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AN INVERSE PROBLEM FOR THE REFRACTIVE SURFACES WITH COAXIAL

LIGHTING

ARAM L. KARAKHANYAN

Abstract. In this article we examine the regularity of two types of weak solutions to a Monge-Ampère type

equation which emerges in a problem of finding surfaces that refract coaxial light rays emitted from source

domain and striking a given target set after refraction. Historically, ellipsoids and hyperboloids of revolution

were the first surfaces to be considered in this context. The mathematical formulation commences with deriving

the energy conservation equation for sufficiently smooth surfaces, regarded as graphs of functions to be sought,

and then studying the existence and regularity of two classes of suitable weak solutions constructed from

envelopes of hyperboloids or ellipsoids of revolution. Our main result in this article states that under suitable

conditions on source and target domains and respective intensities these weak solutions are smooth.
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1. Introduction

Let U ⊂ R
n be a bounded domain with smooth boundary and u : U → R a smooth function. By Γu we denote

the graph of u. Let γ denote the unit normal of Γu. We think of Γu as a surface that dissevers two distinct media.

From each x ∈ U we issue a ray ℓx parallel to en+1−the unit direction of the xn+1 axis in R
n+1. Then ℓx

strikes Γu, the surface separating the two media I and II, refracts into the second media II and strikes the receiver

surface Σ, see Figure 1. Let Y be the unit direction of the refracted ray.
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Figure 1. The blue doted lines confine the boundary of media I.

If γ is the unit normal at M = (x, u(x)) ∈ R
n+1 where ℓx strikes Γu then from the refraction law we have

sin θ1
sin θ2

=
n2

n1
,(1.1)

where n1, n2 are the refractive indices of the media I and II respectively, dissevered by the interface Γu, θ1 and

θ2 are the angles between ℓx and γ, and between Y and γ, respectively, see Figure 1.

Suppose that the intensity of light on U is f ≥ 0 and let V be the set of points where the refracted rays strike

the receiver Σ. Denote by g ≥ 0 the gain intensity on V. For each U ′ ⊂ U let V ′ be the set of points where the

rays, issued from U ′ and refracted off Γu, strike Σ. Thus u generates the refractor mapping

Zu : U −→ V

and the illuminated domain on Σ corresponding to U ′ ⊂ U is V ′ = Zu(U ′). If Γu is a perfect refractor, then one

would have the energy balance equation (in local form)

(1.2)

∫

U′

f =

∫

V′=Zu(U′)

g.

The main problem that we are concerned with is formulated below:

Problem. Assume that we are given a smooth surface Σ in R
n+1, a pair of bounded smooth domains U ⊂ Π =

{X ∈ R
n+1 : Xn+1 = 0} and V ⊂ Σ and a pair of nonnegative, integrable functions f : U → R and g : V → R

such that the energy balance condition holds

(1.3)

∫

U

f =

∫

V

gdHn.

Find a function u : U → R such that the following two conditions are fulfilled
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



∫
U′

f =
∫

Zu(U′)

g, for any measurable U ′ ⊂ U

Zu(U) = V.
(RP)

Problems of this kind appear in geometric optics [11] page 315. In the 17th century Descartes posed a similar

problem with target set V being a single point, say V = {Z0}. It was observed that the ellipsoids and hyperboloids

of revolution with focal axis parallel to en+1 will solve this problem if Z0 is one of the foci. The case of general target

V can be treated via approximation argument, namely by constructing a solution from ellipsoids or hyperboloids

for finite set V = {Z1, . . . , Zm} and then letting m → ∞. Moreover, the eccentricity of these surfaces is fixed

and determined by the refractive indices n1 and n2. To see this we take advantage of some well-known facts from

geometric optics and record them here for further reference, see [15]. Let H(x) = Zn+1−aε− a
b

√
b2 + |x− x0|2 be

the lower sheet of a hyperboloid of revolution with focal axis passing through the point x0 ∈ U and parallel to en+1,

see Section 7. Similarly, we define the lower half of an ellipsoid of revolution E(x) = Zn+1−aε− a
b

√
b2 − |x− x0|2.

If n1 and n2 are the refractive indices of media I and II respectively then

ε =
n1

n2
=

sin θ2
sin θ1

=





√
a2−b2

a
< 1 for ellipsoids,√

a2+b2

a
> 1 for hyperboloids.

(1.4)

Here ε is the eccentricity, see [15]. Since ε is fixed we can drop the dependence of E and H from b = a
√

|ε2 − 1|
and take

E(x, a,Z) = Zn+1 − aε− a

√
1− (x− z)2

a2(1− ε2)
, if ε < 1,(1.5)

H(x, a,Z) = Zn+1 − aε− a

√
1 +

(x− z)2

a2(ε2 − 1)
, if ε > 1.(1.6)

We also define the constant

(1.7) κ =
ε2 − 1

ε2

which will prove to be useful, in a number of computation to follow.

Let Σ be the receiver surface given implicitly

(1.8) Σ = {Z ∈ R
n+1 : ψ(Z) = 0}

where ψ : Rn+1 → R is a smooth function. If u ∈ C2(U) then the first condition in (RP), after using change

of variables, results a Monge-Ampère type equation for u, whereas the second one plays the role of boundary

condition for u. More precisely we have the following

Theorem A. Let u ∈ C2(U) be a solution to (RP). Then

1◦ Y = ε
(
κDu
1+q

, 1− κ
1+q

)
is the init direction of refracted ray,

2◦ u solves the equation

(1.9)

∣∣∣∣det
[
q + 1

tεκ

{
Id− κε2Du⊗Du

}
+D2u

]∣∣∣∣ =
∣∣∣∣−εq

[
q + 1

tεκ

]n ∇ψ · Y
|∇ψ|

f

g

∣∣∣∣ ,

where

(1.10) q(x) =
√

1− κ(1 + |Du|2), κ =
ε2 − 1

ε2

and t is the stretch function defined in (3.10) via an implicit relation ψ(x+ en+1u(x) + Y t) = 0.
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If the receiver Σ is a plane then taking ψ(Z) = Z · ξ + ξ1 we find that t = −[Y · ξ0]−1(x+ u(x)en+1 + ξ1). In

particular for the horizontal plane Xn+1 = m, with some constant m > 0, one has

t =
m− u

Y n+1
= (m− u)

q + 1

ε(1− κ+ q)
.

Quadric Σ is another example of receiver for which t can be computed explicitly. In general t is a function of

x, u(x) and Du(x) which may not have simple explicit form. However, in terms of applications the case of planar

receiver is of particular interest, since the flat screens are easy to construct. The method of the stretch function was

introduced in [9, 10] to treat the near-field reflection problem. The equation for a near-field refraction refraction

problem with point source is derived in [5], [7].

Next, we need to introduce the notion of weak solution of (1.9). It will allow us to develop the existence theory

along the lines of the classical Monge-Ampère equation. To this end, we say that u : U → R is upper (resp.

lower) admissible with respect to V if for any x ∈ U there is a hyperboloid H(·, a,Z) (resp. ellipsoid E(·, a, Z))
with focus Z ∈ V such that H(·, a, Z) (resp. E(·, a,Z)) touches u from above (resp. below) at x. Such H(·, a, Z)
(resp. E(·, a, Z)) is called supporting hyperboloid (resp. ellipsoid) of u at x. To fix the ideas we consider the

class of upper admissible function and denote it by WH(U ,V). The class of lower admissible functions is denoted

by WE(U ,V). For each u ∈ WH(U ,V) we define the mapping Su : V → U by

Su(Z) = {x ∈ U : ∃a > 0 such that H(·, a, Z) is a supporting hyperboloid of u at x},

and take

βu,f (E) =

∫

Su(E)

f(x)dx, E ⊂ V.

Furthermore, we also consider the mapping Ru : U → V defined by

Ru(x) = {Z ∈ V : there is a supporting hyperboloid H(·, a,Z) of u at x}

and associate the following set function

αu,g(E) =

∫

Ru(E)

gdHn, E ⊂ V.

Notice that for smooth u, the mapping Su is the inverse of Ru.

With the aid of these set functions αu,g and βu,f we can introduce two notions of weak solution to (RP), called

A and B type weak solutions, respectively. It is not hard to see that βu,f is in fact σ-additive measure, while for

αu,g it is less obvious. Towards proving this the major obstruction is to show that Ru is one-to-one modulo a set

of vanishing Hn measure on Σ. This is circumvented by introducing the Legendre-like transformation v(z) of an

admissible function u(x) in Section 10 defined as an upper envelope of some function of dist(Z,X) for Z ∈ V and

X ∈ U . In order to infer that v(z) is semi-concave (which in turn will lead to σ-additivity of αu,g) we assume that

(1.12) is fulfilled. That done, one can show that an A-type weak solution exists in the sense of Definition 10.2.

If, for a moment, we take the existence of A-type weak solution for granted, the question about its regularity

is even more complex. To set stage for the weak solutions we assume that Σ = {Z ∈ R
n+1 : ψ(Z) = 0} and

ψ : Rn+1 → R being a smooth function. Clearly, some conditions must be imposed on ψ to guarantee, among

other things, that the right hand side of the equation (1.9) is well defined, at least for smooth solutions.
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To this end we enlist the following conditions to be used in the construction of weak solutions and proving

their smoothness.

∇ψ(Z) · (X − Z) > 0 ∀X ∈ (U × [0, m0]),∀Z ∈ Σ and for some large constant m0 > 0,(1.11)

dist(U ,V) > 0,(1.12)

V is R− convex with respect to U , see Definition 9.2,(1.13)

f, g > 0,(1.14)

1

t

[
tεκ

q + 1

]2
II +

κ

q

ψn+1

|∇ψ|

(
Id + κ

p⊗ p

q2

)
> 0, if κ > 0,(1.15)

where II is the second fundamental form of Σ. The subdomain of U×[0,∞) where (1.11)-(1.15) are simultaneously

satisfied is called the regularity domain D.

It is worthwhile to explain the meaning of these conditions: the first one (1.11) means that the reflected rays

are not striking Σ tangentially, otherwise Σ would not detect the gain intensity at the tangential points, i.e. at

the points where ∇ψ(Z) · (X − Z) = 0. On the technical level, however, it allows to apply the inverse function

theorem to recover the stretch function t = t(x, u,Du). It is worth pointing out that (1.11) holds for a large class

of surfaces Σ. To see this we first notice that there is a positive constant c(ε), depending only on ε such that

Y n+1 ∈ (c(ε), 1]. In other words the unit directions Y of refracted rays are within the cone c(ε) < Y n+1 ≤ 1.

Indeed, Y n+1 = ε[1 + (
√
cos2 θ1 − κ − cos θ1)γ

n+1] from refraction law, see (3.4) and Figure 1. If u is not

differentiable at x, we interpret γ as one of the normals of supporting planes of admissible u at x ∈ U since u is

concave (resp. convex) if u is upper (resp. lower) admissible. Consequently if u is lower admissible then Y n+1 ≥ ε

if κ < 0, i.e. ε < 1 and hence c(ε) = ε < 1. On the other hand if κ > 0 then for any u ∈ H(U ,V) we have

(1.16) |Du| < 1√
ε2 − 1

if κ =
ε2 − 1

ε2
> 0.

This simply follows from the fact that supporting hyperboloids control the magnitude of the gradient of u. But

in its turn |DH | of any hyperboloid H given by (1.6) satisfies the estimate (1.16). Because γn+1 = cos θ1 (see

Figure 1 and the derivation of (3.7)) we infer that

(
√

cos2 θ1 − κ− cos θ1)γ
n+1 =

−κ√
cos2 θ1 − κ+ cos θ1

γn+1 > −κ

and consequently Y n+1 > ε(1 − κ) = ε−1 < 1. Thus for ε > 1 we can take c(ε) = ε−1. From here we see that

(1.11) holds for any horizontal receiver Zn+1 = m, for large m > 0. More generally if Σ is concave in Zn+1

direction and the normal mapping of Σ is strictly inside of the cone c(ε) < Y n+1 on the unit sphere then (1.11)

holds true. This leads to the following cone condition for the unit directions of refracted rays

(1.17) 0 < c(ε) ≤ Y n+1 ≤ 1

The second condition (1.12) assures that the Legendre-like transformation v(z) for an admissible function u

is well defined as an envelope of C1 smooth functions, in particular u⋆ is semi-concave and hence differentiable

almost everywhere, see Section 10. This yields that αu,g is a Radon measure.

The next two conditions (1.13) and (1.14) assure that B-type solution is also of A-type and therefore one gets

the existence of A-type weak solutions in some indirect way using the methods of [4], [20]. That done, we can

approximate V by R-convex domains and show the existence of A-type weak solutions without assuming (1.13),

see Theorem C4.

Last condition (1.15), which is crucial for regularity of weak solutions, deserves special attention because is

the most sophisticated one and in order to verify it we have formulated the following
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Theorem B. Let u be a C2(U) solution of (1.9) and || be the second fundamental form of Σ = {Z ∈ R
n+1 :

Zn+1 = ϕ(z)}. If κ > 0, II ≥ 0 of κ < 0, II ≤ 0 then (1.15) holds true with c0 > 0 depending only on ε and the

Lipschitz norm of u.

If Σ is a graph, say Zn+1 = ϕ(z) then (1.15) can be rewritten as

1

t

[
tεκ

q + 1

]2√
1 + |Dϕ|2II + κ

q

(
Id + κ

p⊗ p

q2

)
> 0, if κ > 0.

