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Abstract. In this paper we are concerned with the regularity of weak solutions u to the one phase

continuous casting problem

div (A (x)∇u(X)) = div [β(u)v(X)] , X ∈ CL

in the cylindrical domain CL = Ω × (0, L) where X = (x, z), x ∈ Ω ⊂ RN−1, z ∈ (0, L), L > 0

with given elliptic matrix A : Ω → RN2
, Aij(x) ∈ C1,α0 (Ω), α0 > 0, prescribed convection v,

and the enthalpy function β(u). We first establish the optimal regularity of weak solutions u ≥ 0

for one phase problem. Furthermore, we show that the free boundary ∂{u > 0} is locally Lipschitz

continuous graph provided that v = eN , the direction of xN coordinate axis and ∂zu ≥ 0. The latter

monotonicity assumption in z variable can be easily obtained for a suitable boundary condition.

1. Introduction

In this article we study the optimal regularity of weak solutions to the stationary Stefan problem, with

prescribed convection, and the smoothness of free boundary. There are a number of phase transition

problems in applied sciences that are encompassed by this mathematical model, among which is the

thawing or freezing of the water where the liquid part is in motion, for more details we refer to [4], [1]

Chapter 10.7, [11].

In general setting the convection term v is to be determined from a Navier-Stokes system [4], however

in this paper we assume that v is given. Furthermore, in the study of regularity of free boundary

we will consider constant convection vector v and take f = 0, [11]. The phase transition problems

with prescribed convection is called the continuous casting problem, and appears for instance in metal

production [11] page 32.

Here we focus on a model anisotropic stationary problem with uniformly elliptic matrix Aij(x) with

C1,α, α > 0 regular entries which are independent of ”height” variable z.

2. Problem set up

We now turn to the mathematical formulation of the problem. Let Ω ⊂ RN−1 be a bounded Lipschitz

domain. Let L > 0 and set CL = Ω× (0, L). The points in CL will be denoted by X = (x, z), where x ∈ Ω

and z ∈ (0, L). The partial derivatives of a function u : CL → R are denoted by ∂xiu, ∂zu, i = 1, . . . , N−1.
Sometimes we will write ∂iu or ui instead of ∂xiu for short.
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In this paper we study the following boundary value problem


div (A(x)∇u) = ∂zβ(u) + f in CL,{

u(x, 0) = 0 on Ω× {0},
u(x,L) = m > 0 on Ω× {L},

u(X) = g(X) on ∂Ω× (0, L),

(2.1)

where m > 0 is a positive constant, g ∈ H1(CL) such that g’s trace vanishes on Ω×{0} and equals m > 0

on Ω× {L}, β is the enthalpy defined by (2.3), a > 0 is a constant

The equation

div(A∇u) = div[βv] + f,(2.2)

emerges in the steady state heat transfer problems in anisotropic media in the presence of convection.

Here A is the anisotropic thermal conductivity, ρ is the density, v the prescribed convection, f accounts

for sources or sinks, β the enthalpy defined as

β(s) =


as if s < 0,

∈ [0, 1] if s = 0,

as+ 1 if s > 0.

(2.3)

For more background on this problem see [10]. It follows from (2.2) that u satisfies

We will be also interested in the local behaviour of weak solutions of

(2.4) div (A(x)∇u) = ∂zβ(u) + f in CL.

with convection v being the constant vector eN = (0, 0, . . . , 0, 1).

Throughout this paper we make the following hypotheses on the matrix A:

(2.5)

A1 A : Ω→ RN2

,

A2 λ|ζ|2 ≤ Aijζ
iζj ≤ Λ|ζ|2, λ,Λ > 0,

A3 A ∈ C1,α0(Ω), α0 > 0.

In other worlds A is independent of z variable, uniformly elliptic with C1,α0 continuous entries.

Proposition 1. Let g ∈ H1(CL) such that g’s trace vanishes on Ω× {0} and has constant value m > 0

on Ω× {L}. Then there exists a weak solution u ∈ H1(CL) of (2.1). Moreover, if g ∈ C0,1(CL) and the

resulted solution is α−Hölder continuous in CL for any α ∈ (0, 1).

