REGULARITY FOR ENERGY-MINIMIZING AREA-PRESERVING DEFORMATIONS

ARAM L. KARAKHANYAN

Abstract. In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that emerges in the minimization problem

$$\inf_{\mathcal{K}} \int_{\Omega} |\nabla \mathbf{v}|^2, \qquad \Omega \subset \mathbb{R}^2$$

as the Lagrange multiplier corresponding to the incompressibility constraint det $\nabla \mathbf{v} = 1$ a.e. in Ω . Our method employs the Euler-Lagrange equation for the mollified Cauchy stress \mathbf{C} satisfied in the image domain $\Omega^* = \mathbf{u}(\Omega)$. This allows to construct a convex function ψ , defined in the image domain, such that the measure of the normal mapping of ψ controls the L^2 norm of the pressure. As a by-product we conclude that $\mathbf{u} \in C_{\text{loc}}^{\frac{1}{2}}(\Omega)$ if the dual pressure (introduced in [6]) is nonnegative.

1. INTRODUCTION

Let Ω be a bounded smooth domain in \mathbb{R}^2 and $\mathcal{K} = \{ \mathbf{v} \in W^{1,2}(\Omega, \mathbb{R}^2), \det \nabla \mathbf{v} = 1 \text{ a.e. in } \Omega \}$. For $\mathbf{v} \in \mathcal{K}$ we define the stored energy as

(1.1)
$$E[\mathbf{v}] = \int_{\Omega} |\nabla \mathbf{v}|^2, \quad \mathbf{v} \in \mathcal{K}.$$

Let us recall the definition of local minimizers [1], [2], [6].

Definition 1.1. We say that an area-preserving deformation $\mathbf{u} \in W^{1,2}(\Omega, \mathbb{R}^2)$ is a *local minimizer* if for all area preserving (or incompressible) deformations $\mathbf{w} \in W^{1,2}(\Omega, \mathbb{R}^2)$ with $\operatorname{supp}(\mathbf{w} - \mathbf{u}) \subset \Omega$ the following holds

(1.2)
$$\int_{\Omega} |\nabla \mathbf{u}|^2 \le \int_{\Omega} |\nabla \mathbf{w}|^2.$$

Our primary interest is to analyze the properties of the local minimizers of $E[\cdot]$ and the integrability of the hydrostatic pressure p sought as the Lagrange multiplier corresponding to the incompressibility constraint det $\nabla \mathbf{v} = 1$. The sufficiently regular local minimizers solve the system

(1.3)
$$\begin{cases} \operatorname{div} \mathbf{T} = 0 & \operatorname{in} \Omega, \\ \operatorname{det} \nabla \mathbf{u} = 1 & \operatorname{a.e. in} \Omega \end{cases}$$

where $\mathbf{T} = \nabla \mathbf{u} + p(\nabla \mathbf{u})^{-t}$ is the first Piola-Kirchhoff tensor and $(\nabla \mathbf{u})^{-t}$ is the transpose of the inverse matrix, see [7], pages 371 and 379. Since det $\nabla \mathbf{u} = 1$ we have

(1.4)
$$(\nabla \mathbf{u})^{-1} = \begin{pmatrix} u_2^2 & -u_2^1 \\ -u_1^2 & u_1^1 \end{pmatrix}, \quad (\nabla \mathbf{u})^{-t} = \begin{pmatrix} u_2^2 & -u_1^2 \\ -u_2^1 & u_1^1 \end{pmatrix}$$

From (1.4) we deduce that (1.3) is equivalent to the system

(1.5)
$$\begin{cases} \operatorname{div}[\nabla u^{1} - p \mathscr{J} \nabla u^{2}] = 0\\ \operatorname{div}[\nabla u^{2} + p \mathscr{J} \nabla u^{1}] = 0\\ \operatorname{det} \nabla \mathbf{u} = 1. \end{cases}$$

Here \mathscr{J} is the 90° counterclockwise rotation

²⁰¹⁰ Mathematics Subject Classification. Primary 35Q74, 35J96, 70B20.

Keywords. Incompressible, area-preserving, deformations, Monge-Ampère equation.

(1.6)
$$\mathscr{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

For $\mathbf{u} \in W^{1,2}(\Omega)$ the equations (1.3) or (1.5) cannot be justified. In fact the term $p(\nabla \mathbf{u})^{-t}$ is not welldefined unless $\nabla \mathbf{u}$ is better than L^2 integrable, see [2]. The lack of higher integrability of $\nabla \mathbf{u}$ produces a number of technical difficulties, see [6]. To circumvent them author and N. Chaudhuri succeeded to compute the first variation of the energy (1.6) in the image domain $\Omega^* = \mathbf{u}(\Omega)$ under very weak assumptions (note that \mathbf{u} is open map [10]). For $\mathbf{u} \in W^{s,l}(\Omega)$ with $s > \frac{2}{l} + 1$ this was done in [8], Theorem 5.1. Below we formulate one of the main results from [2] relevant to the present work.

Proposition 1.2. Let $u \in \mathcal{K}$ be a local minimizer of (1.1). Consider the matrix

(1.7)
$$\sigma_{ij}(y) = \sum_{m} u_m^i(u^{-1}(y)) u_m^j(u^{-1}(y))$$

where $y \in \mathbf{u}(\Omega) = \Omega^*$ and \mathbf{u}^{-1} is the inverse of \mathbf{u} (\mathbf{u}^{-1} is well-defined see Remark 3.3 [10]). If ρ_{ε} is a mollification kernel and $\sigma^{\varepsilon} = \sigma * \rho_{\varepsilon}$ then there is a C^{∞} function q^{ε} such that

(1.8)
$$\operatorname{div} \sigma^{\varepsilon}(y) + \nabla q^{\varepsilon}(y) = 0 \qquad y \in \Omega^{\star},$$

The regularized equation (1.8) in the image domain plays the crucial role in the proof of Theorem A (see below), notably it links (1.3) to the Monge-Ampère equation and from there we infer that $\{q^{\varepsilon}\}$ is uniformly bounded in $L^2_{loc}(\Omega^*)$.