In lieu of (1.17) this assumption on Σ is restrictive. In addition, Theorem B suggest that it is convenient to think

of Σ as an unbounded convex (reap. concave) surface without boundary if κ > 0 (reap. κ < 0) by extending ϕ

to R
n as a convex function ϕ̃ such that ϕ(z) → ±∞ as |z| → ∞. We will take advantage of such extension of ϕ

(and hence Σ) in Section 7.4 and Lemma 9.2, see also Remark 6.1.

Now we are ready to formulate our main existence result.

Theorem C. 1 if f, g ≥ 0 and (1.3) holds then there is a B-type weak solution provided that the condition

below

(1.18) Zn+1 ≥
[

2

ε− 1
+

1√
ε2 − 1

]
ρ(z)

is satisfied. Here ρ(z) = inf{R > 0 : U ⊂ Bz(R)} is the maximal visibility radius from z
def
= Ẑ ∈ V̂,

2 if (1.11) and (1.12) hold then αu,g is countably additive,

3 if (1.11)-(1.13), (1.18) hold and f ≥ 0 while g > 0 then B-type weak solution is also of A type,

4 if we remove the R−convexity assumption but require the positivity of densities (1.14) and (1.11)-(1.12),

(1.18) then again any B-type weak solution is also of A-type.

The proof of Theorem C1 is by polyhedral approximation while utilising the confocal expansion of hyperboloids

as described in Section 7.4. In this regard the condition (1.18) in Theorem C1 says that one can construct a B-type

weak solution if there is sufficient span between Π and Σ.

Our last result concerns with the smoothness of A-type weak solutions. We use the method of comparing

mollified weak solution with the solution of Dirichlet problem to the regularised equation in a small ball B. To

this end one first has to obtain C2,α, α ∈ (0, 1] estimates in B for the solutions of mollified equations and second

to have uniform C2 estimates in, say, 1
2
B. Then passing to limit and using the comparison principle the result

will follows. The construction of weak solutions to Dirichlet’s problem is based on Perron’s method and follows

along the lines developed in the paper by Xu-Jia Wang [21] where a reflector design problem is studied. Our

research is inspired by [21] and subsequent developments in [9], [10] [8]. For more recent results on this problem

see [12]. The global C2 estimates for the solution of Dirichlet’s problem for the regularised equation follow from

[6] whereas the local uniform estimates in 1
2
B are established in [14]. Thus we have the following theorem

Theorem D. Let f, g be C2 smooth functions such that λ ≤ f, g ≤ Λ for some constants Λ > λ > 0 and the

conditions (1.11)- (1.15) are satisfied. Then A-type weak solutions of (RP) are locally C2 regular in U.

The conditions (1.11)- (1.15) cannot be relaxed as one may easily construct counterexamples to regularity in

the spirit of those in [9], [10]. For instance let us examine (1.13) (see also Remark 11.3), if we take the two

point target V = {Z1} ∪ {Z2} and consider H(x) = min[H(x, a1, Z1),H(x, a2, Z2)] such that these hyperboloids

have non empty intersection over U , then approximating V by smooth R-convex sets Vt we obtain a sequence of

admissible Ht converging to H as t → 0. But if t is sufficiently close to 0 then Ht cannot remain C1 smooth

because otherwise the limit H would also be C1 which is impossible., see [9] for more details.
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The rest of the paper is organized as follows: in the next section we derive the main formulae. Then we

prove Theorem A in Section 3. The main result there is Proposition 4.1 from which the proof of Theorem A

easily follows, see Section 4.2. Section 5 contains some preliminary discussion on the condition (1.15) and after

that in Section 6 we give the proof of Theorem B. The admissible functions are introduced in Section 7 where

we also exhibit some interesting properties of hyperboloids of revolution, notably the dual admissibility and

confocal expansion. Employing the polyhedral approximation technique and weak convergence of measures βu,f

we prove Theorem C1 in Section 8. The first direct application of (1.15) is given in Lemma 9.1, which is G.

Loeper’s geometric interpretation of the MTW condition from [14]. A direct consequence of this is Lemma 9.2 on

approximation of admissible function by smooth subsolutions of (1.9). This is a crucial ingredient of the proof of

Theorem D. Next we introduce the Legendre-like transformation of an admissible u and conclude Theorem C2.

The proofs of Theorem C3-4 follow from a comparison of A and B type weak solutions by extending the results of

Luis Caffarelli [4] and John Urbas [20] for the classical Monge-Ampère equation to (1.9). This is done in Section

11. The last two sections are concerned with the higher regularity A-type weak solutions of (RP). Our approach

is classical and closely affiliates with the classical Monge-Ampère equation for which A. Pogorelov was the first

to propose it, see [16], [17]. Consequently, we first prove the solvability of weak Dirichlet’s problem when the

boundary data is given as the trace of an A-type weak subsolution. Uniqueness follows from comparison principle

stated in Proposition 12.1. Finally in Section 13 we give the proof of our main regularity result, Theorem D.

2. Notations

C,C0, Cn, · · · generic constants,

Π Π = R
n × {0},

U closure of a set U ,
∂U boundary of a set U ,
Û the projection of U ⊂ R

n+1 on Π,

X̂ (x1, x2, . . . , xn, 0) projection of X = (x1, x2, . . . , xn, xn+1),

ε eccentricity,

κ κ = ε2−1
ε2

,

Hn n dimensional Hausdorff measure on Σ,

∂i partial derivate with respect to xi variable,

Du the gradient of a function u,

ρ(z) inf{R > 0 : U ⊂ Bz(R)} is the maximal visibility radius from z
def
= Ẑ ∈ V̂,

q see (1.10),

H(U ,Σ) the class of hyperboloids of revolution with focus on Σ,

H
+(U ,V) hyperboloids from H(U ,V) which are nonnegative in U ,

WH,WE upper and lower admissible functions, see Lemma 7.1,

W
0
H(U ,V) polyhedral admissible functions.

3. Main formulae

In this section we derive the Monge-Ampère type equation (1.9) manifesting the energy balance condition (1.2)

in the refractor problem (RP), see Introduction.
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3.1. Computing Y . We first compute the unit direction of the refracted ray. Denote by γ the unit normal to

the graph of u, that is

γ =
(−D1u, . . . ,−Dnu, 1)√

1 + |Du|2
.(3.1)

Since ℓx, Y and γ lie in the same hyperplane we have

Y = Aen+1 + Bγ,(3.2)

for some coefficients A and B. Computing the scalar products Y ·γ and Y ·en+1 we obtain the following equations

(cf. (1.1))
{

cos θ2 = A cos θ1 + B,

cos (θ1 − θ2) = A + B cos θ1.

Multiplying the first equation by cos θ1 and subtracting from the second one we conclude

A =
sin θ2
sin θ1

, B = cos θ2 − A cos θ1.

Recalling our notations

(3.3) κ =
ε2 − 1

ε2
, ε =

n1

n2
,

we see that A = ε. Furthermore

n2
2 − n2

2 cos
2 θ2 = n2

2 sin
2 θ2 = n2

1 sin
2 θ1 = n2

1 − n2
1 cos

2 θ1.

Dividing both sides of this identity by n2
2 we obtain

cos2 θ2 = ε2 cos2 θ1 − (ε2 − 1) = ε2(cos2 θ1 − κ).

Therefore from A = ε we conclude that B = ε(
√
cos2 θ1 − κ − cos θ1). Returning to (3.2) we infer that the unit

direction of the refracted ray is

Y = ε
(
en+1 + (

√
cos2 θ1 − κ− cos θ1)γ

)
.(3.4)

Notice that (3.1) implies

cos θ1 = γ · en+1 =
1√

1 + |Du|2
.

Consequently, denoting Y = (Y 1, Y 2, . . . , Y n, Y n+1) and y ∈ R
n, the projection of Y onto Π = {X ∈ R

n+1 :

Xn+1 = 0}, (i.e. y = (Y 1, Y 2, . . . , Y n, 0)) we get

y = −ε Du√
1 + |Du|2

(√
cos2 θ1 − κ− cos θ1

)
(3.5)

=
εκDu√
1 + |Du|2

1√
cos2 θ1 − κ+ cos θ1

= εκ
Du√

1− κ(1 + |Du|2) + 1
.

From this computation it follows that

(3.6) Y n+1 = ε

(
1− κ

1 +
√

1− κ(1 + |Du|2)

)
.

Combining (3.5) and (3.6) we obtain

(3.7) Y = ε

(
κDu

1 +
√

1− κ(1 + |Du|2)
, 1− κ

1 +
√

1− κ(1 + |Du|2)

)
.
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If we use the notation q(x) =
√

1− κ(1 + |Du|2) (see (1.10)) then (3.7) takes the form

(3.8) Y = ε

(
κDu

1 + q
, 1− κ

1 + q

)
.

Notice that by (3.7) Y n+1 > 0 for all values of κ.

3.2. Stretch function. Assume that ψ is a smooth function ψ : Rn+1 → R, and the receiver Σ is given as the

zero set of ψ

Σ = {Z ∈ R
n+1 : ψ(Z) = 0}.(3.9)

Let us represent the mapping Z : U → Σ in the following form

(3.10) Z = x+ en+1u(x) + Y t,

where t = t(x, u(x),Du(x)) is determined from the equation ψ(Z) = 0 and is called the stretch function. It is

worthwhile to point out that the stretch function t can be explicitly computed for a wide class of elementary

surfaces. For instance, if Σ is the horizontal plane Zn+1 = m > 0 then from simple geometric considerations one

finds that

t =
m− u

Y n+1

where Y n+1 is given by (3.6).

In lemma to follow we denote by z the projection of Z onto Π, that is z = x+ ty.

Lemma 3.1. Let dSU and dSV be the area elements on U and Z(U) = V ⊂ Σ respectively and z being the

projection of Z onto Π = {Z ∈ R
n+1 : Zn+1 = 0}. Then we have

J =
dSV

dSU
=

∣∣∣∣∣∣∣∣∣∣∣

Z1
1 , · · · , Z1

n, ν1

...
. . .

...
...

Zn1 , · · · , Znn , νn

Zn+1
1 , · · · , Zn+1

n , νn+1

∣∣∣∣∣∣∣∣∣∣∣

(3.11)

= − |∇ψ|
ψn+1

detDz,

where ν is the unit normal of Σ.

Proof. The first equality in (3.11) follows from the change of variables formula. Differentiating the equality

ψ(Z) = 0 by xi we have that

∂iZ
n+1 = − 1

∂n+1ψ

n∑

k=1

∂iz
k∂zkψ.
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Using this identity we multiply j-th row of matrix in (3.11) by ∂zjψ and subtract it from the (n + 1)st row in

order to get

det

∣∣∣∣∣∣∣∣∣∣∣

Z1
1 , · · · , Z1

n, ν1
...

. . .
...

...

Zn1 , · · · , Znn , νn

Zn+1
1 , · · · , Zn+1

n , νn+1

∣∣∣∣∣∣∣∣∣∣∣

= − 1

ψn+1
det

∣∣∣∣∣∣∣∣∣∣∣∣

Z1
1 , · · · , Z1

n, ν1
...

. . .
...

...

Zn1 , · · · , Znn , νn
n∑
k=1

∂1z
k∂zkψ, · · · ,

n∑
k=1

∂nz
k∂zkψ, −ψn+1νn+1

∣∣∣∣∣∣∣∣∣∣∣∣

= − 1

ψn+1
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

Z1
1 , · · · , Z1

n, ν1
...

. . .
...

...

Zn1 , · · · , Znn , νn

0, · · · , 0, −
n+1∑
k=1

ψkνk

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally noting that ν = ∇ψ
|∇ψ|

the desired identity follows. �

Lemma 3.2. Let C ∈ R and ξ, η ∈ R
n. Consider the matrix µ = Id+Cξ⊗ η = δij +Cξiηj where Id = δij is the

identity matrix. Then the inverse matrix of µ is

detµ = 1 + Cξ · η,

µ−1 = Id− Cξ ⊗ η

1 + C(ξ · η) .

Here and henceforth Id is the identity matrix.

Proof. Without loss of generality we assume that ξ = e1 then detµ = 1 + Cη1. It is easy to check that

µ(Id− Cξ⊗η
1+C(ξ·η)

) = Id. �

Finally, we derive a formula for the first order derivatives of the stretch function t. Let us differentiate the

equation ψ(Z) = 0 with respect to xj to get

n∑

k=1

ψk(δkj + tjy
k + tykj ) + ψn+1(uj + tjY

n+1 + tY n+1
j ) = 0.

From here we find

tj = − 1

∇ψ · Y [ψj + ψn+1uj + t(∇ψ · Yj)].(3.12)

4. Proof of Theorem A

In this section we prove Theorem A. We begin with a computation for the matrix Dz, where z is the projection

of Z on to Π.

Proposition 4.1. Let u ∈ C2(U) and Z be the corresponding refractor map, then with the same notations as in

Lemma 3.1 we have

Dz = µ1µ2

[
Id− κε2Du⊗Du+

tκε

1 + h
D2u

]
,(4.1)

where

µ1 = Id−
y ⊗ (∇̂ψ − y

ψn+1

Y n+1 )

∇ψ · Y , µ2 = Id + κ
Du⊗Du

q(q + 1)
,(4.2)
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q =
√

1− κ(1 + |Du|2) and

(4.3) ∇̂ψ = (ψ1, . . . , ψn, 0).

