REGULARITY FOR ENERGY-MINIMIZING AREA-PRESERVING DEFORMATIONS

ARAM L. KARAKHANYAN

ABSTRACT. In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that
emerges in the minimization problem

inf/ |Vv|?, QCR?
K Jao

as the Lagrange multiplier corresponding to the incompressibility constraint det Vv = 1 a.e. in Q. Our
method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain

Q* = u(22). This allows to construct a convex function 1, defined in the image domain, such that the measure of
1

the normal mapping of 1 controls the L? norm of the pressure. As a by-product we conclude that u € CEC(Q)

if the dual pressure (introduced in [6]) is nonnegative.

1. INTRODUCTION

Let Q be a bounded smooth domain in R? and K = {v € W"?(Q,R?),det Vv = 1 a.e. in Q}. For v € K we

define the stored energy as
(1.1) Ev] :/ Vv vek.
Q
Let us recall the definition of local minimizers [1], [2], [6].

Definition 1.1. We say that an area-preserving deformation u € W2(Q,R?) is a local minimizer if for all area

preserving (or incompressible) deformations w € W'2(Q, R?) with supp(w — u) C Q the following holds

(1.2) /|Vu|2§/ |Vwl.
Q Q

Our primary interest is to analyze the properties of the local minimizers of E[] and the integrability of
the hydrostatic pressure p sought as the Lagrange multiplier corresponding to the incompressibility constraint

det Vv = 1. The sufficiently regular local minimizers solve the system
divT =0 in Q,
(1.3)

detVu=1 a.e. in(,

where T = Vu + p(Vu) " is the first Piola-Kirchhoff tensor and (Vu) ™" is the transpose of the inverse matrix,
see [7], pages 371 and 379. Since det Vu = 1 we have

2 1 2 2
_ U —Uo —t Us —Ui
1.4 Vu) ' = , Vu = .

From (1.4) we deduce that (1.3) is equivalent to the system
div[Vu' —p_#Vu?] =0,
(1.5) div[Vu® +p_#Vu'] =0
det Vu = 1.
Here _# is the 90° counterclockwise rotation
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(1.6) /:((1) _01>.

For u € W?(Q) the equations (1.3) or (1.5) cannot be justified. In fact the term p(Vu)~* is not well-
defined unless Vu is better than L? integrable, see [2]. The lack of higher integrability of Vu produces a number
of technical difficulties, see [6]. To circumvent them author and N. Chaudhuri succeeded to compute the first
variation of the energy (1.6) in the image domain Q* = u(Q2) under very weak assumptions (note that u is open
map [10]). For u € W*'(Q) with s > 2 4 1 this was done in [8], Theorem 5.1. Below we formulate one of the

main results from [2] relevant to the present work.

Proposition 1.2. Let u € K be a local minimizer of (1.1). Consider the matriz
(1.7) aij(y) = D um(u” (y))ul (w7 (1))

where y € w(Q) = Q% and u™! is the inverse of u (u™ " is well-defined see Remark 3.8 [10]). If p. is a mollification

kernel and 0 = o * pe then there is a C*° function ¢° such that

(1.8) dive®(y) + Vg (y) =0 y € Q%

The regularized equation (1.8) in the image domain plays the crucial role in the proof of Theorem A (see
below), notably it links (1.3) to the Monge-Ampere equation and from there we infer that {¢°} is uniformly
bounded in L& (Q%).

Theorem A. Let u € K be a local minimizer of E[-]. If there is a sequence of ¢/ > 0 solving (1.8) such that
g7 converges to a nonnegative Radon measure in By C Q*, then there is a convex function ¢ defined in By such
that

D%y = adjo® + ¢°1
where adjo® = (6°) "' det 6° and I is the identity matriz. Moreover,

o there is a subsequence ¢5itm) and g € L (Q*) such that ¢°i(m™ — q strongly in L . (Q¥),

loc

e there is a convex function 1 : B — R such that 1i(m) — 1) uniformly on the compact subsets of Bi.

In [2] the authors found a representation for ¢° given by a sum of Calderén-Zygmund type singular integrals
of 65;(y). As a result ¢° inherits the "half” of the integrability of Vu. In other words {¢°} is uniformly bounded
in Lllot% (Q*) if Vu € L*°(Q),6 > 0 and in L], (Q*) if [Vu|? € Llog(2 + L)(2). This observation gives rise to
the following question: Does the higher integrability of the pressure ¢ translate to Vu?