Theorem A. Let $u \in \mathcal{K}$ be a local minimizer of $E[\cdot]$. If there is a sequence of $q^{\varepsilon_j} \ge 0$ solving (1.8) such that q^{ε_j} converges to a nonnegative Radon measure in $B_1 \subset \Omega^*$, then there is a convex function ψ^{ε} defined in B_1 such that

$$D^2\psi^{\varepsilon} = adj\sigma^{\varepsilon} + q^{\varepsilon}\mathbb{I}$$

where $adj\sigma^{\varepsilon} = (\sigma^{\varepsilon})^{-1} \det \sigma^{\varepsilon}$ and \mathbb{I} is the identity matrix. Moreover,

- there is a subsequence $q^{\varepsilon_{j(m)}}$ and $q \in L^2_{loc}(\Omega^*)$ such that $q^{\varepsilon_{j(m)}} \to q$ strongly in $L^2_{loc}(\Omega^*)$,
- there is a convex function $\psi: B_1 \mapsto \mathbb{R}$ such that $\psi^{\varepsilon_j(m)} \to \psi$ uniformly on the compact subsets of B_1 .

In [2] the authors found a representation for q^{ε} given by a sum of Calderón-Zygmund type singular integrals of $\sigma_{ij}^{\varepsilon}(y)$. As a result q^{ε} inherits the "half" of the integrability of $\nabla \mathbf{u}$. In other words $\{q^{\varepsilon}\}$ is uniformly bounded in $L^{1+\frac{\delta}{2}}_{\text{loc}}(\Omega^{\star})$ if $\nabla u \in L^{2+\delta}(\Omega), \delta > 0$ and in $L^{1}_{\text{loc}}(\Omega^{\star})$ if $|\nabla \mathbf{u}|^{2} \in L \log(2+L)(\Omega)$. This observation gives rise to the following question: Does the higher integrability of the pressure q translate to $\nabla \mathbf{u}$?

Theorem A gives a partial answer to this question: if $B_1 \subset \Omega^*$, $q \in L^{2+\delta}(B_1)$, $\delta > 0$ and $\sigma \in L^2(B_1)$ then it follows from Lemma 7.1 1° that $D^2\psi = \operatorname{adj}\sigma + q\mathbb{I}$ and $D^2\psi \in L^2(B_{\frac{7}{8}})$. Since by (1.7) $\sigma(y) = [\nabla \mathbf{u}(\nabla \mathbf{u})^t] \circ \mathbf{u}^{-1}(y), y \in \Omega^*$ we infer that det $\operatorname{adj}\sigma = 1$, which is equivalent to the Monge-Ampère equation

$$\det \left[D^2 \psi - q \mathbb{I} \right] = 1$$

satisfied a.e. in B_1 . Hence from the regularity theory available for the Monge-Ampére equation we will conclude higher integrability for $D^2\psi$ in $B_{\frac{1}{2}}$, which translates to $\nabla \mathbf{u}$ in Ω through the equation $D^2\psi = \mathrm{adj}\sigma + q\mathbb{I}$ and the inverse mapping theorem.

As one can observe from (1.8), the pressure q^{ε} is defined modulo a constant. The assumption $q^{\varepsilon_j} \ge 0$ seems a natural one since from a purely physical point of view the pressure must be nonnegative. From Theorem A we can conclude that the first equation in (1.3) is well defined in Ω . Moreover applying the duality argument from [6] we infer that there is a function $P: \Omega^* \to \mathbb{R}$ such that the pair (\mathbf{u}^{-1}, P) is a solution the corresponding Euler-Lagrange equations in Ω^* , see Theorem 2 [6]. Combining Theorem A with this observation we obtain

Theorem B. Let $\boldsymbol{u}: \Omega \mapsto \mathbb{R}^n$ and $q \in L^2(\Omega^*)$ be as in Theorem A.

1° Then $p(x) = q(u(x)), x \in \Omega$ is locally L^2 integrable in $\Omega, p(x)(\nabla u)^{-t} \in L^2_{loc}(\Omega)$ and the pair (u, p) solves the equation

$$\operatorname{div}[\nabla \boldsymbol{u} + p(\nabla \boldsymbol{u})^{-t}] = 0 \qquad in \ \Omega$$

in the weak sense.

2° Let $v = u^{-1}$ and Q be the dual pressure in Ω corresponding to v, Q(v(z)) = P(z). If $Q \ge 0$ then $u \in C_{loc}^{\frac{1}{2}}(\Omega)$.

The paper is organized as follows: Section 2 is devoted to the construction of the family of functions ψ^{ε} . Then we prove uniform estimates for this family using some geometric ideas and the Poincaré-Wirtinger's theorem for the functions of bounded variation (or BV-functions, see [4]). This is contained in Section 3. A lower estimate for the det $adj\sigma^{\varepsilon}$ is established in Section 4. Next, in order to prove Theorem A, we recall the notion of generalized solution of the Monge-Ampère equation and define the corresponding normal mapping in Section 5. The proof of Theorem A is given in Section 6. Section 7 contains a brief discussion of the properties of the convex function ψ and its Legendre-Fenchel transformation. Finally, Section 8 contains the proof of Theorem B.