In order to prove Proposition 4.1 we will need the following

Lemma 4.1. Let z(x), x ∈ U be the projection of the mapping Z(x) onto Π = {X ∈ R
n+1 : Xn+1 = 0}. Then

Dz = µ1

(
Id− y ⊗ [y +DuY n+1] + tDy

)
(4.4)

where µ1 is defined by (4.2).

Proof. Introduce the matrix

(4.5) µ0 = δij − yi
ψj + ujψn+1

∇ψ · Y .

Using (3.12) and recalling z = x+ ty we compute

zij = δij + tjy
i + tyij(4.6)

= δij + tyij − yi
1

∇ψ · Y [ψj + ψn+1uj + t(∇ψ · Yj)]

= δij − yi
[ψj + ujψn+1]

∇ψ · Y︸ ︷︷ ︸
µ0

+t

[
yij −

yi(∇ψ · Yj)
∇ψ · Y

]

= µ0 + t

[
yij −

yi(∇ψ · Yj)
∇ψ · Y

]
.

In order to deal with the remaining matrix we recall that (Y n+1)2 = 1 − |y|2 and hence Y n+1
j = − yyj

Y n+1 .

Consequently, setting ∇̂ψ = (ψ1, . . . , ψn, 0) (see (4.3) ) we infer

yij −
yi(∇ψ · Yj)
∇ψ · Y = yij −

yi

∇ψ · Y
(
∇̂ψ · yj − ψn+1

y · yj
Y n+1

)
(4.7)

= yij −
yi

∇ψ · Y

[(
∇̂ψ − ψn+1

Y n+1
y

)
yj

]
.

Combining (4.6) and (4.7) we obtain the following formula for Dz, written in intrinsic form

Dz = µ0 + t


Id−

y ⊗
(
∇̂ψ − ψn+1

Y n+1 y
)

∇ψ · Y


Dy(4.8)

= µ0 + tµ1Dy

= µ1(µ
−1
1 µ0 + tDy)

where the second equality follows from the definition of matrix µ1, see (4.2).

Next, we compute µ−1
1 . From Lemma 3.2 and the identity [Y n+1]2 = 1− |y|2 we get

µ−1
1 = Id + y ⊗

∇̂ψ − ψn+1

Y n+1 y

∇ψ · Y −
(
∇̂ψ · y − |y|2 ψn+1

Y n+1

)(4.9)

= Id +
Y n+1

ψn+1
y ⊗

[
∇̂ψ − ψn+1

Y n+1
y

]
,
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where the last equality follows from the observation

∇ψ · Y −
(
∇̂ψ · y − |y|2 ψn+1

Y n+1

)
= ψn+1Y

n+1 + (1− (Y n+1)2)
ψn+1

Y n+1
(4.10)

=
ψn+1

Y n+1
.

It is convenient to rewrite this identity in the following form

(4.11)

[
∇̂ψ · y − |y|2 ψn+1

Y n+1

]
Y n+1

ψn+1

1

∇ψ · Y =
Y n+1

ψn+1
− 1

∇ψ · Y .

Consequently, we obtain

µ−1
1 µ0 =

(
Id +

Y n+1

ψn+1
y ⊗

[
∇̂ψ − ψn+1

Y n+1
y

])(
Id− y ⊗ ∇̂ψ +Duψn+1

∇ψ · Y

)

= Id− y ⊗ ∇̂ψ +Duψn+1

∇ψ · Y +
Y n+1

ψn+1
y ⊗

[
∇̂ψ − ψn+1

Y n+1
y

]
−

−
[
∇̂ψ · y − |y|2 ψn+1

Y n+1

]
Y n+1

ψn+1

1

∇ψ · Y
{
y ⊗ ∇̂ψ +Duψn+1

}

Applying (4.11) to the last term in this computation we get

µ−1
1 µ0 = Id− y ⊗ ∇̂ψ +Duψn+1

∇ψ · Y +
Y n+1

ψn+1
y ⊗

[
∇̂ψ − ψn+1

Y n+1
y

]
−

−
[
Y n+1

ψn+1
− 1

∇ψ · Y

]{
y ⊗ ∇̂ψ +Duψn+1

}

= Id +
Y n+1

ψn+1
y ⊗

[
∇̂ψ − ψn+1

Y n+1
y

]
−

−Y
n+1

ψn+1

{
y ⊗ ∇̂ψ +Duψn+1

}

= Id− y ⊗ [y +Duψn+1].

Plugging in the computed form of µ−1
1 µ0 into (4.8) the result follows. �

4.1. Proof of Proposition 4.1. To finish the proof of Proposition 4.1, it remains to express Dz through the

Hessian D2u. We have from (3.8)

y = εκ
Du

q + 1
,(4.12)

Y n+1 = ε

(
1− κ

q + 1

)
,(4.13)

where q =
√

1− κ(1 + |Du|2), see (1.10). From the definition of q we have Dq = −κDuD2u/q, thus

Dy = εκ

[
Id + κ

Du⊗Du

q(q + 1)

]
D2u

q + 1

= εκµ2
D2u

q + 1
,
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where µ2 is the matrix in (4.2). Now Lemma 4.1 yields

Dz = µ1

(
Id− y ⊗ [y +DuY n+1] + tεκµ2

D2u

q + 1

)
(4.14)

= µ1µ2

(
µ−1
2

{
Id− y ⊗ [y +DuY n+1]

}
+ tεκ

D2u

q + 1

)

= µ1µ2

(
µ−1
2 M+ tεκ

D2u

q + 1

)

where M = Id− y ⊗ [y +DuY n+1].

Using (4.12) we can further simplify the matrix M = Id− y ⊗ [y +DuY n+1] to get

M = Id− y ⊗ (y +DuY n+1)(4.15)

= Id− ε2κ2

(1 + q)2
Du⊗Du−

ε2κ(1− κ
1+q

)

1 + q
Du⊗Du

= Id− ε2κ

1 + q
Du⊗Du.

By Lemma 3.2 we have for the inverse of µ2 (see (4.2))

µ−1
2 = Id− κ

q2 + q + κ|Du|2Du⊗Du(4.16)

= Id− κ

1− κ+ q
Du⊗Du,

where the last equality follows from the definition of q, see (1.10). It remains to compute µ−1
2 M. From (4.16)

and (4.15) we obtain

µ−1
2 M =

[
Id− κ

1− κ+ q
Du⊗Du

] [
Id− ε2κ

1 + q
Du⊗Du

]

= Id + [I + II + III ]Du⊗Du

where

I = − κ

1− κ+ q
,

II = − ε2κ

1 + q
,

III =
ε2κ2|Du|2

(1 + q)(1− κ+ q)
.

It follows from (1.10) that −κ|Du|2 = q2 − 1 + κ, therefore

III =
ε2κ(−q2 + 1− κ)

(1 + q)(1− κ+ q)
.

Adding this to II we have

II + III =
ε2κ

1 + q

[
−1 +

−q2 + 1− κ

1− κ+ q

]

= − qε2κ

1− κ+ q
.
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Finally we compute the total sum

I + II + III = − κ

1− κ+ q
− qε2κ

1− κ+ q

= − κ

1− κ+ q

[
qε2 + 1

]

= − κ

1− κ+ q

[
q

1− k
+ 1

]

= − κ

1− κ

= −κε2,

where the last line follows from the definition of κ, see (3.3).

Returning to (4.14) and utilising these computations we get

Dz = µ1µ2

[
µ−1
2 M+ tεκ

D2u

q + 1

]

= µ1µ2

[
Id− κε2Du⊗Du+ tεκ

D2u

q + 1

]
.

This finishes the proof of Proposition 4.1. �

4.2. Proof of Theorem A. Now we are ready to finish the proof of Theorem A. Let u ∈ C2(U) be a solution

to the refractor problem (RP) then from Proposition 4.1 we obtain

(4.17) detDz = detµ1detµ2

[
tεκ

q + 1

]n
det

[
q + 1

tεκ

{
Id− κε2Du⊗Du

}
+D2u

]
.

By Lemma 3.2 and (1.10) we have

detµ2 = 1 +
κ|Du|2
q(q + 1)

=
1− κ+ q

q(q + 1)
.

Similarly, we get

detµ1 =
ψn+1

Y n+1

1

∇ψ · Y .

These in conjunction with (3.11) gives

det

[
q + 1

tεκ

{
Id− κε2Du⊗Du

}
+D2u

]
=

[
q + 1

tεκ

]n
detDz

detµ1detµ2

= −f
g

ψn+1

|∇ψ|

[
q + 1

tεκ

]n
1

detµ1detµ2

= −(∇ψ · Y )
Y n+1

|∇ψ|
q(q + 1)

1− κ+ q

[
q + 1

tεκ

]n
f

g
.

Finally, recalling (3.8) and substituting the value of Y n+1 we see that

det

[
q + 1

tεκ

{
Id− κε2Du⊗Du

}
+D2u

]
= −(∇ψ · Y )

Y n+1

|∇ψ|
q(q + 1)

1− κ+ q

[
q + 1

tεκ

]n
f

g
(4.18)

= −εq
[
q + 1

tεκ

]n ∇ψ · Y
|∇ψ|

f

g

and the proof of Theorem A is now complete. �
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5. Existence of smooth solutions

In this section we will have a provisional discussion on the existence of smooth solutions to (1.9). Our main

objective is to apply the available regularity theory for the Monge-Ampère type equations, stemming from seminal

paper [14], in order to establish the regularity of weak solutions of the refractor problem.

We first rewrite the equation (4.18) in a more concise form. Let us introduce the following matrix

(5.1) Gij =
1

t
(q + 1)[δij − κε2uiuj ].

Here q =
√

1− κ(1 + |Du|2), see (1.10) and t is the stretch function determined from implicit equation ψ(x +

en+1u+ tY ) = 0 as in Theorem A. Then the equation (4.18) transforms into

det

[
− G

εκ
−D2u

]
= |h(x, u,Du)|, if κ > 0, ε > 1 u ∈ C2(U) and − G

εκ
−D2u ≥ 0,(5.2)

det

[
D2u+

G

εκ

]
= |h(x, u,Du)|, if κ < 0, ε < 1 u ∈ C2(U) and G

εκ
+D2u ≥ 0(5.3)

with

(5.4) h(x, u,Du) = −εq
[
q + 1

tεκ

]n ∇ψ · Y
|∇ψ|

f

g
.

The existence of C2 smooth solutions of (5.2) or (5.3) depend on the properties of the matrix G. Namely, it is

shown in [14] that if we regard G as a function of variable p = Du then the condition

(5.5) D2
pkpl

Gijξiξjηkηl
≤ −c0|ξ|2|η|2 if κ > 0

≥ c0|ξ|2|η|2 if κ < 0
∀ξ, η ∈ R

n, ξ ⊥ η,

with c0 being a positive constant, is sufficient to obtain a priori C1,1 bounds for the smooth solutions.

It is noteworthy to point out that the condition (5.5) and the C2 estimates were derived in [14] for the Monge-

Ampère type equations with variational structure emerging in optimal transport theory. The method used there

is based on comparison the weak solution with the smooth one in a small ball. To employ this method successfully

in the outset of refractor problem we need to establish a comparison principle, suitable mollification of the weak

solution and a priori estimated for the smooth solutions of Dirichlet’s problem in small balls.

The method outlined above gives the C2 estimates for non-variational case as well, see [9, 10]. Therefore the

local regularity result for the solutions to (5.2)-(5.3) with smooth w will follow once the matrix G verifies the

condition (5.5). That done, the regularity of weak solutions reduces to the verification of the inequality (5.5) with

some positive constant c0.

The conditions imposed on the matrix in (5.2)-(5.3) involving the Hessian implies that the Monge-Ampère

equation is degenerate elliptic. The weak formulation of degenerate ellipticity will be discussed in Section 10.

Postponing the precise definition of weak solutions until then we would like to point out how the ellipticity of

equation follows if we consider those C2 solutions of (5.2) (reap. (5.3)) for which at every point x ∈ U there is

a hyperboloid (reap. ellipsoid) of revolution H(·, a, Z) touching u from above (reps. below) at x. Indeed, for

H(x) = ℓ0 − a
b

√
b2 + |x− x0|2 the matrix WH = − G

εκ
+ D2H is identically zero. To see this we consider the

case of planar receiver Σ given as Xn+1 = m with m > 0. Without loss of generality we take x0 = 0. Then

H(0) = ℓ0 − a. On the other hand it follows from the definition of eccentricity ε =

√
a2+b2

a
that ℓ0 = m− aε, see

Section 7. Next, a simple geometric reasoning yields the following explicit formula for the stretch function

(5.6) t =
m−H

Y n+1
=
c+ a

b

√
b2 + |x|2

ε(1− κ
h+1

)
.
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We have DH = − a
b

x√
b2+|x|2

. Consequently

(5.7) D2H = − a

b
√
b2 + |x|2

(
Id− x⊗ x

b2 + |x|2
)
.

Moreover, recalling (3.3) we obtain κ = 1− 1
ε2

= b2

c2
where c =

√
a2 + b2. This gives

(5.8) q(x) =
1

ε

b√
b2 + |x|2

,

in lieu of (1.10).