Proof. The proof, which we briefly sketch here, is standard and is based on penalisation method [3],

[5]: for any ε > 0 we consider the boundary value problem

 div(A(x)∇uε(x)) = ∂z
(
auε + ℓ

2

(
1 + tanh uε

ε

))
in CL,

uε = g on ∂CL.
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From (2.5) it follows that there is unique uε ∈ H1(Ω) ∩ C2,α(CL) for some α ≤ α0. Furthermore, if one

multiplies this equation by uε − g then after standard manipulations we can get

λ

ˆ
CL

|∇uε|2 ≤
ˆ
CL

∇uεA∇uε =

ˆ
CL

∇gA∇uε +

(
auε +

ℓ

2

(
1 + tanh

uε

ε

))
(uε − g)z

≤ δ

ˆ
CL

|∇uε|2 + 1

δ

ˆ
CL

|∇g|2 + a

2

ˆ
CL

∂z(u
ε)2 +

ℓ

2
(1 + tanh

uε

ε
)∂zu

ε

−
ˆ
CL

auεgz −
ˆ
CL

ℓ

2
(1 + tanh

uε

ε
)gz

≤ 2δ

ˆ
CL

|∇uε|2 + 1

δ

ˆ
CL

(|∇g|2 + ℓ2) +
a

2
|Ω|m2

−a
ˆ
Ω

m2 + a

ˆ
CL

uε
zg + ℓ

ˆ
CL

gz.

Hence, choosing δ > 0 small enough and after rearranging the terms we get

ˆ
CL

|∇uε|2 ≤ C
(
a|Ω|m2 +

ˆ
CL

(g2 + |∇g|2 + ℓ2)

)
with some tame constant C independent of ε. From here and Poincaré’s inequality [6] we get the uniform

estimate ∥uε∥H1(CL) ≤ C. After passing to the limit one can readily verify that the limit function u

solves the equation LAu = auz + ηz in the weak sense and η takes values only in the interval [0, ℓ]. The

Hölder continuity follows from the standard DeGiorgi type estimates. �

Proposition 2. Let u ∈ H1(CL) be a weak solution of LAu = ∂zη in CL and η ∈ β(u) and u⋆ ∈ H1(CL)
is a weak supersolution LAu

⋆ ≤ ∂z(η⋆) with η⋆ ∈ β(u⋆). Suppose that for some ρ > 0 we have

(2.6) |u|+ |u⋆| ≥ ρ in Ω× (L− ρ, L).

If u⋆ ≥ u on ∂CL then u⋆ ≥ u in CL.

For reader’s convenience I will give the proof of Proposition 2, which is similar that of [3] with slight

amendments due to the anisotropy of A in the last section of the paper. Note that (2.6) is necessary for

Proposition 2 to hold, see [3].

Corollary 1. Retain the conditions of Proposition 1 and assume further that there is c0 > 0 such that

(2.7) lim inf
z→z0

g(x, z)− g(x, z0)
z − z0

≥ c0, ∀x ∈ ∂Ω, z, z0 ∈ [0, L].

Then u is monotone in z direction and ∂{u > 0} is Cα graph over Ω.

The proof of Corollary 1 follows from Proposition 2 and (2.7) and can be found in [3]. It is worth

noting that the method in [3] gives the same degree of regularity for both the solution in CL and the

free boundary on Ω. Unfortunately, the best global regularity for u one can expect, under condition

of Proposition 2 is log-Lipschitz. On the other hand the best local regularity of u that is Lipschitz

continuity, see Theorem 1. However, in local outset the strong monotonicity of u in z−variable does not

follow immediately and some delicate analysis is required in order to obtain the strong monotonicity of

u in the subdomains of CL.
Now we formulate our main results.
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Theorem 1. Let u be a non-negative bounded weak solution to (2.2). Then u is locally Lipschitz con-

tinuous in CL, provided that v ∈ L∞(CL,RN ) and f ∈ C(CL).

The local regularity for two phase problem is discussed in [8], and [9]. As for the regularity of free

boundary, our main result here states that if u is a Lipschitz continuous solution of (2.2) and ∂zu ≥ 0,

then the free boundary is a locally Lipschitz continuous graph in z−direction.

Theorem 2. Let u be a nonnegative weak solution to (2.1) in CL such that u is nondecreasing in

z−direction. Then for any subdomain D ⊂ CL, Γ(u) = ∂{u > 0} ∩ D is locally a Lipschitz graph in

eN−direction.

Before entering into the details of the proof we would like to highlight the main ideas in the proof of

Theorem 2. First we establish the non-degeneracy of u. Then it will be seen that ∂zu ≥ 0 implies strong

monotonicity ∂zu ≥ c0 > 0, for some c0 = c0(D), locally for any subdomain D ⊂⊂ CL. Combining this

with the Lipschitz continuity of u the proof will follow.