2. The Euler-Lagrange equation in image domain

In this section we construct a convex function ψ^{ε} such that the mollification of the Cauchy stress tensor $\mathbf{C}_{ij} = \sigma_{ij} + q\delta_{ij}$ is the Hessian of ψ^{ε} .

We start by recalling that if \mathbf{w} is C^{∞} divergence free vectorfield in 2D then there is a scalar C^{∞} function φ such that $\mathbf{w} = \mathscr{J} D \varphi = (-D_2 \varphi, D_1 \varphi)$.

Suppose that $B_1 \subset \Omega^*$. From the mollified equation (1.8) it follows that the vectorfields $(\sigma_{11}^{\varepsilon} + q^{\varepsilon}, \sigma_{12}^{\varepsilon})$ and $(\sigma_{21}^{\varepsilon}, \sigma_{22}^{\varepsilon} + q^{\varepsilon})$ are divergence free in Ω^* . Hence there are two scalar functions $\varphi_1^{\varepsilon}, \varphi_2^{\varepsilon}$ such that $\varphi_i^{\varepsilon} \in C^{\infty}(B_1), i = 1, 2$ and

(2.1)
$$(\sigma_{11}^{\varepsilon} + q^{\varepsilon}, \sigma_{12}^{\varepsilon}) = \mathscr{J} D \varphi_{1}^{\varepsilon} = (-\partial_{2} \varphi_{1}^{\varepsilon}, \partial_{1} \varphi_{1}^{\varepsilon}),$$
$$(\sigma_{21}^{\varepsilon}, \sigma_{22}^{\varepsilon} + q^{\varepsilon}) = \mathscr{J} D \varphi_{2}^{\varepsilon} = (-\partial_{2} \varphi_{2}^{\varepsilon}, \partial_{1} \varphi_{2}^{\varepsilon}).$$

Since

(2.2)
$$[\sigma_{ij}(z)] = \begin{pmatrix} |\nabla u^1(\mathbf{u}^{-1}(z))|^2 & \nabla u^1(\mathbf{u}^{-1}(z)) \cdot \nabla u^2(\mathbf{u}^{-1}(z)) \\ \nabla u^1(\mathbf{u}^{-1}(z)) \cdot \nabla u^2(\mathbf{u}^{-1}(z)) & |\nabla u^2(\mathbf{u}^{-1}(z))|^2 \end{pmatrix}$$

and $\sigma_{ij}^{\varepsilon} = \sigma_{ij} * \rho_{\varepsilon}$, where ρ_{ε} is a mollifying kernel, we conclude that $\sigma_{ij}^{\varepsilon}$ is symmetric. Moreover the gradient matrix of the mapping $\Phi^{\varepsilon} = (\varphi_1^{\varepsilon}, \varphi_2^{\varepsilon})$ is

(2.3)
$$\nabla \Phi^{\varepsilon} = \begin{pmatrix} \partial_1 \varphi_1^{\varepsilon} & \partial_2 \varphi_1^{\varepsilon} \\ \partial_1 \varphi_2^{\varepsilon} & \partial_2 \varphi_2^{\varepsilon} \end{pmatrix} = \begin{pmatrix} \sigma_{12}^{\varepsilon} & -\sigma_{11}^{\varepsilon} - q^{\varepsilon} \\ \sigma_{22}^{\varepsilon} + q^{\varepsilon} & -\sigma_{21}^{\varepsilon} \end{pmatrix}.$$

Therefore the mapping $\Phi = (\varphi_1^{\varepsilon}, \varphi_2^{\varepsilon})$ is divergence free, because

$$\operatorname{div} \Phi^{\varepsilon} = \partial_1 \varphi_1^{\varepsilon} + \partial_2 \varphi_2^{\varepsilon} = \sigma_{12}^{\varepsilon} - \sigma_{21}^{\varepsilon} = 0$$

and the matrix $\sigma_{ij}^{\varepsilon}$ is symmetric.

Thus, there is a scalar function ψ^{ε} such that $\Phi^{\varepsilon} = \mathscr{J}\nabla\psi^{\varepsilon}$. In other words $\varphi_1^{\varepsilon} = -\partial_2\psi^{\varepsilon}, \varphi_2^{\varepsilon} = \partial_1\psi^{\varepsilon}$, which in view of (2.1) implies the following identity for the Hessian of ψ^{ε}

(2.4)
$$D^2\psi^{\varepsilon}(y) = \begin{pmatrix} \sigma_{22}^{\varepsilon}(y) + q^{\varepsilon}(y) & -\sigma_{21}^{\varepsilon}(y) \\ -\sigma_{21}^{\varepsilon}(y) & \sigma_{11}^{\varepsilon}(y) + q^{\varepsilon}(y) \end{pmatrix}.$$

Furthermore, det $D^2 \psi^{\varepsilon} = \det \operatorname{adj} \sigma^{\varepsilon} + (q^{\varepsilon})^2 + q^{\varepsilon} \operatorname{Tr} \sigma^{\varepsilon}$ and $\det(D^2 \psi - q^{\varepsilon} \mathbb{I}) = \det \operatorname{adj} \sigma^{\varepsilon}$, where $\mathbb{I} = \delta_{ij}$ is the identity matrix.

Lemma 2.1. If $q^{\varepsilon} \geq C$ for some $C \in \mathbb{R}$, independent of ε , then $\psi^{\varepsilon}(y) - \frac{C}{2}|y|^2$ are convex for any $\varepsilon > 0$.