Thus combining these formulae for t and q we get from (5.1), (5.6) and (5.7)

WH = − G

εκ
−D2H

= − q + 1

κεt

{
[δij − κε2HiHj ] +

κεtD2
ijH

q + 1

}

= − q + 1

κεt




Id−

[
κε2

a2

b2

]
x⊗ x

b2 + |x|2︸ ︷︷ ︸
DH⊗DH

+
κεt

q + 1

[
− a

b
√
b2 + |x|2

(
Id− x⊗ x

b2 + |x|2
)]

︸ ︷︷ ︸
D2H




.

From the definition of κ (1.7) it follows that κε2 a
2

b2
= b2

c2
ε2 a

2

b2
= 1 implying

WH = − q + 1

κεt

(
Id− x⊗ x

b2 + |x|2
){

1− κεt

q + 1

[
a

b
√
b2 + |x|2

]}
.

Therefore, recalling (5.6) and (5.8) we easily compute

t =
c+ a

b

√
b2 + |x|2

ε(1− κ
h+1

)
= (q + 1)

c+ a
b

√
b2 + |x|2

ε(q + 1− κ)
(5.9)

= (q + 1)
c+ a

b

√
b2 + |x|2

ε(q + 1
ε2
)

= ε(q + 1)
c+ a

b

√
b2 + |x|2

ε2q + 1

= ε(q + 1)
√
b2 + |x|2 c+

a
b

√
b2 + |x|2

εb+
√
b2 + |x|2

.

Returning to WH and utilizing (5.9) we obtain

1− κεt

q + 1

[
a

b
√
b2 + |x|2

]
= 1− κε2

c+ a
b

√
b2 + |x|2√

b2 + |x|2 + bε

= 1− εκ
c

a

a2

b2

= 1− ε2κ
a2

b2

= 0.

A similar computation for the matrix WE =
G

tε|κ| + D2E can be carried out for the ellipsoids of revolution E

(i.e. for ε < 1, κ < 0).
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Since −D2u ≥ −D2Hx0 at x0 and WH = − G
εκ

−D2Hx0 ≡ 0 it follows that the equation det
[
− G
εκ

−D2u
]
= h

is degenerate elliptic.

Notice that for ε < 1 the weak solution has a supporting ellipsoid of revolution Ex0 at each point x0 ∈ U
touching Γu from below. In particular we see that if u ∈ C2 then Du = DEx0 ,−D2u ≤ −D2Ex0 at x0. Thus
G

εκ
+D2u ≥ 0 and we infer that (5.2) is degenerate elliptic. Analogously, using the hyperboloids as supporting

functions, one can check that (5.3) is also degenerate elliptic.

6. Proof of Theorem B: Verifying the A3 condition

In this section we explicitly compute DpkplG
ijξiξjηkηl explicitly and relate it with the second fundamental

form of the receiver Σ = {Z ∈ R
n+1 : ψ(Z) = 0 where ψ : Rn+1 → R is a smooth function such that (1.11) holds.

6.1. Computing the derivatives of stretch function t. Recall that by (3.10) Z(x) = x + en+1u(x) + tY .

Differentiating ψ(Z(x)) = 0 with respect to pk we get

tpk
t

= −
∑
m ψmY

m
pk∑

m ψmY
m
, k = 1, . . . n.(6.1)

After differentiating again by pl we get

tpkpl
t

− tpk tpl
t2

= −
[∑

ms ψms(Y
s
pl
t+ Y stpl)Y

m
pk

+
∑
ψmY

m
pkpl

(∇ψ · Y )
(6.2)

−
∑
m ψmY

m
pk

(∇ψ · Y )2

(∑

m,s

ψms(Y
s
pl
t+ Y stpl)Y

m +
∑

m

ψmY
m
pl

)]

= − 1

(∇ψ · Y )

[(
∇2ψYpkYpl −

∇ψYpk
(∇ψ · Y )

∇2ψY Ypl

)
t

+

(
∇2ψYpkY − ∇ψYpk

(∇ψ · Y )
∇2ψY Y

)
tpl

+∇ψYpkpl −
∇ψYpk
(∇ψ · Y )

∇ψYpl
]
=

= − 1

(∇ψ · Y )

[(
∇2ψYpkYpl −

∇ψYpk
(∇ψ · Y )

∇2ψY Ypl

)
t

+

(
∇2ψYpkY − ∇ψYpk

(∇ψ · Y )
∇2ψY Y

)
tpl +∇ψYpkpl

]

+
tpk tpl
t2

.

Rearranging the terms we infer

D2
pkpl

(
1

t

)
= − tpkpl

t2
+

2tpk tpl
t3

=
1

t(∇ψ · Y )

[(
∇2ψYpkYpl −

∇ψYpk
(∇ψ · Y )

∇2ψY Ypl

)
t(6.3)

+

(
∇2ψYpkY − ∇ψYpk

∇ψ · Y ∇2ψY Y

)
tpl +∇ψYpkpl

]

=
1

t(∇ψ · Y )

[
1

t
∇2ψZpkZpl +∇ψYpkpl

]

where the last line follows from (6.1). Thus the second derivatives of 1
t
can be computed from (6.3), while for the

first order derivatives we have the formula (6.1).

Next, we want to compute the derivatives of Mij = (q + 1)[δij − κε2pipj ] with respect to p. We have

DpkMij = qpk (δij − κε2pipj)− (q + 1)κε2[δkjpi + δkipj ].
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The condition ξ ⊥ η implies that the contribution of the terms involving δkj and δki is zero. Thus we infer

D2
pkpl

Mijξ
iξjηkηl = qpkplη

kηl
[
|ξ|2 − κε2(p · ξ)2

]
.

Recall that by definition G = M
t

hence from the product rule we have

D2
pkpl

Gijξiξjηkηl = D2
pkpl

(
1

t

)
ηkηl(q + 1)

[
|ξ|2 − κε2(p · ξ)2

]
(6.4)

+2

(
Dp

1

t
· η
)
(Dpq · η)

[
|ξ|2 − κε2(p · ξ)2

]

+
1

t
(D2

pkpl
q)ηkηl

[
|ξ|2 − κε2(p · ξ)2

]

= Sklη
kηl
[
|ξ|2 − κε2(p · ξ)2

]
,

where

Skl = (q + 1)D2
pkpl

(
1

t

)
+Dpk

(
1

t

)
Dplq +Dpl

(
1

t

)
Dpkq +

D2
pkpl

q

t
.(6.5)

It follows from (3.8) that

(6.6) Ypkpl (q + 1) + Ypkqpl + Yplqpk + Y qpkpl = en+1εqpkpl .

which after taking the inner product with ∇ψ and dividing the by ∇ψ · Y yields

(q + 1)ψn+1qpkpl
∇ψ · Y =

(q + 1)∇ψ · Ypkpl
∇ψ · Y +

qpk∇ψ · Ypl
∇ψ · Y +

qpl∇ψ · Ypk
∇ψ · Y + qpkpl =(6.7)

=
(q + 1)∇ψ · Ypkpl

∇ψ · Y +
qpk∇ψ · Ypl

∇ψ · Y +
qpl∇ψ · Ypk

∇ψ · Y + qpkpl

=
(q + 1)∇ψ · Ypkpl

∇ψ · Y + tqpkDpl

(
1

t

)
+ tqplDpk

(
1

t

)
+ qpkpl

=
(q + 1)∇ψ · Ypkpl

∇ψ · Y + t

(
Skl − (q + 1)D2

pkpl

(
1

t

))
.

Consequently, with the aid of (6.3) we find that

Skl =
q + 1

t(∇ψ · Y )
(ψn+1qpkpl −∇ψ · Ypkpl) + (q + 1)D2

pkpl

(
1

t

)

=
q + 1

t(∇ψ · Y )
(ψn+1qpkpl −∇ψ · Ypkpl) +

q + 1

t(∇ψ · Y )

[
1

t
∇2ψZpkZpl +∇ψYpkpl

]

=
q + 1

t(∇ψ · Y )

[
1

t
∇2ψZpkZpl + ψn+1qpkpl

]
.

It remains to recall that by (1.10)

(6.8) qpkpl = −κ
q

[
δkl + κ

pkpl
q2

]

and we conclude

D2
pkpl

Gijξiξjηkηl =
q + 1

t(∇ψ · Y )

[
1

t
∇2ψZpkZpl + ψn+1qpkpl

]
ηkηl

[
|ξ|2 − κε2(p · ξ)2

]
.(6.9)

It is worth noting that |ξ|2 − κε2(p · ξ)2 is always positive. This is obvious if κ < 0. As for κ > 0 then we note

that |ξ|2−κε2(p ·ξ)2 = |ξ|2
(
1− κε2

(
p · ξ

|ξ|

)2)
> 0 in view of the estimate |p| ≤ 1√

ε2−1
, see (1.16). Furthermore,

from (1.11) it follows that D2
pkpl

Gij and Ŝkl defined by

(6.10) Ŝkl =
1

t
∇2ψZpkZpl + ψn+1qpkpl
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have the same signs. Thus it is enough to explore the form Ŝkl instead.

6.2. Refining condition (5.5). Let Z0 be a fixed point on Σ. Introduce a new coordinate system x̂1, . . . , x̂n, x̂n+1

near Z0, with x̂n+1 having direction Y . Since (1.11) and (1.12) implies ∇ψ 6= 0, without loss of generality we

assume that near Z0, in x̂1, . . . , x̂n, x̂n+1 coordinate system Σ has a representation x̂n+1 = ϕ(x̂1, . . . , x̂n). Recall

that the second fundamental form of Σ is

II =
∂2
x̂i,x̂j

ϕ
√

1 + |Dϕ|2
, i, j = 1, . . . , n(6.11)

if we choose the normal of Σ at Z0 to be
(−Dx̂1

ϕ,...,−Dx̂n
ϕ,1)√

1+|Dϕ|2
, Dϕ = (Dx̂1ϕ, . . . ,Dx̂nϕ, 0).

Denote ψ̃(Z) = Zn+1 − ϕ(z) and assume that near Z0, Σ is given by the equation ψ̃ = 0. It follows that

∇2ψ̃ = −

∣∣∣∣∣∣∣∣∣∣∣

ϕ11 · · · ϕ1n 0

...
. . .

...
...

ϕn1 · · · ϕnn 0

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣

.(6.12)

Therefore for Z = x+ uen+1 + tY we have ∇2ψ̃Y = 0 and hence

∇2ψ̃ZpkZpl = ∇2ψ̃(tYpk + tpkY )(tYpl + tplY )(6.13)

= t2∇2ψ̃YpkYpl

= −t2∇2ϕYpkYpl .

By (4.12) Y (q + 1) = (εκp, εq + ε − κ) where y(q + 1) = εκp. Differentiating this equality with respect to pk

we infer

(6.14) Ypk(q + 1) + Y qpk = ε(κêk + qpk ên+1)

hence

(6.15) Ypk =
1

q + 1
[−Y qpk + ε(κêk + qpk ên+1)] .

On the other hand (6.12) and ên+1 = Y yield

∇2ψ̃Ypk =
1

q + 1
∇2ψ̃ [−Y qpk + ε(κêk + qpk ên+1)](6.16)

=
ε

q + 1
∇2ψ̃(κêk + qpk ên+1)

=
εκ

q + 1
∇2ψ̃êk.

Since ∇2ψ̃ is symmetric we infer

∇2ψ̃YpkYpl =
ε2κ2

(q + 1)2
∇2ψ̃êkêl.(6.17)
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Plugging (6.17) into (6.13) we finally obtain

∇2ψ̃ZpkZpl = −t2 ε2κ2

(q + 1)2
∇2ϕêkêl.(6.18)

= −t2 ε2κ2

(q + 1)2

√
1 + |Dϕ|2II

where II is the second fundamental form of Σ at Z0, see (6.11). This in conjunction with (6.8) yields

(6.19) Ŝkl = −
[
1

t

(
tεκ

q + 1

)2√
1 + |Dϕ|2II + κ

q
(Id + κ

p⊗ p

q2
)

]
.

6.3. Planar receivers. Let us consider the case of horizontal receiver Zn+1 = m > 0 for some positive number

m. Then II = 0 implying that Ŝkl = −κ
q
(Id + κ p⊗p

q2
). If κ > 0 then clearly Ŝkl < −κ

q
δkl ≤ −c0δkl, where c0 > 0

depends only on sup |p| and ε. As for κ < 0 we compute

Sklξ
iξj =

|κ||ξ|2
q

(1− |κ|(p · ξ)2
q2|ξ|2 ) ≥ |κ||ξ|2

q
(1− |κ|p|2

q2
) =

|κ|(1 + |κ|)
q3

|ξ|2 ≥ c0|ξ|2

where c0 > 0 depends only on sup |p| and ε. Consequently (5.5) is true for horizontal receivers Zn+1 = m > 0.

Remark 6.1. The computation above shows that (5.5) is true if κ > 0, II ≥ 0 or if κ < 0, II ≤ 0. We can extend

Σ to entire space such that the resultd surface is still concave if say κ > 0, hence without loss of generality we

can assume that Σ is entire concave surface and so is Σ+Men+1, for M ≫ 1. We will take advantage of this in

Lemmas 7.3 and 9.2

7. Admissible functions

The refractive properties of ellipses and hyperbolas have been known since ancient times [15]. Furthermore,

hyperboloids and ellipsoids of revolution share the same properties. This section is devoted to the class of functions

obtained as envelopes of halves of ellipsoids and hyperboloids of revolution.