The paper is organised as follows: In Section 3 we prove the local optimal regularity of the weak

solutions of (2.2). In Section 4 we introduce Baiocchi’s transformation w of u which allows us to retrieve

the non-degeneracy of u form that of w, which solves an obstacle like problem. The non-degeneracy of

u, established in Section 5,, is crucial in our analysis, especially in the proof of strong monotonicity in

z−variable, see Proposition 3. The proof of the main regularity result for free boundary is contained in

Section 6. Finally, last section contains the proof of comparison principle, Proposition 2.

3. Optimal Growth

By Proposition 1, u is bounded. Moreover the weak solutions of (2.2) are continuous for u solves the

divergence form equation div(A∇u) = divF+ f in CL, where one can take f = vβ ∈ L∞(CL,RN ). Thus

the continuity of u follows from DeGiorgi’s estimates. In fact, from the proof of Proposition 1 one sees

that if f is sufficiently regular u is α-Hölder continuous for any positive α < 1. This means that {u > 0}
is open.

3.1. Proof of Theorem 1. As it is pointed out in [7], it is enough to show that for any compact set

K ⊂⊂ CL there exists a tame constant C, depending on dist(K, ∂CL) such that

sup
B

2−k−1 (X)

u ≤ max

(
C2−k, sup

B
2−k (X)

u

)
, ∀X ∈ K ∩ ∂{u > 0}.

Assume that this inequality is false. Then there exist a sequence of weak solution uj such that

0 ≤ uj ≤M for some fixed constant M > 0, a sequence {kj} ⊂ N,Xj ∈ K ∩ ∂{uj > 0} and there holds

sup
B

2
−kj−1 (X)

uj > max

j2−kj ,
1

2
sup

B
2
−kj

(Xj)

uj

 .(3.1)

Define the scaled functions vj(X) =
uj(Xj + 2−kjX)

Sj
, where Sj = sup

B
2
−(kj+1) (Xj)

u. It follows from (3.1)

that

vj(0) = 0, sup
B 1

2

vj ≥
1

2
, 0 ≤ vj(X) ≤ 2, X ∈ B1.(3.2)

Since the weak solutions uj are bounded it follows from (3.1) that M > j2−kj implying that kj →∞.
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According to (2.2), vj solves the following equation

div(A(Xj + 2−kjX)∇vj) =
2−2kj

Sj
(LAuj)(Xj + 2−kjX)

=
2−kj

Sj
div[β(vj)v(Xj + 2−kjX)] + fj

≡ divFj + fj ,

where Fj = 2
−kj

Sj
β(vj)v(Xj + 2−kjX), fj = 2

−2kj

Sj
f(Xj + 2−kjX). From v ∈ L∞(CL,RN ) we obtain,

using (3.1), definition of Sj and (2.3), the inequality

|Fj | ≤
2−kj

Sj
β(2) sup |v| ≤ M

j
β(2) sup |v| → 0.

Similarly we obtain sup
B1

|fj(X)| → 0.

From the Caccioppoli inequality it follows that {vj} is bounded in H1(B 3
4
). Furthermore, utilizing

(3.2) and DeGiorgi’s theorem for inhomogeneous divergence form elliptic operators, we infer that the

sequence {vj} is uniformly Hölder continuous in B3/4. Now employing a customary compactness argu-

ment and the estimates for {Fj} and {fj}, we can extract a subsequences jm such that Xjm → X0,

{vjm} ⊂ {vj} which uniformly converges to some v0 in B 3
4
and weakly in H1(B 3

4
). Moreover, it follows

that

−
ˆ
A(X0)∇v0∇φ←− −

ˆ
A(Xj + 2−kjX)∇vjm∇φ =

ˆ
fjmφ− Fjm ·Dφ −→ 0, ∀φ ∈ C∞

0 (B 3
4
).

Thus v0 ∈ H1(B 3
4
) is a nonnegative continuous solution of div(A(X0)∇v0) = 0 in B 3

4
. On the other

hand, it follows from uniform convergence vjm → v0 that (3.2) translates to v0 and we have v0(0) = 0

and sup
B 1

2

v0 = 1
2
. However this is in contradiction with the strong maximum principle and the proof

follows. �

4. Baiocchi’s transformation and its properties

In this section we study the weak solutions u of the continuous casting problems which are monotone

in z variable, i.e. ∂zu ≥ 0. The monotonicity in z variable can be achieved for a suitable choice of

boundary data [3], see (2.7).