Proof: Let $e = (a, b) \in \mathbb{R}^2$ and $\partial_e = a\partial_1 + b\partial_2$. Then using (2.2) and (2.4) we conclude

$$\begin{aligned} \partial_{ee}\psi^{\varepsilon}(z) &= a^{2}\partial_{11}\psi^{\varepsilon} + 2ab\partial_{12}\psi^{\varepsilon} + b^{2}\partial_{22}\psi^{\varepsilon} \\ &= a^{2}\sigma_{22}^{\varepsilon} + 2ab\sigma_{12}^{\varepsilon} + b^{2}\sigma_{11}^{\varepsilon} + q^{\varepsilon}(z)(a^{2} + b^{2}) \\ &= \left|a\nabla_{x}u^{2}(\mathbf{u}^{-1}(z) + b\nabla_{x}u^{1}(\mathbf{u}^{-1}(z))\right|^{2} + q^{\varepsilon}(z)(a^{2} + b^{2}) \\ &> C(a^{2} + b^{2}). \end{aligned}$$

Therefore $\psi(z) - \frac{C}{2}|z|^2$ is convex.

Remark 2.2. The pressure $q^{\varepsilon}(z)$ is defined modulo a constant as it is seen from the equation (1.8). In particular, ψ^{ε} is determined modulo a quadratic polynomial. Thus if $q_0^{\varepsilon}(z) = q^{\varepsilon}(z) - C$ then $\psi_0^{\varepsilon}(z) = \psi^{\varepsilon}(z) - \frac{C}{2}|z|^2$ solves $\det(D^2\psi_0^{\varepsilon} - q_0^{\varepsilon}(z)\mathbb{I}) = \det \operatorname{adj}\sigma^{\varepsilon}$ and (2.4) holds with ψ^{ε} and q^{ε} replaced by ψ_0^{ε} and q_0^{ε} respectively.

3. Uniform estimates for ψ^{ε}

Lemma 3.1. Suppose that the sequence q^{ε} converges to a nonnegative Radon measure q. Then there is a positive constant C such that $\sup_{\partial B_1} |\psi^{\varepsilon}| \leq C$.

Proof: By Helmholtz-Weyl decomposition [3], $\Phi^{\varepsilon} = Dh^{\varepsilon} + \mathscr{J}D\eta^{\varepsilon}$ where h^{ε} solves the Neumann problem

(3.1)
$$\begin{cases} \Delta h^{\varepsilon} = 0 & \text{in } B_1, \\ Dh^{\varepsilon} \cdot \nu = \Phi^{\varepsilon} \cdot \nu & \text{on } \partial B_1 \end{cases}$$

Moreover $-\Delta \eta^{\varepsilon} = \operatorname{curl} \Phi^{\varepsilon} = \sigma_{11}^{\varepsilon} + \sigma_{22}^{\varepsilon} + 2q^{\varepsilon}$ and $\eta^{\varepsilon} = 0$ on ∂B_1 .

By Poincaré-Wirtinger's theorem $\widetilde{\Phi}^{\varepsilon} = \Phi^{\varepsilon} - \int_{B_1} \Phi^{\varepsilon} \in BV(B_1, \mathbb{R}^2)$, i.e. $\varphi_i^{\varepsilon} - \int_{B_1} \varphi_i^{\varepsilon} \in BV(B_1), i = 1, 2$. Since Φ^{ε} is defined modulo a constant (see (2.3)), in what follows, we take $\widetilde{\Phi}^{\varepsilon} = \Phi^{\varepsilon} - \int_{B_1} \Phi^{\varepsilon}$. Thus the estimate

$$(3.2) \|\widetilde{\Phi}^{\varepsilon}\|_{L^{1}(B_{1})} = \left\|\Phi^{\varepsilon} - \oint_{B_{1}} \Phi^{\varepsilon}\right\|_{L^{1}(B_{1})} \le C \sup\left\{\left|\int_{B_{1}} \Phi^{\varepsilon} \operatorname{div} \xi\right|, \forall \xi \in C_{0}^{1}(B_{1}, \mathbb{R}^{2}), |\xi| \le 1\right\}$$

is true, with C > 0 independent from ε .

On the other hand after integration by parts we get

(3.3)
$$\int_{B_1} \widetilde{\Phi}^{\varepsilon} \operatorname{div} \xi = \int_{B_1} \Phi^{\varepsilon} \operatorname{div} \xi = -\int_{B_1} \xi \nabla \Phi^{\varepsilon}$$

for any $\xi \in C_0^1(B_1, \mathbb{R}^2)$ which in conjunction with (2.3) gives

(3.4)
$$\begin{aligned} \left| \int_{B_1} \varphi_1^{\varepsilon} \operatorname{div} \xi \right| &= \left| -\int_{B_1} \xi D \varphi_1^{\varepsilon} \right| \\ &= \left| \int_{B_1} \xi^1 \sigma_{12}^{\varepsilon} - \xi^2 (\sigma_{11}^{\varepsilon} + q^{\varepsilon}) \right| \\ &\leq \int_{B_1} \left[|\sigma_{11}^{\varepsilon}| + |\sigma_{12}^{\varepsilon}| + q^{\varepsilon} \right]. \end{aligned}$$

Similarly, one can check that $\left|\int_{B_1} \varphi_2^{\varepsilon} \operatorname{div} \xi\right| \leq \int_{B_1} \left[|\sigma_{12}^{\varepsilon}| + |\sigma_{22}^{\varepsilon}| + q^{\varepsilon}\right]$. Because $\sigma_{ij} \in L^1$ and q^{ε} converges to a nonnegative Radon measure it follows that

$$\|\widetilde{\Phi}^{\varepsilon}\|_{BV(B_1)} \leq C \left(\|\sigma_{ij}\|_{L^1(B_1)} + \|q\|_{\mathscr{M}(B_1)} \right),$$

where $\mathcal{M}(B_1)$ is the space of measures in B_1 .