7.1. Ellipsoids. Throughout this paper by ellipsoid we mean the lower half of an ellipsoid of revolution with

focal axis parallel to en+1. Such surface can be regarded as the graph of

(7.1) E(x, a,Z) = Zn+1 − aε− a

√
1− (x− z)2

a2(1− ε2)

where a is the larger semiaxis, ε- the eccentricity, and Z the higher focus, see Figure 2. Moreover we have that

(7.2) DE =
1

a(1− ε2)

x− z√
1− (x−z)2

a2(1−ε2)

.

Notice that at the points x where |x− z| = a
√
1− ε2 the gradient |DE| is unbounded.

7.2. Hyperboloids. It is convenient to introduce the lower sheet of hyperboloids of revolution

(7.3) H(x, a, Z) = Zn+1 − aε− a

√
1 +

(x− z)2

a2(ε2 − 1)

where a is the larger semiaxis, ε the eccentricity, and Z the upper focus, see Figure 2. Differentiating H we obtain

(7.4) DH = − 1

(ε2 − 1)

x− z√
a2 + (x−z)2

ε2−1

.
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H(x, a, z)
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Z = F2

F1

θ1

θ2

(a) Upper admissible

E(x, a, z)

M

ℓ
x

x

u

Z = F2

F1

θ2

θ1

(b) Lower admissible

Figure 2. Supporting surfaces

7.3. Supporting hyperboloids.

Definition 7.1. A function u : U → R is said to be upper (resp. lower) admissible if for any x0 ∈ U there is

Z ∈ V and a > 0 such that H(x0, a, Z) = u(x0) (resp. E(x0, a, Z) = u(x0)) and H(x, a, Z) ≥ u(x), x ∈ U (resp.

E(x, a, Z) = u(x)). H (resp. E) is called a supporting function of u at x0. The class of all upper admissible

functions is denoted by WH(U ,V) (resp. WE(U ,V)).

In what follows we focus on upper admissible functions, the lower admissible functions can be studied in similar

fashion. If the generalisation is not straightforward then we will outline the proof.

Formula (7.4) yields uniform Lipschitz estimates for WH(U ,V).

Lemma 7.1. Let H+(U ,V) be the set of all hyperboloids H(x, a, Z) ≥ 0, Z ∈ V for any x ∈ U . Then

sup
H+(U,V)

‖DH‖∞ <
1√
ε2 − 1

.

In particular

sup
WH(U,V)

‖Du‖∞ <
1√
ε2 − 1

.

Proof. From (7.4) we have

|DH | = 1

(ε2 − 1)

|x− z|√
a2 + |x−z|2

ε2−1

=
1√
ε2 − 1

|x− z|√
a2(ε2 − 1) + |x− z|2

.

Since |x− z| is uniformly bounded, the result follows. �
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Lemma 7.2. Let {uk} be a sequence of upper admissible function such that uk → u0 uniformly in U. If xk ∈ U,
xk → x0 and Hk are supporting functions of uk at xk then u0 has an upper supporting function H0 at x0 and

Hk → H0 uniformly in U.

Proof. One way to check the claim is to use some well known fact from convex analysis. Consider the convex

sets Gk = {X ∈ R
n+1 : x ∈ U , 0 < uk(x) < Xn+1} and Hk = {X ∈ R

n+1 : x ∈ U , 0 < Hk(x) < Xn+1} where

x = X̂. Then Hk ⊂ Gk and (xk, uk(xk)) ∈ ∂Hk ∩ ∂Gk. Thus, from uniform convergence uk → u0 we infer that

the limit set G0 = {X ∈ R
n+1 : x ∈ U , 0 < u0(x) < Xn+1} is a subset of H0 = {X ∈ R

n+1 : x ∈ U , 0 < H0(x) <

Xn+1}, see [1] Chapter 5.2. Furthermore, from xk → x0 ∈ U it follows that there is X0 ∈ ∂G0 ∩ ∂H0 such that

X̂0 = x0. Therefore we conclude that H0 is a supporting hyperboloid of u0 at x0. �

7.4. Continuous expansion of hyperboloids. If u ∈ WH(U ,Σ) then it turns out that u is also admissible with

respect with Σ̃, the receiver moved vertically upwards in en+1 direction. In other words, the same admissible u

will be R−convex with respect to a family of surfaces obtained from Σ by translation is en+1 direction. We will

need this observation in order to construct smooth solutions of our problem in small balls, see Section 13.

Lemma 7.3. Let Σ̃ = Σ +Men+1 for some M > 0.

(i) For any fixed x0 and H1(x) = H(x, a1, Z1) ∈ H(U ,Σ) there is H2(x) = H(x, a2, Z2) with Z2 ∈ Σ̃ and

touching H1 from above at x0.

(ii) In particular if u ∈ WH(U ,Σ) then also u ∈ WH(U , Σ̃).

Proof. (i) Let ξ1 = H1(x0) and X0 = (x0, ξ1). For s > 1 we consider Z2 = X0 + s(Z1 −X0). By construction

X0, Z1 and Z2 lie on the same line. To determine a2 we utilize two geometric properties of hyperbola, namely

that the difference of distances of X0 from Z2 and the lower focus Z′
2 is 2a2 and |X0Z

′
2| = ε|X0D| where |X0D| is

the distance of X0 from the lower directrix Xn+1 = Zn+1 − a2ε− a2/ε. Therefore if P is on the graph of H2 we

get that |PZ2| = 2a2 + |PZ′
2| = −a2(ε2 − 1)+ sε(Zn+1

1 − ξ1). Taking P = X0 in this equation |PZ2| = ε|Z1 −X0|
one finds that

(7.5) a2 =
1

ε2 − 1
[sε(Zn+1

1 − ξ1)− |s(Z1 −X0)|].

As for (ii), we choose s0 > 1 so that X0 + s(Z1 − X0) ∈ Σ̃. Consequently from (i) it follows that Z2 =

X0 + s0(Z1 −X0) is the focus of supporting hyperboloid H(·, a2, Z2) at x0 where a2 is given by (7.5). Therefore

u ∈ WH(U , Σ̃). �

8. B-type weak solutions: Proof of Theorem C1

In this section we introduce our first notion of weak solution for the refractor problem (RP). For any upper

admissible function u ∈ WH(U ,V) we define the mapping Su : V → U as follows

Su(Z) = {x ∈ U : ∃ a supporting hyperboloid of u at x with focus at Z ∈ V}.

For any Borel set ω ⊂ V we put

Su(ω) =
⋃

Z∈ω

Su(Z).(8.1)

We will write S (E) instead of Su(E) if there is no confusion.

Proposition 8.1. For u ∈ WH(U ,V) the corresponding mapping S enjoys the following properties:
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a) S : V −→ Π maps the closed sets to closed sets.

b) The mapping S is one-to-one modulo a set of vanishing measure, i.e.

∣∣{x ∈ Π : x ∈ S (Z1) ∩ S (Z2) for Z1 6= Z2, Zi ∈ V, i = 1, 2
}∣∣ = 0.

c) The family F = {E ⊂ V such that S (E) is measurable} is σ−algebra.

Proof. The first claim a) follows directly from Lemma 7.2.

In order to prove b) we set A =
{
x ∈ Π : x ∈ S (Z1) ∩ S (Z2) for Z1 6= Z2, Zi ∈ V, i = 1, 2

}
. If x ∈ A then u

cannot be differentiable at x. By Aleksandrov’s theorem the concave function u is twice differentiable a.e. Hence

|A| = 0.

As for c) we must check that the following three conditions hold, see e.g. [2]

1) V ∈ F ,

2) if A ∈ F then V \A ∈ F ,

3) if Ai ∈ F then
⋃∞
i=1 Ai ∈ F .

We first prove 1). If Ai ∈ V is any sequence of subsets of V then clearly S (∪∞
i=1Ai) = ∪∞

i=1S (Ai). Writing

V = ∪∞
i=1Ei, where Ei ⊂ V are closed subsets we conclude that S (V) = S (∪∞

i=1Ei) = ∪∞
i=1S (Ei). From a) it

follows that S (Ei) is closed for any i, and hence measurable, implying that S (V) is measurable.

2) Let A ∈ F . We use the following elementary identity

(8.2) S (V \A) = [S (V) \ S (A)]
⋃

[S (V \ A) ∩ S (A)].

From b) it follows that |S (V \A) ∩ S (A)| = 0. Therefore |S (V \A)| = |S (V) \ S (A)| and 2) is proven.

It remains to check 3). Without loss of generality we assume that Ai’s are disjoint, see [2]. Thus, letting

Ai ∈ F , Ai ∩Aj = ∅, i 6= j we get

∞∑

i=1

|S (Ai)| ≥ |S (∪∞
i=1Ai)| ≥

≥
∞∑

i=1

|S (Ai)| −
∞∑

ij=1

|S (Ai) ∩ S (Aj)| ≥

≥
∞∑

i=1

|S (Ai)|.

�

For a given function u ∈ WH(U ,V) we consider the set function

βu(ω) =

∫

S (ω)

f(8.3)

where ω ⊂ V is a Borel subset. Since F contains the closed sets (see part a) above) we infer that βu,f is a Borel

measure. Moreover, from the proof of Proposition 8.1 b) it follows that βu,f is countably additive.

Definition 8.1. A function u (or its graph Γu) is said to be a B-type weak solution to (RP) if u ∈ WH(U ,V)
and the following two identities holds




βu,f (ω) =

∫

ω

gdHn, for any Borel set ω ⊂ V and

Su(V) = U .
(8.4)
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8.1. Existence of weak solutions of B-type. The measure β, defined in (8.3) is weakly continuous. We have

Lemma 8.1. Let uk be a sequence of B-type weak solutions in the sense of Definition 8.3 and βk is the associated

measure, defined by (8.3). If uk → u uniformly on compact subsets of U then u is R−concave and βk weakly

converges to βu,f .

Proof. That u is admissible follows from Lemma 7.2. Recall that the weak convergence is equivalent to the

following two inequalities (see [2] Theorem 4.5.1)

1) lim sup
k→∞

βk(E) ≤ β(E) for any compact E ⊂ V,
2) lim inf

k→∞
βk(J) ≥ β(J) for any open J ⊂ V.

Take a closed set E and let E∗
δ be an δ−neighbourhood of the closed set E∗ = S (E), see Lemma 8.1 a). We claim

that for any δ > 0 there is i0 ∈ N such that Si(E) ⊂ E∗
δ whenever i > i0, where Si is the mapping corresponding

to ui. If this fails then there is δ > 0 and a sequence of points xi ∈ Si(E) such that xi ∈ ∁E∗
δ . By definition

there is Zi ∈ E such that xi ∈ Si(Zi). Suppose that xi → x0, for some x0, and Zi → Z0 ∈ E at least for a

subsequence. Thus, x0 ∈ ∁E∗
δ , x0 ∈ S (Z0) and Z0 ∈ E which is a contradiction.

To prove the second inequality we let J ⊂ V be an open subset and denote J∗ = S (H). By Lemma 8.1 c) J∗

is measurable, hence for any small δ > 0 there is a closed set J∗
δ such that J∗

δ ⊂ J∗ and |J∗| − δ ≤ |J∗
δ | ≤ |J∗|.

This is possible because by Proposition 8.1 b) S is one-to-one modulo a set of measure zero. Let Nδ be an open

set, |Nδ | < δ containing the points where the inverse of S is not defined. We claim that there is k0 such that

(8.5) J∗
δ \Nδ ⊂ J∗

k

def
= Sk(J), for any k ≥ k0.

Here Sk is the mapping generated by uk. Proof of (8.5) is by contradiction. If (8.5) fails then there is xk ∈ J∗
δ \Nδ

and xk 6∈ J∗
k . We can assume that xk → x0. Since J

∗
δ \Nδ is closed it follows that x0 ∈ J∗

δ \Nδ . By definition of

Nδ the inverse of S is one-to-one on J∗
δ \Nδ . Thus there is a unique Z0 ∈ H such that x0 = S (Z0). Furthermore,

there is an open neighborhood of Z0 contained in J because J is open. If H(x, σk, Zk) is a supporting hyperboloid

of uk at xk it follows from Lemma 7.2 that xk ∈ Sk(Zk), Zk → Z0. Thus for large k, {Zk} is in some neighborhood

of Z0 ∈ J implying that xk ∈ J∗
k which contradicts our supposition. �

Proposition 8.2. Let f : U → R and g : V → R be two nonnegative integrable functions. If U ⊂ Π and V ⊂ Σ

are bounded domains such that the energy balance condition (1.3) and (1.18) hold then there exists a B−type weak

solution to the problem (RP).

Notice that we do not exclude the case U ∩ V̂ 6= ∅.
Proof. The proof of Proposition 8.2 is by approximation argument. Let gN =

∑N

i=1 CiδZi with Ci ≥ 0 such

that
∑N
i=1 Ci =

∫
U
f(x)dx, Zi ∈ Σ and δZi are atomic measures supported at Zi. For each gN we construct a

B−type solution uN . Then sending N → ∞ and using the compactness argument together with weak convergence

of gN to g, Lemma 8.1, one will arrive at desired result.

First, for each Z ∈ Σ we define

(8.6) ā(Z) =
εZn+1 −

√
(Zn+1)2 + ρ2

ε2 − 1

where

(8.7) ρ(z) = inf{R > 0 : U ⊂ Bz(R)}.