Theorem A gives a partial answer to this question: if By € Q*, ¢ € L?>T9(B;),6 > 0 and ¢ € L?*(Bi) then
it follows from Lemma 7.1 1° that D*) = adjo + ¢l and D%y € L2(B%). Since by (1.7) o(y) = [Vu(Vu)'] o

ut(y),y € Q* we infer that detadjo = 1, which is equivalent to the Monge-Ampere equation
det [D* —ql] =1

satisfied a.e. in By. Hence from the regularity theory available for the Monge-Ampére equation we will conclude
higher integrability for D% in B%, which translates to Vu in Q through the equation D% = adjo + ¢l and the
inverse mapping theorem.

As one can observe from (1.8), the pressure ¢° is defined modulo a constant. The assumption ¢%9 > 0 seems

a natural one since from a purely physical point of view the pressure must be nonnegative. From Theorem A
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we can conclude that the first equation in (1.3) is well defined in . Moreover applying the duality argument
from [6] we infer that there is a function P : Q* — R such that the pair (u™!, P) is a solution the corresponding

Euler-Lagrange equations in Q, see Theorem 2 [6]. Combining Theorem A with this observation we obtain

Theorem B. Let u: Q> R™ and g € L*(Q*) be as in Theorem A.
1° Then p(z) = q(u(z)),z € Q is locally L? integrable in Q,p(x)(Vuw) ™" € LE.(Q) and the pair (u,p) solves
the equation
div[Vu+p(Vu)™'1=0 in Q
in the weak sense.
2° Let v = ' and Q be the dual pressure in Q corresponding to v,Q(v(z)) = P(z). If Q > 0 then
ue CE ().

loc

The paper is organized as follows: Section 2 is devoted to the construction of the family of functions ¥°. Then
we prove uniform estimates for this family using some geometric ideas and the Poincaré-Wirtinger’s theorem for
the functions of bounded variation (or BV —functions, see [4]). This is contained in Section 3. A lower estimate
for the det adjo® is established in Section 4. Next, in order to prove Theorem A, we recall the notion of generalized
solution of the Monge-Ampere equation and define the corresponding normal mapping in Section 5. The proof of
Theorem A is given in Section 6. Section 7 contains a brief discussion of the properties of the convex function v

and its Legendre-Fenchel transformation. Finally, Section 8 contains the proof of Theorem B.

2. THE EULER-LAGRANGE EQUATION IN IMAGE DOMAIN
In this section we construct a convex function ¥° such that the mollification of the Cauchy stress tensor
Cij = 0ij + qd;; is the Hessian of ¢°.
We start by recalling that if w is C*° divergence free vectorfield in 2D then there is a scalar C* function ¢
such that w = ¢ Dy = (—D2¢p, D1p).
Suppose that By C . From the mollified equation (1.8) it follows that the vectorfields (of; + ¢°,0%2) and

(051, 052+q%) are divergence free in Q*. Hence there are two scalar functions ¢, ¢5 such that ¢f € C*°(B1),i = 1,2

and
(2.1) (051 + 45, 0%5) = 7 Dk = (—02¢5, 0195),
(051,052 +¢°) = _# D5 = (—02p3, 0195).
Since
22) [aij@]:( 1 'Z" (u” (zg>| . Vaul (u” (j”'j“ <1;- <z>>>
Vul (u™!(2)) - Va2 (u!(2)) [Vu?(u™(2))]

e,

and of; = 0i; * pe, where pe is a mollifying kernel, we conclude that o7;

is symmetric. Moreover the gradient

matrix of the mapping ®° = (pf, p35) is
010t Oa0° € _ & _ £
(2.3) Ve — 1P1 21 _ 012 011 — ¢ .
O1ps G2 059 +q° —0%1
Therefore the mapping ® = (¢f, ¢5) is divergence free, because

div ®° = 01T + D205 = 07 — 05, =0

and the matrix o7; is symmetric.
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Thus, there is a scalar function ¢ such that ®° = _¢#V°. In other words i = —02%°, 5 = 019, which in
view of (2.1) implies the following identity for the Hessian of °

(2.4) Do (y) = < W) T —onl) ) _
—051(y) oni(y) +a°(v)
Furthermore, det D?¢° = det adjo + (¢°)? + ¢° Tro® and det(D?) — ¢°1) = det adjo®, where I = §;; is the identity
matrix.
Lemma 2.1. If ¢ > C for some C € R, independent of e, then ¥°(y) — %|y|2 are convez for any € > 0.
Proof: Let e = (a,b) € R? and 9. = ad: + bd2. Then using (2.2) and (2.4) we conclude
8681/]8(2) = a28111/15 + 2ab812’¢)6 + b2822’ll)€
a’05, + 2abosy + 0205, 4 ¢°(2)(a® + b%)
|aVou® (™ (2) + 6V (w ™ (2) + () (a” + )
> Cla® +b).

