the Dirichlet problem det

[
D2w − 1 + |Dw|2

2t
Id

]
=

f

ηg
in Br(x0),

w = ϕ on ∂Br(x0).

Then ‖w‖C2(Br(x0)) ≤ C where C depends on r, ‖f‖C4(Br(x0), ‖g‖C4(V) and ‖ϕ‖C4(Br(x0). Here η is defined by

(4.5)

Proof. We employ the barrier argument from [6] section 7.

If the maximum of D2w is realized at interior point then we can apply the estimates from Section 5 (with u

replaced by −w). Thus without loss of generality we assume that the maximum is realized at some x0 ∈ ∂Br(x0).

In what follows we denote Ω = Br(x0) to be consistent with the notations in [6]. For simplicity we take x0 to be

the origin and en being the inner normal at 0 ∈ ∂Ω where x0 = ren. Introduce the barrier function

v(x) =
1

2
(Bαβ − µδαβ)xαxβ +

1

2
Mx2

n − xn

with µ > 0 fixed so small that the matrix Bαβ − µδαβ > 0. If ε is sufficiently small then

(13.3) v(x) ≤ −cε2 on ∂(Bε ∩ Ω)

see [6] (7.25), (7.27) and (7.28). In other words, we facilitate the choice of constants ε,M, µ in [6]. We will see

that under the same assumptions v(x) + K|x − ren|2 works well as a barrier function for our equation provided

that K > 0 is large enough.

Next, we introduce the tangential operator Tα = ∂α + ωα∂n, α < n, where xn = ω(x′) is the defining function

of Ω near the origin. It follows that

(13.4) |Tα(w − ϕ)| ≤ C|x′|2, α < n, on ∂Ω ∩Bε near the origin

see [6] (7.21). On the remaining part of ∂(Ω ∩Bε) we have |Tα(w − ϕ)| ≤ C.

Denoting h = f
ηg

, where η is given by (4.5), and F = D2w − G
2

Id, G = 1+|Dw|2
2t

we differentiate the equation

detF = h to obtain

F ij
[
Dijwk −

δij
2
GklDlwk −

δij
2
{Gwwk +Gxk}

]
=(13.5)

= hplDlwk + hwwk + hxk
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where F ij is the cofactor matrix

(13.6) F ij = detF([F ]−1)ij .

Introduce the linear operator

L = F ij(Dij −
δij
2
GplDl)− hplDl

then from (13.5) we infer

(13.7) Lwk = O(1 + TrF ij).

Furthermore, we have that

LTαw = Lwα + L(ωαwn) +O(1 + TrF ij).

As for the second term we see that

L(ωαwn) = F ij(ωαijwn + ωαiwnj + ωαjwni + ωαwnij)−

−F
ij

2
Gplδij [ωαlwn + ωαwnl]−

−hpl(ωαlwn + ωαwnl)

= ωαLwn − hplωαlwn

+F ij
(
ωαijwn + ωαiwnj + ωαjwni −

δij
2
Gplωαlwn

)
.

By (13.6) F ijwnj = δjn detF , hence

LTαw = Lwα + ωαLwn − hplωαlwn

+F ij(ωαijwn −
δij
2
Gplωαlwn)

+F ij detF(δjn + δin) +

+O(1 + TrF ij).

Next, applying (13.7) we get

LTαw = O(1 + TrF ij).

Since ϕ ∈ C∞ it follows that

|L(Tα(w − ϕ))| ≤ C(1 + TrF ij)(13.8)

for some C > 0 under control.

Next, we compute

Lv = Fαβ(Bαβ − µδαβ) +MFnn(13.9)

−1

2
TrF ijGplO(|x|)− 1

2
TrF ijGpn −

−hpl [(1 +M)O(|x|)− δkl].

Using the inequality

(13.10)
1

2
Fαβ(Bαβ − µδαβ) +MFnn ≥ c0M

1
n

(the proof of this inequality is identical to that of in [6] page 395) we can control the last term in the computation

above. Indeed, from (13.9) and (13.10) we see that
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Lv ≥ c0M
1
n +

1

2
Fαβ(Bαβ − µδαβ) +MFnn −(13.11)

−1

2
TrF ijGplO(|x|)− 1

2
TrF ijGpn −

−hpl [(1 +M)O(|x|)− δkl]

≥ c0M
1
n +O(1 +Mε) + c1(1 + TrF ij)− 1

2
TrF ij(GplO(|x|) +Gpn).

Recall that Mε ≤ 1, see (7.25) [6].

Let q(x) = K(|x− ren|2 − r2) for some K > 0 to be fixed later. Clearly q(x) < 0 in Ω = Br(ren) and q(x) is

convex. Now we take v1(x) = v(x) + q(x) for some large K > 0. Then (13.11) yields

Lv1 ≥ c2(1 + TrF ij) + 2KTrF ij − 1

2
TrF ijGpn .

Choosing K sufficiently large we conclude

Lv1 ≥ c(1 + TrF ij)

and v1(x) ≤ v(x) ≤ −c4ε2 on ∂(Ω ∩Br).
Thus v1 controls ±ATα(w − ϕ) for some constant A as in [6] and hence

|Dnαw −Dnαϕ| ≤ C α = 1, . . . , n− 1.

The remaining derivative wnn can be directly estimated from the equation. �
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