Clearly ā(Z) is the maximal value of larger semiaxis of hyperboloid H such that ΓH is visible from U in the

en+1 direction. In other words H(x, ā(Z), Z) is the lowest possible hyperboloid with focus Z ∈ Σ such that
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H(x, ā(Z), Z) ≥ 0. Thus for a ∈ (0, ā(Z)] we have H(·, a, Z) ∈ H
+(U ,V). To check (8.6) we fix Z and pick x0

such that ρ(z) = |x0 − z|. Since the ratio of distances of x0 from lower focus Z′ and the plane Πd = {X ∈ R
n+1 :

Xn+1 = Zn+1− āε− ā/ε} is ε, it follows that |x0Z
′| = ε(Zn+1− āε− ā/ε). On the other hand |x0Z|− |x0Z

′| = 2ā.

Consequently, we find that
√

(Zn+1)2 + ρ2(z) = 2ā + ε(Zn+1 − āε− ā/ε) which gives (8.6).

Next we define the maximal level L0 = sup
U×V

H(x, ā(Z), Z). Since

max
x∈U

H(x, ā(Z), Z) = Zn+1 − εā(Z) − ā(Z) =

√
(Zn+1)2 + ρ2(z)− Zn+1

ε− 1

=
ρ2(z)

(ε− 1)(
√

(Zn+1)2 + ρ2(z) + Zn+1)

it follows that

(8.8) L0 = sup
V

ρ2(z)

(ε− 1)(
√

(Zn+1)2 + ρ2(z) + Zn+1)
≤ 1

ε− 1
sup
V

ρ2(z)

2Zn+1
.

Next, we H(·, a, Z) by below for a > 0 close to zero. By definition (7.3) we have that for this case H(x, a, Z) ∼
Zn+1 − ρ(z)√

ε2−1
. We demand Zn+1 − ρ(z)√

ε2−1
≥ 2L0 or equivalently in lieu of (8.8)

Zn+1 ≥ ρ(z)

[
1√

ε2 − 1
+

2ρ(z)

(ε− 1)(
√

(Zn+1)2 + ρ2(z) + Zn+1)

]
.

But clearly 2ρ(z)

(ε−1)(
√

(Zn+1)2+ρ2(z)+Zn+1)
≤ 2/(ε− 1). Therefore it is enough to assume that Zn+1 ≥ [ 2

ε−1
+

1√
ε2−1

]ρ(z) which is exactly (1.18). It follows that if Σ satisfies (1.18) then Σ̃ = Σ +Men+1,M ≫ 1 also does.

Let a = (a1, . . . , aN ), ai ∈ (0, ā(Zi)], i = 1, . . . , N and set

H(a, x) = min
[
H(x, a1, Z1), . . . ,H(x, aN , ZN )

]
.

We also let Ei(a) = {x ∈ U : H(a, x) = H(x, ai, Zi)} be the i-th visibility sets and

AN =

{
a ∈

N∏

i=1

(0, āi(Zi)] :

∫

Ei(a)

f ≤ Ci,

∫

EN (a)

f ≥ CN , i = 1, . . . , N − 1.

}

From (1.18) it follows that AN is not empty for taking ai, 1 ≤≤ N − 1 close to zero and aN = āN(ZN ) one

readily gets that such a is in AN .

The visibility sets Ei(a) enjoy the following property: if for some ak < ā(Zk) we set a
k
δ = (a1, . . . , ak+δ, . . . , aN)

and a = (a1, . . . , aN ) for δ > 0 small, then

(8.9) Ek(a) ⊂ Ek(akδ) while Ei(akδ ) ⊂ Ei(a), i 6= k.

This can be seen for N = 2 by simple geometric considerations, and general case is by induction.

Let a = sup
a∈AN

N∑
i=1

ai and â ∈ AN be such that the supremum is realised, i.e. a =
N∑
i=1

âi. We claim that H(â, x)

solves the refractor problem with measure gN . If not, then there is i0, say i0 = 1, such that
∫
E1(â)

f < C1. Then

in view of the energy balance condition this implies
∫
EN (â)

f > CN . For δ > 0 small FN(δ) =
∫
EN (â1

δ
)
f(x)dx ≥

CN because Fk(δ) is continuous function of δ. Furthermore, using (8.9) it follows that a1
δ ∈ AN which is a

contradiction. Now the proof of Theorem C1 follows from the above polyhedral approximation H(â, x) as N → ∞
and the weak convergence of measures βH,f , Lemma 8.1. �
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9. An approximation lemma

9.1. Refraction cone. Recall that for smooth refractors the unit direction of the refracted ray is

Y = ε
(
en+1 + γ

[√
(γ · en+1)2 − κ− γ · en+1

])
,

see (3.4). This formula may be generalized for non smooth refractors as follows: let γ1, γ2 be the normals of two

supporting planes of u at x. Then for any two constants c1, c2 the unit vector γc1c2 = c1γ1+c2γ2
|c1γ1+c2γ2|

generates a

mapping to the unit sphere S
n+1 given by

γc1c2 7→ ε
(
en+1 + γc1c2

[√
(γc1c2 · en+1)2 − κ− γc1c2 · en+1

])
.

Definition 9.1. For γ1, γ2 ∈ S
n+1 the refractor cone at ξ ∈ R

n+1 is defined as

Cξ,γ1,γ2 =

{
Z ∈ R

n+1 :
Z − ξ

|Z − ξ| = ε
(
en+1 + γc1c2

[√
(γc1c2 · en+1)2 − κ− γc1c2 · en+1

])}
.

One can easily verify that Cξ,γ1 ,γ2 is a convex cone. Indeed, for any γ0 ⊥ Span{γ1, γ2} we have that Z−ξ
|Z−ξ|

·γ0 =

ε(en+1 · γ0). Thus Cξ,γ1 ,γ2 is a cone.

In view of Lemma 7.1 ‖Du‖∞ < 1√
ε2−1

for any admissible u ∈ WH(U ,V), and
√

(γ · en+1)2 − κ is well defined

thanks to this gradient estimate.

9.2. R-convexity of V.

Definition 9.2. We say that V ⊂ Σ is R−convex with respect to a point ξ ∈ [0,∞)×U if for any two unit vectors

γ1, γ2 the intersection Cξ,γ1,γ2 ∩ V is connected. If V is R−convex with respect to any ξ ∈ [0,∞) × U then we

simply say that V is R−convex.

In particular a geodesic ball on the convex surface Σ is an example of R−convex V.

9.3. Local supporting function is also global. In the Definition 7.1 of admissibility supporting hyperboloid

H is saying above u in whole U . Consequently, one may wonder if the locally admissible functions (i.e. H stays

above u only in a vicinity of the contact point) are still in WH(U ,V). This issue was addressed by G. Loeper in

[13] for the optimal transfer problems. We have

Lemma 9.1. Under the condition (1.15) a local supporting hyperboloid is also global.

The proof is very similar to that of in [13], [19] and hence omitted here. As an application of Lemma 9.1 we

have the following approximation result.

Lemma 9.2. If u ∈ WH(Br,Σ) then

(i) uε(x)+K(r2−|x|2) ∈ WH(Br, Σ̃) where uε is the standard mollification of u, K > 0 and Σ̃ = Σ+Men+1

for some large constant M > 0,

(ii) uε(x) +K(r2 − |x|2) is a classical subsolution of (5.2).

Proof. (i) It is well known that uε is concave and ‖Duε‖∞ ≤ ‖Du‖∞ < 1√
ε2−1

. Therefore if K is fixed then

we can choose r so small that

(9.1) ‖Dūε‖∞ ≤ ‖Du‖∞ + 2Kr <
1√
ε2 − 1

.
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Moreover K(r2 − |x|2) is concave, hence ūε = uε(x) +K(r2 − |x|2) is concave too. Notice that D2ūε = D2uε −
2KId ≤ −2KId < 0 implying that ūε is strictly concave. In order to bound the curvature of Γūε from below we

recall that for fixed Z, H(·, a, Z) becomes flatter as a→ ∞ because

D2H = − 1

(ε2 − 1)
√
a2 + |x−z|2

ε2−1

[
Id− (x− z)⊗ (x− z)

(ε2 − 1)a2 + |x− z|2
]
.

In particular, for large K and a we will have −D2ūε ≥ 2KId ≥ −D2H . Consequently, for each x ∈ U there is

Z and a > 0 such that H(·, a, Z) touches ūε from above at x, in some neighbourhood of x. Furthermore, from

Lemma 7.3 on confocal expansion we can choose a, Z̃ so that Z̃ ∈ Σ̃ = Σ +Men+1,M ≫ 1. Finally applying

Lemma 9.1 we infer that H(·, a, Z̃) is a global supporting hyperboloid of u at x and thus ūε ∈ WH(U , Σ̃).
(ii) By direct computation we have

M = −D2ūε − G(x, ūε, Dūε)

εκ
= −D2uε + 2KId− G(x, ūε, Dūε)

εκ
≥(9.2)

≥ 2KId− G(x, ūε, Dūε)

εκ
.

By definition, (5.1) we have

G(x, ūε, Dūε)

εκ
=

[q + 1](Id− ε2κDūε ⊗Dūε)

εκt(x, ūε, Dūε)
≤ C

t(x, ūε, Dūε)

with some tame constant C > 0 depending only on ε. Recall that by (1.17) t = (M+[Zn+1−ūε])

Y n+1 ∼ M
c(ε)

, Z ∈ Σ.

Therefore choosing M large enough, one sees that M ≥
[
2K − Cc(ε)

M

]
Id ≥ KId if K > Cc(ε)

M
. Fixing K ≥

max[Cc(ε)
M

, sup |h| 1
n ], where h is defined by (5.4) and choosing r small enough such that (9.1) holds we finally

arrive at det
[
−D2ūε − G(x,ūε,Dūε)

εκ

]
≥ |h| and the proof is complete. �

10. A-type weak solutions and the Legendre-like transform

In this section we are concerned with the second notion of weak solution to (RP). For u ∈ WH(U ,V) let us

consider the mapping Ru : U → Σ defined as

Ru(x) = {Z ∈ Σ : there is a supporting hyperboloid H(·, a, Z) of u at x}.

Let E ⊂ U be a Borel set and put

Ru(E) =
⋃

x∈E

Ru(x).

Our primary goal is to prove that Ru(E) is measurable with respect to the restriction of Hn on Σ for any Borel

set E ⊂ U . That done, we can proceed as in [8] and establish that the set function αu,g is σ-additive measure.

To take advantage of the geometric intuition coming from supporting hyperboloids of u ∈ WH(U ,V) it is

convenient to define the Legendre-like transformation of u. Let u ∈ WH(U ,Σ) and Z ∈ Σ be a fixed point. Then

the smallest semi-axis among all hyperboloids H(·, a, Z) that stay above u is

a0 = sup
a∈I(Z)

a, I(Z) = {a > 0 : H(x, a, Z) ≥ u(x) in U}.

Suppose that H(·, a0, Z) touches u at x0 ∈ U then

u(x0) = ψ(z)− a0ε−
√
a20 +

(x0 − z)2

ε2 − 1
.
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From here we can easily find that

(10.1) a0 =
1

ε2 − 1

{
ε[u(x0)− ψ(z)]−

√
[u(x0)− ψ(z)]2 + (x0 − z)2

}
.

Alternatively, one can use the property that the distance of a point P on hyperboloid from lower focus Z′ is ε

times the distance of P from the hyperplane Πd = {X ∈ R
n+1 : Xn+1 = Zn+1−aε− a

ε
} (which in one dimensional

case is the directrix). Since by definition of hyperboloid |PZ| − |PZ′| = 2a and |PZ′| = εdist(P,Πd) we infer

|PZ| = 2a+ ε([ψ(z)− u(x0)]− aε− a
ε
) = −a(ε2 − 1) + ε([ψ(z)− u(x0)] and (10.1) follows.

10.1. A-type weak solutions.

Definition 10.1. Let u ∈ WH(U ,Σ) then

(10.2) v(z) = inf
x∈U

{
ε[ψ(z)− u(x)]−

√
[u(x)− ψ(z)]2 + (x− z)2

}

is called the Legendre-like transformation of u.

If dist(U ,V) > 0 and ψ ∈ C2 then the function Lx(z) = ε[ψ(z) − u(x)] −
√

[u(x)− ψ(z)]2 + (x− z)2 is C2-

smooth for any fixed x ∈ U . Since v is the upper envelope of C2 smooth functions Lx, x ∈ U (x being the

parameter) then v(z) is semi-convex. Next lemma gives an important characterization of v(z).

Lemma 10.1. Let v be the Legendre-like transformation of u ∈ WH(U ,Σ). Then

(i) v(z) = ε[ψ(z)−u(x0)]− δu(x0, z) if Z = (z, ψ(z)) ∈ Ru(x0) where δu(x, z) =
√

[u(x)− ψ(z)]2 + (x− z)2,

(ii) v(z) is semi-concave.