Using Theorems 2.10 and 2.11 from [4] we conclude that the trace $\Phi_0^{\varepsilon} \in L^1(\partial B_1)$ of $\widetilde{\Phi}^{\varepsilon}$ is well-defined and satisfies the following uniform estimate

(3.5)
$$\|\widetilde{\Phi}_0^{\varepsilon}\|_{L^1(\partial B_1)} \le C \|\widetilde{\Phi}^{\varepsilon}\|_{BV(B_1)} \le C \left(\|\sigma_{ij}\|_{L^1(B_1)} + \|q\|_{\mathscr{M}(B_1)}\right).$$

In particular (3.5) implies that the Neumann problem (3.1) for h^{ε} is well-defined.

Next we have that $\Phi^{\varepsilon} = \mathscr{J} \nabla \psi^{\varepsilon} = \nabla h^{\varepsilon} + \mathscr{J} \nabla \eta^{\varepsilon}$ or equivalently

$$abla \psi^arepsilon -
abla \eta^arepsilon = - \mathscr{J}
abla h^arepsilon.$$

In particular $\psi^{\varepsilon} - \eta^{\varepsilon}$ is harmonic in B_1 . We want to estimate the tangential component of $\nabla \psi^{\varepsilon}$ on the boundary ∂B_1 . Let τ be a unit tangent vector to ∂B_1 , then

$$\nabla \psi^{\varepsilon} \cdot \tau = \nabla \eta^{\varepsilon} \cdot \tau - \mathscr{J} \nabla h^{\varepsilon} \cdot \tau = \nabla h^{\varepsilon} \cdot \nu,$$

where $\nu = \mathscr{J}\tau$ is a unit vector normal to ∂B_1 . Using polar coordinates $(r, \theta), \theta \in (0, 2\pi)$, we obtain that

(3.6)
$$\psi^{\varepsilon}(\theta) = \psi^{\varepsilon}(0) + \int_{0}^{\theta} \nabla h \cdot \nu d\theta = \psi^{\varepsilon}(0) + \int_{0}^{\theta} \Phi_{0}^{\varepsilon} \cdot \nu d\theta$$

Without loss of generality we assume that $\psi^{\varepsilon}(0) = 0$ (see Remark 2.2). Thus

$$|\psi^{\varepsilon}(\theta)| \le C \|\Phi_0^{\varepsilon}\|_{L^1(\partial B_1)}, \qquad \forall \theta \in (0, 2\pi)$$

The desired result now follows from (3.5).

Lemma 3.2. Retain the assumptions of previous lemma. Then there is a constant C, such that $\inf_{B_1} \psi^{\varepsilon} \geq C$ uniformly in ε .

Proof: It suffices to prove that $\nabla \psi^{\varepsilon} \in L^1(\partial B_1)$ uniformly in ε . Indeed, ψ^{ε} is convex hence if ψ^{ε} tends to $-\infty$ then the $\nabla \psi^{\varepsilon}$ becomes uniformly large on ∂B_1 .

From Lemma 3.5 we have that

$$\nabla \psi^{\varepsilon} = \nabla \eta^{\varepsilon} - \mathscr{J} \nabla h^{\varepsilon} = \mathscr{J} (-\mathscr{J} \nabla \eta^{\varepsilon} - \nabla h^{\varepsilon}) = -\mathscr{J} \widetilde{\Phi}^{\varepsilon}$$

implying the estimate

 $\|\nabla\psi^{\varepsilon}\|_{L^{1}(\partial B_{1})} \leq \|\widetilde{\Phi}_{0}^{\varepsilon}\|_{L^{1}(\partial B_{1})}.$

The proof now follows if we recall (3.5).

4. Lower estimate for det(adj σ^{ε})

Lemma 4.1. Let $\sigma^{\varepsilon} = \sigma * \rho_{\varepsilon}$, where $\sigma(z) = [\nabla u(\nabla u)^t] \circ u^{-1}(z), z \in \Omega^*$ then for any $\varepsilon > 0$

 $\det(\operatorname{adj} \sigma^{\varepsilon}(z)) \ge 1 \qquad z \in \Omega^{\star}.$

Proof: Using the definition of $\sigma^{\varepsilon}(z)$ and the Cauchy-Schwarz inequality we get

$$\begin{aligned} \det(\operatorname{adj} \sigma^{\varepsilon}) &= \sigma_{11}^{\varepsilon} \sigma_{22}^{\varepsilon} - \sigma_{12}^{\varepsilon} \sigma_{21}^{\varepsilon} \\ &= \int_{B_1} \sigma_{11} \rho_{\varepsilon} \int_{B_1} \sigma_{22} \rho_{\varepsilon} - \left(\int_{B_1} \sigma_{12} \rho_{\varepsilon} \right)^2 \\ &\geq \left(\int_{B_1} \sqrt{\sigma_{11} \sigma_{22}} \rho_{\varepsilon} \right)^2 - \left(\int_{B_1} \sigma_{12} \rho_{\varepsilon} \right)^2 \\ &= \int_{B_1} (\sqrt{\sigma_{11} \sigma_{22}} - \sigma_{12}) \rho_{\varepsilon} \int_{B_1} (\sqrt{\sigma_{11} \sigma_{22}} + \sigma_{12}) \rho_{\varepsilon} \end{aligned}$$