We establish the key estimate for weak solutions of (2.2), which will be used in the proof of Theorem

2. Our first lemma is of technical nature linking u with the solution of obstacle problem via Baiocchi’s

transformation. Recall that Baiocchi’s transformation w of u is defined by

(4.1) w =

ˆ z

0

u(x, s)ds ≥ 0, ∂zw = u.

From definition it follows that w is convex in z variable provided that ∂zu ≥ 0.

Lemma 1. Let u ∈ H1(CL) be a weak solution of (2.1). Then the Baiocchi transformation w given by

(4.1) verifies the equation

div(A∇w) = au+ ℓχ{u>0}.
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Proof. By direct computation we have

div(A∇w) =
N∑

ij=1

∂xi(Aij(x)∂xjw(X))

=

N−1∑
i=1

N∑
j=1

∂xi(Aij(x)∂xjw(X)) +

N∑
j=1

ANj(x)wNj(X)

=

N−1∑
ij=1

∂xi

(
Ai,j(x)

ˆ z

0

∂xju(x, s)ds

)
+

N−1∑
i=1

AiN (x)uxi(X) +

N∑
j=1

ANj(x)wNj(X)

=

N−1∑
i,j=1

ˆ z

0

∂xi

(
Aij(x)∂xju(x, s)ds

)
+

N−1∑
i=1

AiN (x)uxi(X) +

N∑
j=1

ANj(x)uxj (X)

=

ˆ z

0

N−1∑
ij=1

∂xi [Aij(x)∂xju(x, s)]ds+

+

N−1∑
i=1

AiN (x)uxi(X) +

N∑
j=1

ANj(x)uxj (X)

=

ˆ z

0

N∑
ij=1

∂xi [Aij(x)∂xju(x, s)]ds−

−
ˆ z

0

N−1∑
i=1

∂xi(AiN (x)∂xNu(x, s))ds−
ˆ z

0

N∑
j=1

∂xN (ANj(x)∂xju(x, s))ds

+

N−1∑
i=1

AiN (x)uxi(X) +

N∑
j=1

ANj(x)uxj (X).

The first term is
´ z

0
LAu(x, s)ds = au + ℓχ{u>0}. It remains to combine the second and fourth line in

the computation in order to obtain

div(A(x)∇w) = au+ ℓχ{u>0} −

−
ˆ z

0

{
N−1∑
i=1

∂2
xixN

(AiN (x)u(x, s)) +
N∑

j=1

∂xN (ANj(x)∂xju(x, s))

}
ds

+

N−1∑
i=1

AiN (x)uxi(X) +

N∑
j=1

ANj(x)uxj (X)

= au+ ℓχ{u>0},

where to get the second line we used ∂xNAij = ∂zAij = 0. Now the proof is complete. �

Lemma 2. Let D ⊂ CL be a fixed subdomain such that dist(D, ∂CL) > 0 and w be a bounded solution of

div(A(x)∇w) = β(u)

in BR(X0) ⊂ D with X0 ∈ ∂{u > 0}. Then there is a universal constant C that depends on dist(D, ∂CL)
and data such that

(4.2) sup
B

2−k−1 (X0)

w ≤ max

(
C

22k
,
1

4
sup

B
2−k (X0)

w

)

for all R < 1
2k

.
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Proof. Suppose that (4.2) fails. Then there is a sequence kj such that

(4.3) sup
B

2
−kj−1 (Xj)

w > max

 j

22kj
,
1

4
sup

B
2
−kj

(Xj)

w

 .

Using the same reasoning as in Theorem 1 we conclude from (4.3) that the scaled functions wj(X) =
w(Xj+rjX)

S(kj+1)
has the properties

wj(0) = 0, sup
B 1

2

wj ≥
1

4
, 0 ≤ wj(X) ≤ 4, X ∈ B1,(4.4)

where rj = 2−kj and S(kj + 1) = sup
B

2
−kj−1 (Xj)

w. Furthermore, wj solves the equation

div(Ãj(x)∇wj(X)) =
r2j

S(kj + 1)
β(u(Xj + rjX)) in B1

with scaled matrix Ãj(X) = A(Xj +rjX), X ∈ B1. From (4.3) we see that
r2j

S(kj+1)
< 1

j
. Thanks to (2.3)

and Proposition 1 0 ≤ u ≤ M for some M > 0, hence |β(u(Xj + rjX))| ≤ aM + ℓ which implies that

the functions fj(X) =
r2j

S(kj+1)
β(u(Xj + rjX)) strongly converges to zero in B1 as j →∞. Applying the

standard Caccioppoli inequality we obtainˆ
B 7

8

|∇wj |2 ≤ C
ˆ
B1

(w2
j + f2

j )

with C depending only on N,λ,Λ. Thus we have the uniform estimate for H1 norm ∥wj∥H1(B 3
4
) ≤√