Therefore 1(z) — < 2| is convex. O

Remark 2.2. The pressure ¢°(z) is defined modulo a constant as it is seen from the equation (1.8). In particular,
¢ is determined modulo a quadratic polynomial. Thus if q5(z) = ¢°(z) — C then ¥5(z) = ¥°(z) — %|z|2 solves
det(D?*y§ — g5 (2)I) = det adjo® and (2.4) holds with ¢ and ¢° replaced by 1§ and q§ respectively.

3. UNIFORM ESTIMATES FOR %)°
Lemma 3.1. Suppose that the sequence q° converges to a nonnegative Radon measure q. Then there is a positive
constant C such that sup |p°| < C.
B,

Proof: By Helmholtz-Weyl decomposition [3], ®° = Dh® + ¢ Dn° where h° solves the Neumann problem

Ah® = in B
(3.1) { h 0 in B,

Dhf v =®°.-v on 0B;.
Moreover —An® = curl®® = of; + 052 + 2¢° and n° =0 on 9B;.

By Poincaré-Wirtinger’s theorem ®° = &° — fBl o ¢ BV (B1,R?), i.e. ¢f — fBl »; € BV(B1),i=1,2. Since
®° is defined modulo a constant (see (2.3)), in what follows, we take ®° = ®° — fBl ®°. Thus the estimate

/ ®° dive
B1

SCsup{

(3.2) 131105, = H@ ~f o e € CL (B R, J¢] < 1}
B,

L1(B1)
is true, with C' > 0 independent from e¢.

On the other hand after integration by parts we get
(3.3) / P dive = [ T dive = — / EVO°
B1 B1 By

for any ¢ € C§(Bi1,R?) which in conjunction with (2.3) gives
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(3.4)

= ‘— EDy]
By

/ i dive
By

51052 - 52(05 +4q°)
B,

[ ol + 1okl +07.

By

IN

Similarly, one can check that ’fBl ©5 divf‘ < fsl [lof2] + |o52] + ¢°]. Because o;; € L' and ¢° converges to a

nonnegative Radon measure it follows that

191 5v() < C (losllLrs + llalas))

where .#(B:1) is the space of measures in Bj.
Using Theorems 2.10 and 2.11 from [4] we conclude that the trace ®5 € L'(9Bi) of ®° is well-defined and

satisfies the following uniform estimate

(3.5) 196]l2108,) < ClIP° BV < C (loijllcis,) +lalae)) -
In particular (3.5) implies that the Neumann problem (3.1) for A® is well-defined.
Next we have that ®° = _#Vy® = Vh® + _#Vn® or equivalently

Vo — Vi = — F VR,

In particular ¥° — n® is harmonic in B;. We want to estimate the tangential component of V¢ on the boundary

0B;. Let 7 be a unit tangent vector to 9B, then
V¢S -7 =Vn* 71— ZVh*-T=Vh" p,

where v = _# 7 is a unit vector normal to 0Bi. Using polar coordinates (r,6),6 € (0,27), we obtain that

[4

(3.6) P (0) = ¢°(0) + /09 Vh-vdf = ¢°(0) —&-/0 D5 - vdo.
Without loss of generality we assume that 1°(0) = 0 (see Remark 2.2). Thus
[ (0)] < Cll®ollLrom,), VO € (0,2m).
The desired result now follows from (3.5). O

Lemma 3.2. Retain the assumptions of previous lemma. Then there is a constant C, such that iélf e
1

uniformly in €.