By definition we have $\sigma_{11} = |\nabla u^1|^2$, $\sigma_{22} = |\nabla u^2|^2$ and $\sigma_{12} = \sigma_{21} = \nabla u^1 \cdot \nabla u^2$. Let α be the angle between ∇u^1 and ∇u^2 . Recall that det $\nabla \mathbf{u} = |\nabla u^1| |\nabla u^2| \sin \alpha = 1$. Then

$$\sqrt{\sigma_{11}\sigma_{22}} - \sigma_{12} = |\nabla u^1| |\nabla u^2| (1 - \cos\alpha) = |\nabla u^1| |\nabla u^2| 2\sin^2\frac{\alpha}{2} = \tan\frac{\alpha}{2}$$

and similarly have that

$$\sqrt{\sigma_{11}\sigma_{22}} + \sigma_{12} = |\nabla u^1| |\nabla u^2| (1 + \cos\alpha) = |\nabla u^1| |\nabla u^2| 2\cos^2\frac{\alpha}{2} = \cot\frac{\alpha}{2}$$

Applying the Cauchy-Schwarz inequality one more time we obtain

$$\det(\operatorname{adj} \sigma^{\varepsilon}) \geq 1.$$

L		

5. Normal mapping of the convex function ψ^{ε}

In this section we will employ some basic concepts from the theory of generalized solutions of Monge-Ampère equation. Our notation follow that of the paper [11]. Let ψ be a convex function defined in $B_1 \subset \mathbb{R}^2$. For $x \in B_1$ we let

$$\chi_{\psi}(x) = \{\xi \in \mathbb{R}^2 : \psi(y) \ge \psi(x) + \xi \cdot (y - x) \quad \forall y \in B_1\}.$$

For a set $E \subset B_1$ we define the mapping

(5.1)
$$\chi_{\psi}(E) = \bigcup_{x \in E} \chi_{\psi}(x)$$

 χ_{ψ} is called the normal mapping of ψ . For smooth convex ψ , χ_{ψ} coincides with the gradient mapping of ψ . Let

 $\mathscr{C} = \{ E \subset B_1 : \chi_{\psi}(E) \text{ is Lebesgue measurable} \}.$

Then \mathscr{C} is a σ -algebra containing the Borel subsets of B_1 , see [11]. For each $E \in \mathscr{C}$ we define the set function

$$\omega(E) = |\chi_{\psi}(E)|$$

i.e. the Lebesgue measure of the normal mapping of E. It is easy to verify that for $\psi \in C^2(B_1)$ we have

$$\omega(E) = \int_E \det D^2 \psi, \quad \text{for all Borel } E \in B_1.$$

It follows from Aleksandrov's theorem, see [11], that

$$|\{\xi \in \mathbb{R}^2 : \xi \in \chi_{\psi}(x) \cap \chi_{\psi}(y), \text{ for } x \neq y, x, y \in B_1| = 0.$$

As a consequence, we get that ω is countably additive Radon measure.

Moreover, we have weak convergence for measure ω . Indeed, let ψ_j be a sequence of convex functions and $\psi_j \to \psi$ uniformly on compact subsets of B_1 . Let ω_j and ω be the Radon measures associated with ψ_j and ψ respectively. Then ω_j converges weakly on B_1 to ω in the space of measures $\mathscr{M}(B_1)$ [11], i.e.

(5.2)
$$\limsup_{j \to \infty} \omega_j(K) \le \omega(K)$$

for any compact set $K \subset B_1$, and

(5.3)
$$\liminf_{j \to \infty} \omega_j(U) \ge \omega(U)$$

for any open set $U \subset B_1$.

6. Proof of Theorem A

Let ω_j be the Radon measure corresponding to ψ^{ε_j} , for some sequence $\{\varepsilon_j\}$. By Lemmas 3.1 and 3.2 the sequence of convex functions $\{\psi^{\varepsilon_j}\}$ is uniformly bounded in B_1 . Thus for a subsequence, again denoted by $\{\psi^{\varepsilon_j}\}$ we have $\psi^{\varepsilon_j} \to \psi$ uniformly on the compact subsets of B_1 . Clearly ψ is convex. Let ω be the Radon measure corresponding to ψ . By Lemma 4.1 we have that

(6.1)
$$\omega_{j}(B_{r}(x_{0})) = \int_{B_{r}(x_{0})} \det D^{2} \psi^{\varepsilon_{j}}$$
$$= \int_{B_{r}(x_{0})} \det(\operatorname{adj} \sigma^{\varepsilon_{j}}(z)) + q^{\varepsilon_{j}}(z) \left[|\nabla \mathbf{u}(\mathbf{u}^{-1}(z))|^{2} * \rho_{\varepsilon_{j}} \right] + (q^{\varepsilon_{j}}(z))^{2} dz$$
$$\geq |B_{r}(x_{0})| + \int_{B_{r}(x_{0})} (q^{\varepsilon_{j}}(z))^{2} dz$$

for any open ball $B_r(x_0) \subset B_1$.

Now utilizing the weak convergence of the measures $\omega_j \rightarrow \omega$ and (5.2) we obtain the following uniform

$$\int_{K} (q^{\varepsilon_j}(z))^2 dz \le C + \omega(K)$$

for any compact set $K \subset B_1$. Then a customary compactness argument in L^2 finishes the proof.

7. Properties of ψ

The convex function ψ enjoys a number of remarkable properties which are summarized in the following

Lemma 7.1. Let ψ be as in Theorem A. Then

- $\mathbf{1}^{\circ} \ \psi$ is strictly convex and $\psi \in W^{2,1}_{\text{loc}}(B_1)$,
- $\mathbf{2}^{\circ} \ \psi^{*} \in C^{1,1}$ where ψ^{*} is the Legendre-Fenchel transformation of ψ in $B_{\frac{1}{2}}$.