Proof. By definition v(z) is locally bounded, non-negative, lower semi-continuous function. Let δu(x, z) denote

the distance between the points of graph Γu and Σ. To check (i) we first observe that by definition of v(z), see

(10.2), we have v(z) ≤ ε[ψ(z) − u(x0)] − δu(x0, z). If v(z) < ε[ψ(z) − u(x0)] − δu(x0, z) it follows from (10.1)

and the discussion above that H(·, a0, Z) is a supporting hyperboloid of u at x0, where a0 = (ε2 − 1)−1(ε[ψ(z)−
u(x0)] − δu(x0, z)) because Z ∈ Ru(x0) ⊂ Σ. On the other hand, there is a sequence {xk} in U such that

xk → x̄0 ∈ U and lim
xk→x̄0

(ε[ψ(z)− u(xk)]− δu(xk, z)) = v(z). Setting ā0 = (ε2 − 1)−1v(z) we conclude that

H(·, ā0, Z) is touching Γu at x̄0. By construction ā0 < a0 and it follows from confocal expansion of hyperboloids

7.4 that H(·, ā0, Z) > H(·, a0, Z) in U . But this inequality is in contradiction with the fact that H(·, a0, Z) is a

supporting hyperboloid of u at x0 and H(·, ā0, Z) touches Γu at x̄0 whilst staying above Γu.

To prove (ii) we let Lx0(y) = ε[ψ(z)− u(x0)]− δu(x0, y). Then

v(y) = inf
x∈U

{
ε[ψ(z)− u(x)]− δu(x, y)

}
≤ ε[ψ(z)− u(x0)]− δu(x0, y)

which implies that v(y) ≤ Lx0(y) and v(z) = Lx0(z), where Z ∈ Ru(x0). We can regard Lx0(y) as an upper

supporting function of v at z. Differentiating Lx0 twice in z variable we see that |D2
Lx0(z)| ≤ C

(dist(U,V))3
for

some tame constant C > 0, consequently v(z)−C|z|2 is concave for large C > 0. �

The main result of this section is contained in the following

Lemma 10.2. Let S = {Z ∈ V : such that Z ∈ Ru(x1) ∩ Ru(x2), x1 6= x2}. Then S has vanishing surface

measure on Σ.

Proof. Let us show that if Z ∈ S then the Legendre-like transformation of u is not differentiable at Z. This

will suffice to conclude the proof because by definition v is semiconcave and hence by Aleksandrov’s theorem twice
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differentiable almost everywhere. Let v be the Legendre-like transformation of u, then by Lemma 10.1 for any

Z ∈ Ru(x0) at which v(z) is differentiable there holds

(10.3) Dv(z) = εDψ(z)− (y(x) +Dψ(z)yn+1(x)).

Indeed, Dv(z) = εDψ(z)− δu(x, z)
−1 [(z − x) +Dψ(z)(ψ(z)− u(x))]. From the definition of stretch function t it

follows that (z − x, ψ(z) − u(x)) = Y δu(x, z) where Y = (y, yn+1) is the unit direction of the refracted ray and

(10.3) follows. Consequently, if x1 6= x2 such that Ru(x1) ∩ Ru(x2) ∋ Z then we must have

Dv(z) = −z − xi +Dψ(z)(ψ(z)− xi)

δu(xi, z)
+ εDψ(z), i = 1, 2.

Equating the right hand sides for i = 1 and i = 2 we obtain

z − x1 +Dψ(z)(ψ(z)− x1)

δu(x1, z)
=
z − x2 +Dψ(z)(ψ(z)− x2)

δu(x2, z)

With the aid of this observation and (10.3) we can rewrite the last line as follows

y1 +Dψ(z)yn+1
1 = y2 +Dψ(z)yn+1

2 in R
n ⇒ Y1 + (Dψ(z),−1)yn+1

1 = Y2 + (Dψ(z),−1)yn+1
2 , in R

n+1.

The last identity implies that Y1 − Y2 is collinear to the normal of Σ at Z. Consequently, from the assumption

(1.11) (see also (1.17)) we obtain that this is possible if and only if Y1 = Y2. Next, from Y1 = Y2 we have y1 = y2

and consequently we conclude that

(10.4)
z − x1

δu(x1, z)
=

z − x2

δu(x2, z)
.

Taking the reciprocal of both sides in the last identity and recalling the definition of the distance δu(x, z) one gets

u(x1)− ψ(z)

|x1 − z| =
u(x2)− ψ(z)

|x2 − z|
yielding

u(x1) = ψ(z) +
|z − x1|
|z − x2|

(u(x2)− ψ(z))

= ψ(z) +
δu(x1, z)

δu(x2, z)
(u(x2)− ψ(z)).

On the other hand Y n+1
1 = Y n+1

2 gives u(x1) − u(x2) = δu(x2, z) − δu(x1, z) and hence combining this with the

last equation yields

ψ(z)

[
1− δu(x1, z)

δu(x2, z)

]
− u(x2)

[
1− δu(x1, z)

δu(x2, z)

]
= δu(x1, z)− δu(x2, z).

If δu(x2, z) 6= δu(x1, z) then the last equality implies u(x2)−ψ(z) =
√

(u(x2)− ψ(z))2 + (z − x2)2. Hence x2 = z

and by (10.4) x1 = x2, which is contradiction. Thus we must have δu(x2, z) = δu(x1, z) and in view of (10.4) this

implies that x1 = x2, again contradicting our supposition. Therefore we infer that v(z) cannot be differentiable

at z. By Rademacher’s theorem v(z) is differentiable a.e. in z. Thus S has vanishing surface measure. �

Corollary 10.1. For any u ∈ WH(U ,V) and any Borel subset E ⊂ U the set function

(10.5) αu,g(E) =

∫

Ru(E)

gdHn

is a Radon measure.

Proof. In order to show that αu,g is Radon measure it suffices to check that F̃ = {E ⊂ U : Ru(E) is measurable}
is a σ−algebra. This can be done exactly in the same way as in the proof of Proposition 8.1 c). It remains to

recall that by Lemma 7.2, F̃ contains the closed sets. �
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Definition 10.2. A function u ∈ WH(U ,V) is said to be A-type weak solution of (RP) if
∫
E
f(x)dx = αu,g(E)

or any Borel set E ⊂ U and

(10.6) V ⊂ Ru(U), |{x ∈ U : Ru(x) 6⊂ V}| = 0

This definition is natural, stating that the target domain V is covered by the refracted rays and the endpoints

of those rays that after refraction do not strike V constitute a null set on U . We shall establish the existence of

A-type weak solution in the next section.

In closing this section we state the weak convergence result for the α-measures, see Corollary 10.1.

Lemma 10.3. Let uk be a sequence of A-type weak solutions and αk is the corresponding measure, defined by

(10.5). If uk → u uniformly on compact subsets of U then u is R−concave and αk weakly converges to αu,g.

The proof is very similar to that of Lemma 8.1 (modulo minor adjustments) and hence omitted.

11. Comparing A and B type weak solutions: Proof of Theorem C3-4

Let ϕ : RN → R
n be a Borel mapping and µ(RN ) = ν(Rn) < ∞ with µ, ν being two Radon measure on R

N

and R
n, respectively. Then ϕ induces a (push-forward) measure on R

n defined by ϕ#µ(E) = µ(ϕ−1(E)) for Borel

subsets E ⊂ R
n. We say that a Borel mapping ϕ measure preserving if

(11.1) ϕ#µ(E) = ν(E) for any Borel set E ⊂ R
n.

By the change of variables formula (11.1) can be rewritten in the following equivalent form

(11.2)

∫
h(ϕ(x))dµ =

∫
h(y)dν, ∀h ∈ C(Rn),

see [3].

Remark 11.1. If u ∈ W
+(U ,Σ) is the B-type solution of (RP), the existence of which is established in Section

8, then taking ϕ(Z) = Su(Z), N = n+1, dµ = gdHn, and ν being the Lebesgue measure one immediately observes

that Su is measure preserving in the sense of (11.1) or (11.2).

Lemma 11.1. If Ru(x) ⊂ V for a.e. x ∈ U then Ru(E) ⊂ Hull(V), where Hull(V) is the R-convex hull of V
defined as the smallest R-convex subset of Σ containing V.

Proof. We only have to consider the points where u is non-differentiable. Let u be non-differentiable at x0 ∈ U
and suppose that γ1, γ2 are the normals of two supporting planes of u at x0. The ray with endpoint x0 after

reflection will lie in the reflector cone Cξ0,γ1,γ2 , with ξ0 = (x0, u(x0)) and the reflected ray will strike Hull(V),
because Cξ0,γ1,γ2 ∩Hull(V) is connected. Considering all normals of supporting planes at x0 we obtain the desired

result. �

Proposition 11.1. Let Σ be R−convex with respect to Qm = U×(0,m),m > 0 and the densities f, g are positive.

Then B-type weak solution is also of A-type.

Proof. We split the proof into three parts.

1) First we show that for any compact K1 ⊂ U there holds
∫
K2
gdHn ≥

∫
K1
f(x)dx with K2 = Ru(K1). In

other words the B-type solution is A-type subsolution. It is worthwhile to point out that for the proof of this

inequality we don’t need V to be R−convex. Take η ∈ C(Σ) such that η ≡ 1 on K2 ⊂ Σ and 0 ≤ η ≤ 1. From

(11.2) we see that ∫

V

ηgdHn =

∫

U

η(Ru(x))f(x)dx ≥
∫

K1

f(x)dx.
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Letting η to decrease to the characteristic function of K2, h ↓ χK2
we infer

(11.3)

∫

K2

gdHn ≥
∫

K1

f(x)dx.

Notice by Corollary 10.1 the measure αu,g is Borel regular, therefore in the last inequality K1 can be replaced by

any Borel subset of U . As a result we conclude from (11.3) that

(11.4) if Hn(Ru(E)) = 0 then |E| = 0.

2) Next, we prove the converse estimate of (11.3). Here we will utilize the R−convexity of V. Take any compact

K1 ∈ U and apply Lemma 10.2 to conclude Hn
(
Ru(K1) ∩ Ru(U \K1)

)
= 0. Let us show that

(11.5) |R−1
u (Ru(K1)) \K1| = 0

where R
−1
u (Ru(K1)) is the pre-image of Ru(K1). Denote E = R

−1
u (Ru(K1)) and G = K1. If Hn(E \ G) = 0

then in view of (11.4) we obtain (11.5). Indeed, form the identity (8.2) it follows that

|Ru(E \G)| =
∣∣∣[Ru(E) \ Ru(G)]

⋃
[Ru(E \G) ∩ Ru(G)]

∣∣∣(11.6)

= |Ru(E \G) ∩ Ru(G)|

= 0

where to get the last line we used the definitions of E andG in order to obtain Ru(E)\Ru(G) = Ru(K1)\Ru(K1) =

∅ and Lemma 10.2. Thus (11.4) implies 0 = |E \G| = |R−1
u (Ru(K1)) \K1|.

Let h ∈ C(Σ) such that 0 ≤ h ≤ 1 and h ≥ χRu(K1). Since V is R−convex it follows that Ru(K1) ⊂ HullV,
see Lemma 11.1. If u is a B-type weak solution then (11.2) holds, see Remark 11.1. Therefore

∫

U

η(Ru(x))f(x)dx =

∫

V

ηgdHn

=

∫

Hull(V)

ηgdHn

≥
∫

Ru(K1)

gdHn.

Letting η → 0 on compact subsets of V \Ru(K1), it follows that η(Ru(x)) uniformly converges to zero one the

compact subsets of U \ R
−1
u (Ru(K1)). Consequently

∫

Ru(K1)

gdHn ≤
∫

U

η(Ru(x))f(x)dx −→
∫

R−1(Ru(K1))

f(x)dx =

∫

K1

f(x)dx

where the last line follows from (11.5). This implies that u is a supersolution.

3) It remains to check that u verifies the boundary condition (10.6). Suppose that there is Z0 ∈ V such that

Z0 6∈ Ru(U). Since u is of B-type, it follows that Su(V) = U implying x0 ∈ Su(Z0) in other words, there is

a supporting hyperboloid H(x, a0, Z0) at x0. Thus Z0 ∈ Ru(x0)which yields V ⊂ Ru(U). From energy balance

condition we have ∫

Ru(U)

gdHn =

∫

U

f(x)dx =

∫

V

gdHn ⇒
∫

Ru(U)\V

g = 0.

This yields |{x ∈ U : Ru(x) 6⊂ V}| = 0 for f, g > 0. �

Remark 11.2. We always have V ⊂ Ru(U), however if in addition Σ is R−convex then it follows that Ru(U) ⊂ V.
Thus we get the equality Ru(U) = V for R-convex V.
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11.1. Existence of A-type weak solutions: Proof of Theorem C4. Suppose that V ⊂ Σ and let Hull(V)
be the R−convex hull of V. For small δ, δ′ > 0 we consider

(11.7) gδ(Z) =

{
g(Z)− δ if Z ∈ V
δ′ if Z ∈ Hull(V) \ V

where we choose δ, δ′ so that gδ satisfies the energy balance condition (1.3). By Proposition 8.2 for each gδ there

is a B-type weak solution which according to Proposition 11.1 is also of A-type. Moreover, from Remark 11.2 we

infer

(11.8) Ruδ
(U) = V.

Sending δ → 0 we obtain from Lemma 10.3 that uδ → u and u is an A-type solution, i.e. (10.5) is satisfied, and

(11.9) V ⊂ Ru(U).

Since u is second order differentiable a.e. in U it follows that Ru is defined for a.e. x ∈ U . Finally we want to

show that |S| = 0 where S = {x ∈ U : ∃Z ∈ Ru(x) such that Z ∈ Ru(U) \ V}. Indeed, from energy balance

condition (1.3) we have

∫

S

f(x)dx =

∫

U

f(x)dx−
∫

U\S

f(x)dx =

=

∫

U

f(x)dx−
∫

V

gdHn = 0.