Proof: It suffices to prove that Ve)* € L*(dB1) uniformly in e. Indeed, ¢° is convex hence if ¢ tends to —co
then the V4 becomes uniformly large on 0B;.
From Lemma 3.5 we have that
VYt =Vt = VK = J (= V0" = V) = - 7 &
implying the estimate
VY llLromy) < 126]1L1(am,)-

The proof now follows if we recall (3.5). O
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4. LOWER ESTIMATE FOR det(adj %)
Lemma 4.1. Let 6° = o * p., where 0(z) = [Vu(Vu)'] o u™'(2),2 € Q* then for any e > 0
det(adj o°(2)) > 1 z € Q.
Proof: Using the definition of ¢°(z) and the Cauchy-Schwarz inequality we get

. 4 > () € )
det(adj 0°) = 0711032 — 012091

2
/ Ullps/ 0220 — (/ Ul2pa>
By By By

2 2
> </ MP5> - (/ mpa)
B; B,
= / (vo11022 — Ulz)ps/ (Vo11022 + 012) pe.
By By
By definition we have o011 = |Vu1|27022 = |Vu2|2 and 012 = 021 = Vu' - Vu?. Let a be the angle between

Vu! and Vu?. Recall that det Vu = |Vu!||Vu?|sina = 1. Then

Vo11022 — 012 = |Vu'|[|[Vu®|(1 = cosa) = |Vu'||Vu®|2sin® % = tan%

and similarly have that
Voo + 012 = |Vu' |V |(1 4 cos a) = |Vu'||[Vu®|2 cos® % = cot —.
Applying the Cauchy-Schwarz inequality one more time we obtain

det(adj o°) > 1.

5. NORMAL MAPPING OF THE CONVEX FUNCTION )¢

In this section we will employ some basic concepts from the theory of generalized solutions of Monge-Ampeére
equation. Our notation follow that of the paper [11]. Let v be a convex function defined in B; C R%. For x € B;

we let
xu(@) = {€ €R? : 9(y) > (z) + & (y—x) Vy € Bi}.

For a set £ C By we define the mapping

(5.1) (B = | xu(@).

r€EE
X is called the normal mapping of ¢. For smooth convex 1, xy coincides with the gradient mapping of 1.
Let

¢ = {F C B1 : xy(F) is Lebesgue measurable}.
Then % is a o—algebra containing the Borel subsets of By, see [11]. For each E € ¥ we define the set function
w(E) =[xy (E)|
i.e. the Lebesgue measure of the normal mapping of E. Tt is easy to verify that for ¢ € C*(B;) we have

w(E) :/ det D?1p, for all Borel E € B;.
E
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It follows from Aleksandrov’s theorem, see [11], that

{e€ € R?: € € xu(x) Nxy(y), for  #y,x,y € Bi| = 0.
As a consequence, we get that w is countably additive Radon measure.

Moreover, we have weak convergence for measure w. Indeed, let ¥; be a sequence of convex functions and
1; — 1 uniformly on compact subsets of B;. Let w; and w be the Radon measures associated with %; and ¢

respectively. Then w; converges weakly on B; to w in the space of measures . (B1) [11], i.e.

(5.2) limsup w; (K) < w(K)

Jj—oo
for any compact set K C Bi, and

(5.3) liminf w; (U) > w(U)

Jj—oo
for any open set U C Bj.
6. PROOF OF THEOREM A

Let w; be the Radon measure corresponding to ¥/, for some sequence {¢;}. By Lemmas 3.1 and 3.2 the
sequence of convex functions {7 } is uniformly bounded in B;. Thus for a subsequence, again denoted by {17}
we have ¢ — 1) uniformly on the compact subsets of Bi. Clearly 9 is convex. Let w be the Radon measure

corresponding to . By Lemma 4.1 we have that
(6.1) w;(Br(z0)) = / det D)%
Br(z0)

= /B . )det(adj 0% (2)) + ¢ (2) [[Vuu™ (2))* ¥ pe,] + (47 (2))dz

v

| Br(0)] +/ (¢ (2))’dz

Br(z0)
for any open ball B, (z¢) C Bi.

Now utilizing the weak convergence of the measures w; — w and (5.2) we obtain the following uniform
| @@z < C v uir)
K

for any compact set K C B;. Then a customary compactness argument in L? finishes the proof. O

7. PROPERTIES OF 9

The convex function ¢ enjoys a number of remarkable properties which are summarized in the following

Lemma 7.1. Let ¢ be as in Theorem A. Then
1° 4 is strictly convex and i € VVIQ’I(Bl),

oc

2° " € OV where ¥* is the Legendre-Fenchel transformation of 1 in B%.

Proof: 1° Recall that ¢° is defined modulo a constant summand, see Remark 2.2. Thus, without loss of
generality, we assume that ¢° > 1. Let yo be an arbitrary point in Bi, then by Lemma 4.1 det D*¢° > (¢°)? > 1.

Thus we conclude that

w; (U) > U], V open U C B;.
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Since w; — w weakly and in view of (5.3) the above inequality implies
w(U) > |U].