Proof: 1° Recall that q^{ε} is defined modulo a constant summand, see Remark 2.2. Thus, without loss of generality, we assume that $q^{\varepsilon} \ge 1$. Let y_0 be an arbitrary point in B_1 , then by Lemma 4.1 det $D^2 \psi^{\varepsilon} \ge (q^{\varepsilon})^2 \ge 1$. Thus we conclude that

$$\omega_j(U) \ge |U|, \quad \forall \text{ open } U \subset B_1$$

Since $\omega_j \rightharpoonup \omega$ weakly and in view of (5.3) the above inequality implies

$$\omega(U) \ge |U|.$$

Now the strict convexity of ψ follows from Aleksandrov's theorem, see [9], Chapter 2.3 Theorem 2.

The mollified matrices $\sigma_{km}^{\varepsilon_j} \to \sigma_{km}$ strongly in $L^1_{loc}(B_1)$ as $\varepsilon_j \downarrow 0$ and $q^{\varepsilon_j} \to q$ in L^2_{loc} at least for a subsequence. Moreover $\{\psi^{\varepsilon_j}\}$ is uniformly bounded thanks to Lemmas 3.1 and 3.2, hence for a suitable subsequence ψ^{ε_j} will uniformly converge to a convex function ψ in any compact subset of B_1 . Let us show that $D^2\psi = adj\sigma + q\mathbb{I}$ a.e in B_1 .

Indeed, let $\eta \in C_0^{\infty}(B_1)$ and compute

$$\begin{split} \int \partial_k \psi \partial_i \eta &= \int \partial_k \psi^{\varepsilon_j} \partial_i \eta + o(1) \\ &= -\int \partial_{ik} \psi^{\varepsilon_j} \eta + o(1) \\ &= -\int [(\mathrm{adj}\sigma^{\varepsilon_j})_{ik} + q^{\varepsilon_j} \delta_{ik}] \eta + o(1) \\ &\longrightarrow -\int [(\mathrm{adj}\sigma)_{ik} + q \delta_{ik}] \eta. \end{split}$$

Hence ψ has generalized second order derivatives in $L^1_{\text{loc}}(B_1)$ and $D^2\psi = \text{adj}\sigma + q\mathbb{I}$ a.e in B_1 .

 ${\bf 2}^\circ$ Recall that the Legendre-Fenchel transformation ψ^* of ψ in $B_{\frac{1}{2}}$ is given by

$$\psi^*(z) = \sup_{y \in B_{\frac{1}{2}}} (z \cdot y - \psi(y)), \qquad z \in \chi_{\psi}(B_{\frac{1}{2}}).$$

Notice that by part $\mathbf{1}^{\circ} \psi$ is strictly convex, hence it can be shown that ψ^* is C^1 in the domain of ψ^* , see Chapter D of [5].

Let us denote $B = B_{\frac{1}{2}}$ and $B^* = \chi_{\psi}(B)$ where χ_{ψ} is the normal mapping of ψ . Notice that B^* is bounded because $\psi \in C^{0,1}(\overline{B_{\frac{1}{2}}})$. Denote $(B^{\varepsilon})^* = \chi_{\psi^{\varepsilon}}(B)$, then $(\psi^{\varepsilon})^*(z), z \in (B^{\varepsilon})^*$ is smooth because ψ^{ε} is C^{∞} . Furthermore from (2.4) we obtain

$$D^2(\psi^{\varepsilon})^* = [D^2\psi^{\varepsilon}]^{-1} = \frac{1}{\det D^2\psi^{\varepsilon}}(\sigma^{\varepsilon} + q\mathbb{I})$$

or equivalently

$$\partial_{ij}(\psi^{\varepsilon})^{*} = \frac{\sigma_{ij}^{\varepsilon} + q\delta_{ij}}{\det \operatorname{adj}\sigma + q^{\varepsilon}\operatorname{Tr}\sigma^{\varepsilon} + (q^{\varepsilon})^{2}} \\ \leq \frac{1}{q^{\varepsilon}} \frac{\sigma_{ij}^{\varepsilon} + q\delta_{ij}}{\frac{1}{q^{\varepsilon}} + \operatorname{Tr}\sigma^{\varepsilon} + q^{\varepsilon}} \\ \leq \frac{1}{q^{\varepsilon}} \leq 1, \qquad i = j$$

if we assume that $q^{\varepsilon} \geq 1$, see Remark 2.2.

As for $i \neq j$, we use Lemma 4.1 to conclude

$$|\sigma_{12}^{\varepsilon}| \le \sqrt{\sigma_{11}^{\varepsilon} \sigma_{22}^{\varepsilon} - 1} \le \sqrt{\sigma_{11}^{\varepsilon} \sigma_{22}^{\varepsilon}} + 1 \le \frac{\sigma_{11}^{\varepsilon} + \sigma_{22}^{\varepsilon}}{2} + 1.$$

Thus $|D^2(\psi^{\varepsilon})^*| \leq C$ uniformly in ε .

Next, we extend $(\psi^{\varepsilon})^*$ to B_R by the formula $\sup_{z \in B_R} (y \cdot z - \psi^{\varepsilon}(y))$ with $z \in B_R$ and $R = \sup_{\varepsilon} \|\nabla \psi^{\varepsilon}\|_{L^{\infty}(B_{\frac{1}{2}})}$. Thus in B_R we have a sequence of convex functions $(\psi^{\varepsilon})^*$ with uniformly bounded Hessian matrices. By a customary compactness argument we can show that for at least a subsequence we have $(\psi^{\varepsilon_j})^* \to \overline{\psi}$ for some convex function $\overline{\psi}$. It remains to show that $\psi^* = \overline{\psi}$ in B^* .