Since f > 0 we conclude that |S| = 0 and hence (10.6) holds and u is a weak A-type weak solution of (RP). �

Remark 11.3. As the proof of Proposition 11.1 exhibited if V is R−convex then S = ∅. If S 6= ∅ then u is

only Lipschitz continuous. Therefore if V is not R-convex then u may not be C1 smooth, see Introduction. It is

worthwhile to point out that even if S = ∅ then u may not be C1, and hence further assumptions must be imposed

to assure the smoothness of u.

12. Dirichlet’s problem

This section concerns the Dirichlet problem for A-type weak solutions. We formally rewrite the equation (5.2)

below

(12.1) F [u](x) =
f(x)

g ◦ Ru(x)
, x ∈ U ,

where for u ∈ C2(U), F [u](x) is the determinant of the Jacobian matrix of Ru. For non smooth solutions we give

the following definition

Definition 12.1. A function u ∈ WH(U ,Σ) is said to be a weak A-subsolution of (12.1) if for any Borel set E

(12.2)

∫

Ru(E)

gdHn ≥
∫

E

f(x)dx.

If αu,g(E) =
∫
E
f(x)dx then we say that u is a weak A-solution. The class of all generalized A-subsolutions is

denoted by AS+(U).
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For smooth and bounded D ⊂ Σ and smooth function ϕ : D → R let us consdier the Dirichlet problem





F [u](x) =
f(x)

g ◦ Ru(x)
, x ∈ D,

u = ϕ x ∈ ∂D.
(12.3)

Our main objective here is to prove the existence and uniqueness of A-type weak solution to (12.3) for a smooth

boundary data. In fact, for our purposes it suffices to consider the case where D is a ball of small radius. At this

point we first we establish the following comparison principle.

Proposition 12.1. Let ui be weak solutions of (12.1) in U with f = fi, i = 1, 2, where Ω ⊂ Π is a smooth,

bounded domain. Suppose that Ru1
(Ω) ⊂ Σ, f1 < f2 in Ω and u1 ≤ u2 on ∂Ω. If Γ1, the graph of u1, lies in the

region D then we have u1 ≤ u2 in Ω.

Proof. Suppose that Ω1 = {x ∈ Ω : u1(x) > u2(x)} is not empty. Let x0 ∈ Ω1 and H(x, a0, Z0), Z0 ∈ Σ is a

supporting hyperboloid of u2 at x0. From the confocal expansion of hyperboloids (see subsection 7.4) we infer that

H(x, a0+s, Z0) is a supporting hyperboloid of u1 at an interior point x1 ∈ Ω1 for some s > 0. ThusH(x, a0+s, Z0)

is a local supporting hyperboloid of u1. Since Γu1
is in the regularity domain D, where (1.11)-(1.15) are fulfilled,

we can apply Lemma 9.1 to conclude that H(x, a0+s, Z0) is also a global supporting hyperboloid of u1. Therefore

Ru2
(Ω1) ⊂ Ru1

(Ω1)

implying

∫

Ω1

f1dx <

∫

Ω1

f2dx =

∫

Ru2
(Ω1)

gdHn ≤
∫

Ru1
(Ω1)

gdHn =

∫

Ω1

f1dx

which gives a contradiction. Thus Ω1 = ∅. �

12.1. Discrete Dirichlet problem. To outline our next two steps, we note that for the classical Monge-Ampère

equation the standard way of proving the existence of globally smooth solutions to Dirichlet’s problem with,

say, ϕ ∈ C4(D) is to employ the continuity method combined with standard mollification argument, see [16].

Moreover, in this argument ϕ must be a subsolution. In order to tailor a similar proof for (12.3) we will mollify

our weak A-solution, add K(r2 − |x − x0|2),K ≫ 1 and consider its restriction to Br(x0) ⊂ U , a ball with

sufficiently small radius. Such function turns out to be classical subsolution if K some large and small r > 0.

Consequently, from continuity method one can obtain existence of a smooth solution to Dirichlet’s problem in

Br(x0). Finally employing the known C2 a priori estimates and comparison principle, Proposition 12.1, the proof

of Theorem D will follow, see Section 13 for more details.. Our approach most closely follows that proposed by

Xu-Jia Wang [21].

Let {bi} ⊂ ∂D be a sequence of points on the boundary of D and {ai} ⊂ D. Let AN = {a1, . . . , aN} and

BN = {b1, . . . , bN} ⊂ ∂D, for each fixed N ∈ N. Furthermore, let νk(x) be atomic measures supported at

ak, 1 ≤ k ≤ N and let

(12.4) F [v](x) = νk(x)
f(x)

g ◦ Rv(x)
.

Proposition 12.2. Let u ∈ W
0
H(D,Σ) be a polyhedral subsolution of (12.4), i.e. F [u](x) ≥ νk(x)

f(x)
g◦Ru(x)

at

ak ∈ AN . Then there is a unique A-type weak solution to (12.4) verifying the boundary condition u = u on BN .
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Proof. We want to construct a sequence of subsolutions {um}∞m=0 converging to the solution of discrete

problem. Set u0 = u and define u1 such that u1 ≤ u0 in AN , u1(bi) = u0(bi), bi ∈ BN and αu1,g(ai) ≤ αu0,g(ai)

for ai ∈ AN . It is convenient to introduce the class of hyperboloids

Φ0,δ(a1) =




P ∈ H

+(D,Σ) :

H(ai) ≥ u0(ai), i 6= 1,

H(a1) ≥ u0(a1)− δ,

H(bj) ≥ u0(bj), 1 ≤ j ≤ N





for δ > 0 and let

T δ1 u0 = inf
H∈Φ0,δ(a1)

H.

Let δ1 > 0 be the largest δ for which T δ11 u0 is a subsolution to (12.4) on AN . Consequently, by setting u0,1 = T δ11

we can proceed by induction and define the k-th class

Φ0,δ(ak) =




H ∈ H

+(D,Σ) :

H(ai) ≥ u0,k−1(ai), i 6= k,

H(ak) ≥ u0,,k−1(ak)− δ,

H(bj) ≥ u0,,k−1(bj), 1 ≤ j ≤ N





and take T δku0 = inf
H∈Φ0,δ(ak)

H . Therefore, one can successively construct the functions u0,k = T δkk u0,k−1 where

δk > 0 is the largest number for which T δku0,k−1 is a subsolution to (12.4) in AN . Taking the second subsolution

in the approximating sequence to be u2(x)
def
= T δNN u0,N−1 we get, by construction, that αu0,g(ai) ≤ αu1,g(ai),

since we have the inclusions Φl,δ(ak) ⊂ Φl+1,δ(ak) at ak as we proceed. Therefore we have a sequence of solutions

um to the Dirichlet problem in AN such that

αum,g(ai) ≤ αum−1,g(ai),

um(ai) ≤ um−1(ai),

um(bi) = um−1(bi).

The first two inequalities are obvious. As for the boundary condition we note that u0(bi) ≤ u1(bi) by construction.

If u0(bi) < u1(bi) then by taking min[Hi(x), u1(x)], where Hi(x) ∈ H
+(D,Σ) is a supporting hyperboloid of u0

at bi we see that min[Hi(x), u1(x)] belongs to the corresponding Φ class. Thus u0(bi) = u1(bi).

From Lemma 7.2 we conclude that u ∈ WH(D,Σ) and in view of Lemma 10.3 αum,g ⇀ αu,g weakly. Thus

u = lim
m→∞

um is a solution to the discrete problem in AN with u(bi) = u(bi), bi ∈ BN . �

12.2. General case. Perron’s method, used in the proof of above proposition, can be strengthened in order to

establish the solvability of the general Dirichlet problem. To do so we take {ai}∞i=1 ⊂ D and {bi}∞i=1 ⊂ ∂D to be

dense subsets and AN = {a1, . . . , aN} ⊂ D,BN = {b1, . . . , bN} ⊂ ∂D.

Proposition 12.3. Let u ∈ AS+(D,Σ). Then there exists a unique weak solution u to the Dirichlet problem





F [u] =
f(x)

g ◦ Ru(x)
in D,

u(x) = u(x) on ∂D.
(12.5)

Proof. For δ > 0 we denote Dδ = {x ∈ D : dist(x, ∂D) > δ} and take η(x) to be a smooth function such that

0 ≤ η(x) ≤ 1, η ≡ 1 in D2δ and η ≡ 0 in D \Dδ. Consider the equation

(12.6) F [v](x) = νk(x)J(v(x))ηδ(x)
f(x)− δ

g ◦ Rv(x)
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where νk(x) is a positive measure supported at ak ∈ AN and

(12.7) J(t) =





1 if 0 ≤ t ≤ sup
D

u,

2 sup
D
u−t

sup
D
u

if sup
D

u ≤ t ≤ 2 sup
D

u,

0 if t > 2 sup
D

u.

Consider the class

(12.8) W
+
N,u =

{
v ∈ W

0
H(D,Σ) : F [v] ≥ νkJ(v)ηδ

f − δ

g ◦ Ru
and v ≥ u on BN

}
.

Clearly W
+
N,u is not empty since H(·, a, Z) is in this class if a > 0 is sufficiently small. We claim that if

vN,δ = inf
W

+

N,u

v then vN,δ solves (12.1) in the sense of Definition 12.1 and vN,δ(bi) = u(bi), bi ∈ BN .

It is easy to see that αvN,δ,g(ak) = vk(ak)J(vN,δ)ηδ(ak) (f(ak)− δ). Indeed, if vN,δ is a strict subsolution at

ai, i.e. for some ai we have αvN,δ,g(ai) > vk(ai)J(vN,δ)ηδ(ai)(f(ai) − δ), then we can push ΓvN,δ
downward by

some δ > 0, decreasing the α measure at ai, which, however, will be in contradiction with the definition of vN,δ .

Thus vN,δ is a solution of the equation (12.6).

Next, we check the boundary condition. Choose Hi ∈ H
+(U ,Σ) such that Hi > vδ in Uδ and passes through

(bi, u(bi)). Such Hi exists because by construction vN,δ(ai) ≤ u(ai) and δ > 0.

For H̃i = min[Hi, vN,δ ], by construction, we see that F [H̃i] ≥ νkJ(H̃i)ηδ
f−δ

g◦R
H̃i

at ai. Thus H̃i ∈ W
+
N,u. Hence

vN,δ(bi) = inf
H∈W

+

N,u

H(bi) ≤ H̃i(bi) = u(bi).

Now the desired solution can be obtained via a standard compactness argument that utilizes the estimates of

Lemma 7.1 and Lemma 10.3. More precisely, for fixed δ > 0 we send N → ∞ and obtain a function vδ that

solves the equation F [vδ ] = J(vδ)ηδ
f−δ
g◦Rvδ

. To show that vδ = u on ∂D we take x0 ∈ ∂D and again use the

comparison with min[H0, vδ] for a suitable H0 ∈ H
+(U ,Σ) such that H0(x0) = u(x0). Thus, from Proposition

12.1 we conclude that vδ ≤ u in D. Finally sending δ ↓ 0 and employing the estimate of Lemmas 7.1 and 10.3 we

arrive at desired result. �

13. Proof of Theorem D

To fix the ideas we assume that x0 = 0 ∈ U and Br = Br(0) ⊂ U . Let u±
s,δ be the solutions to

(13.1)





F [u±
s,δ ] =

f±δ
ηg◦Z

u
±

s,δ

in Br

u±
s,δ = ũs on ∂Br

where ũs = us + K(r2 − |x|2), K > 0 and us is a mollification of the weak solution u. By Lemma 9.2 ũs is a

subsolution (for appropriate choice of constants K and r) and hence by Proposition 12.3 the weak solution to

Dirichlet’s problem exists. Note that for the Dirichlet problem we have to consider the modified receiver Σ̃ to

guarantee that ũs is admissible, see Lemma 9.2. In order to show the existence of smooth solutions we apply

the continuity method: Let w ∈ AS+(Br, Σ̃) ∩ C∞(Br) and for t ∈ [0, 1] consider the solutions to the Dirichlet

problem

(13.2)

{
F [wt] = t f

hg◦Zw
+ (1− t)F [w] in Br,

wt = w on ∂Br,
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where h is given by (5.4). Using the implicit function theorem, see [18] Theorem 5.1, we find that the set of t’s

for which (13.2) is solvable is open.

Once C1,1 global a priori estimates were established in Br then one can deduce that the set of such t’s is also

closed. Recall that if ∂Ω ∈ C3, u ∈ C4(Ω) ∩ C3(Ω) and u ∈ C4 then from global C1,1 estimates and the elliptic

regularity theory we obtain that w ∈ C2,α(Ω). Therefore the existence of smooth solutions u±
s,δ will follow once

we establish the global C1,1 estimate for w. The latter follows from [6] and Theorem B.

Summarizing, we have that u±
s,δ remain locally uniformly smooth in Br. Letting s → 0 and applying the

comparison principle (see Proposition 12.1) we have that u−
0,δ ≤ u ≤ u+

0,δ and u±
0,δ = u on ∂Br. It follows from

the a priori estimates in [14] that u±
0,δ are locally uniformly C2 in Br for any small δ > 0. After sending δ → 0

we will conclude the proof of Theorem D.
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