Now the strict convexity of 1 follows from Aleksandrov’s theorem, see [9], Chapter 2.3 Theorem 2.

The mollified matrices J,iin — Okm Strongly in Llloc(Bl) ase; L 0and ¢°7 — ¢in L2 . at least for a subsequence.
Moreover {1/} is uniformly bounded thanks to Lemmas 3.1 and 3.2, hence for a suitable subsequence ¥/ will
uniformly converge to a convex function v in any compact subset of B;. Let us show that D%y = adjo + ¢l a.e
in B1.

Indeed, let n € C§°(B1) and compute

/ Db = / O™ D + o(1)

_/aik'l/fej’f] +o(1)
= - /[(adjasj)ik + ¢ 8k + o(1)
- = /[(adjg)ik + qdik]n.

Hence 1 has generalized second order derivatives in Li,.(B1) and D% = adjo + ¢I a.e in Bj.

2° Recall that the Legendre-Fenchel transformation ¥* of ¢ in B 1 is given by

P(z) = sup (z-y —P(y), 2z €xp(By).
yeEB 1
2
Notice that by part 1° ) is strictly convex, hence it can be shown that t* is C* in the domain of ¢*, see Chapter
D of [5].
Let us denote B = B% and B* = x4 (B) where xy is the normal mapping of 1. Notice that B* is bounded be-
cause ¢ € 00,1(37%). Denote (B¥)* = xy<(B), then (¢°)"(2), z € (B®)* is smooth because 9° is C*°. Furthermore

from (2.4) we obtain

D2 ek D2 5—1: € I
(6 = (D] = g o” + D)
or equivalently
. o +adi;
9, (° _ J
is(V°) det adjo + ¢ Tro® + (¢°)?
< L o5+ qlij
T e+ Trot - gf
1
S i;glw i:j
q
if we assume that ¢ > 1, see Remark 2.2.
As for i # j, we use Lemma 4.1 to conclude
o1 + 05

lofa| < /05105, —1 < /o505, +1< + 1.

2
Thus |D?(¢)%)*| < C uniformly in e.
Next, we extend (¢°)" to Br by the formula sup,cg, (v -z — ¢ (y)) with z € Br and R = sup [|[Vy®||Le (5, ).
€ 2

Thus in Br we have a sequence of convex functions (¢°)* with uniformly bounded Hessian matrices. By a
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customary compactness argument we can show that for at least a subsequence we have (¥°7)* — 3 for some
convex function v. It remains to show that ¢* = in B*.
From the definition of (1°)* we have that (¢¥°)*(z) + ¥°(y) > vy - z and after passing to the limit we obtain
P(2) +¥(y) > y - z implying that ¥(z) > ¥*(z). To get the converse inequality we use the uniform convergence
P(2) — (¥°)"(2) = sup(y - 2 = ¥°(y)) < sup(y - 2 — Y(y)) + sup [P(y) — ¥ (y)| — ¥"(2).
yeB yEB yEB

This completes the proof. O

Remark 7.2. At each point z € intB*, B* = x4(B1) we can define the lower Gauss curvature [9]

fi N e X (Br(20))]
w (ZO) - ll?i}(l;lf |BT(ZO)|

1
2

If there is a constant m > 0 such that w*(20) > m > 0 for a.e. z0 € B* then ¢ and q are bounded in B%. In

particular this will imply that w is Lipschitz in ufl(B%) c Q.

8. PROOF OF THEOREM B

The part 1° follows from change of variable formula [10] and Theorem A. To prove part 2° we employ the
duality principle of u and its inverse v =u"" in [6], i.e. v is a local minimizer of the dual problem in the image
domain Q* = u(Q). Hence we can apply Theorem A to the pair (v, P) where v =u""

function 7° such that D%n° = adja® 4+ Q°I where

Gij(2) = Y_vm(v ' (@) (v (2), zeQ

. Thus, there is a convex

and 0° = 7 * p. and Q° are the mollifications of & and @ respectively. Note that Q(v(z)) = P(2),z € Q. In
particular, for any By(zo) C B1 C 2 we have

|Vu(z)|’de = / Tro;j (z)dx
Br(z0) Br(zo0)
_ / Ane _ 2@5
Br(zo)
< An®
Br ()
= / vn v
9By (x0)
< Cr

with some tame constant C' depending on the Lipschitz norms of 1, which is bounded by Lemmas 3.2 and 3.1.

Now the result follows from Morrey’s estimate. a
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