From the definition of $(\psi^{\varepsilon})^*$ we have that $(\psi^{\varepsilon})^*(z) + \psi^{\varepsilon}(y) \ge y \cdot z$ and after passing to the limit we obtain $\overline{\psi}(z) + \psi(y) \ge y \cdot z$ implying that $\overline{\psi}(z) \ge \psi^*(z)$. To get the converse inequality we use the uniform convergence

$$\overline{\psi}(z) \longleftarrow (\psi^{\varepsilon})^{*}(z) = \sup_{y \in B} (y \cdot z - \psi^{\varepsilon}(y)) \le \sup_{y \in B} (y \cdot z - \psi(y)) + \sup_{y \in B} |\psi(y) - \psi^{\varepsilon}(y)| \longrightarrow \psi^{*}(z).$$

This completes the proof.

Remark 7.2. At each point $z \in intB^*, B^* = \chi_{\psi}(B_{\frac{1}{2}})$ we can define the lower Gauss curvature [9]

$$\underline{\omega}^*(z_0) = \liminf_{r \to 0} \frac{|\chi_{\psi^*}(B_r(z_0))|}{|B_r(z_0)|}.$$

If there is a constant m > 0 such that $\underline{\omega}^*(z_0) \ge m > 0$ for a.e. $z_0 \in B^*$ then σ and q are bounded in $B_{\frac{1}{2}}$. In particular this will imply that u is Lipschitz in $u^{-1}(B_{\frac{1}{2}}) \subset \Omega$.

8. Proof of Theorem B

The part $\mathbf{1}^{\circ}$ follows from change of variable formula [10] and Theorem A. To prove part $\mathbf{2}^{\circ}$ we employ the duality principle of \mathbf{u} and its inverse $\mathbf{v} = \mathbf{u}^{-1}$ in [6], i.e. \mathbf{v} is a local minimizer of the dual problem in the image domain $\Omega^{\star} = \mathbf{u}(\Omega)$. Hence we can apply Theorem A to the pair (\mathbf{v}, P) where $\mathbf{v} = \mathbf{u}^{-1}$. Thus, there is a convex function η^{ε} such that $D^2\eta^{\varepsilon} = \operatorname{adj}\widetilde{\sigma}^{\varepsilon} + Q^{\varepsilon}\mathbb{I}$ where

$$\widetilde{\sigma}_{ij}(z) = \sum_{m} v_m^i(\mathbf{v}^{-1}(z)) v_m^j(\mathbf{v}^{-1}(z)), \qquad z \in \Omega$$

and $\tilde{\sigma}^{\varepsilon} = \tilde{\sigma} * \rho_{\varepsilon}$ and Q^{ε} are the mollifications of $\tilde{\sigma}$ and Q respectively. Note that $Q(\mathbf{v}(z)) = P(z), z \in \Omega$. In particular, for any $B_r(x_0) \subset B_1 \subset \Omega$ we have

$$\int_{B_{r}(x_{0})} |\nabla \mathbf{u}(x)|^{2} dx = \int_{B_{r}(x_{0})} \operatorname{Tr} \widetilde{\sigma}_{ij}(x) dx$$
$$= \int_{B_{r}(x_{0})} \Delta \eta^{\varepsilon} - 2Q^{\varepsilon}$$
$$\leq \int_{B_{r}(x_{0})} \Delta \eta^{\varepsilon}$$
$$= \int_{\partial B_{r}(x_{0})} \nabla \eta^{\varepsilon} \cdot \nu$$
$$\leq Cr$$

with some tame constant C depending on the Lipschitz norms of η^{ε} , which is bounded by Lemmas 3.2 and 3.1. Now the result follows from Morrey's estimate.

References

- Ball J., Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Analysis. 63, 337– 403 (1977)
- [2] Chaudhuri N., Karakhanyan A.L., On derivation of Euler-Lagrange Equations for incompressible energy-minimizers. Cal. of Variations and PDE, 36, no. 4 (2009), 627–645.
- Fujiwara D., Morimoto H., An L_r-theorem of the Helmholtz decomposition of vector fields, Tokyo Univ. Fac. Sciences J. 24 (1977), 658–700
- [4] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984

ARAM L. KARAKHANYAN

- [5] Hiriart-Urruty J.B., Fundamentals of Convex Analysis, 2001.
- [6] Karakhanyan A.L., Sufficient conditions for regularity of area-preserving deformations, Manutscripta Math. 138 (2012), 463-476
 [7] Is Dept H. Constituting laws and existence sugging in incomposible configure electricity. Journal of Electricity.
- [7] le Dret H., Constitutive laws and existence questions in incompressible nonlinear elasticity, Journal of Elasticity, Volume 15, Issue 4, (1985), 369–387
- [8] LeTallec P., Oden J.T., Existence and characterization of hydrostatic pressure in finite deformations of incompressible elastic bodies, Journal of Elasticity, Volume 11, Issue 4, (1981), 341–357
- [9] Pogorelov A.V., Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs. volume 35, AMS, Providence, Rhode Island, 1973
- [10] Šverák V., Regularity properties of deformations with finite energy. Archive for Rational Mechanics and Analysis. (1988), 105–127
- [11] Urbas J., Regularity of generalized solutions of Monge-Ampre equations. Math. Z. 197 (1988), no. 3, 365393.

SCHOOL OF MATHEMATICS, MAXWELL INSTITUTE *E-mail address:* aram.karakhanyan@ed.ac.uk