C(16 + (aM + ℓ)2). Furthermore, from DeGiorgi’s estimates it follows that ∥wj∥Cγ(B 3
4
) are uniformly

bounded for some γ > 0. Using a customary compactness argument we can extract a subsequence

{wjm} ⊂ {wj} such that

(i) wjm ⇀ w0 weakly in H1(B 7
8
) for some function w0 ∈ H1(B 7

8
),

(ii) wjm → w0 uniformly in B 3
4
,

(iii) Ãjm → Ã0 uniformly in B1, where Ã0 is a constant uniformly elliptic matrix,

(iv) div(Ã0∇w0) = 0 in B 3
4
.

Recalling (4.4) and utilizing (i)-(iv) we see that that w0 is a non-negative, non-zero Ã0-harmonic

function in B3/4 such that w0(0)=0, which however is in contradiction with the maximum principle. The

proof is complete. �
We close this section by proving the non-degeneracy of w.

Lemma 3. Let u be a weak solution of (2.2) such that ∂zu ≥ 0. Then for any D ⊂ RN there is a

positive constant r0 = r0(D) < min
(
dist(D, ∂CL), Λ

N∥A∥
C0,1

)
such that for the Biaocchi transformation

there holds

sup
Br(X0)

w ≥ ℓ

8NΛ
, for any X0 ∈ {w > 0} ∩D.

Proof. From Lemma 1 we know that LAw = awz+ℓχ{w>0} = au+ℓχ{u>0}. Moreover, if ∂zu ≥ 0 then

the positivity sets of u and w are equal, i.e. {X ∈ CL, u(X) > 0} = {X ∈ CL, w(X) > 0}. Otherwise, if we

drop the monotonicity condition ∂zu ≥ 0 then the inclusion {X ∈ CL, u(X) > 0} ⊂ {X ∈ CL, w(X) > 0}
is always true. Hence we conclude that

LAw = au+ ℓχ{w>0}.
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We want to show that sup
∂Br(X0)

w ≥ C0R
2 for X0 ∈ {w > 0}, where C0 = ℓ

8NΛ
. If this inequality

fails then η(X) = w(X) − C0|X −X0|2 < 0 for X ∈ ∂Br(X0) ∩ {w > 0}. On the other hand η ≤ 0 on

Br ∩ ∂{w > 0}. Furthermore, in BR(X0) ∩ {u > 0} we have

LAη = LAw − 2C0TrA− 2C0∂iAij(X
i −Xi

0)

≥ au+ ℓ− 2C0TrA− 2C0N
2R∥A∥C0,1

≥ ℓ− 2C0N (Λ +NR∥A∥C0,1)

≥ ℓ− 4C0NΛ

provided that R ≤ Λ
N∥A∥

C0,1
. Thus, recalling C0 = ℓ

8NΛ
we conclude that LAη ≥ ℓ

2
> 0. Applying the

maximum principle to η we get η < 0 in Br(X0)∩{w > 0}. From η < 0 we also see that that w(X0) < 0

which is a contradiction. �

5. Non-degeneracy of u

Now we turn to the non-degeneracy of weak solution u to the continuous casting problem.

Lemma 4. Let w be as in Lemma 1 such that ∂zu ≥ 0. Let D ⊂ CL be a fixed subdomain such that

dist(D, ∂CL) > 0. Then there are two constant C1 > 0 and R0 > 0 that depends only on dist(D, ∂CL)
and the data such that for any BR(X0) ⊂ D,X0 ∈ ∂{u > 0} there holds

(5.1) sup
∂BR(X0)

wz ≥ C1R.

Proof. Recall that LAw = au+ ℓ in {w > 0} and LAu = a∂zu in {u > 0}. Therefore

sup
BR(X0)

wz = sup
BR(X0)

u = sup
∂BR(X0)

u.

Furthermore, {u > 0} = {w > 0}.
The proof of (5.1) is by contradiction. Suppose that for some fixed D ⊂ CL with dist(D, ∂CL) > 0

there are Rj > 0, Xj ∈ D ∩ ∂{u > 0} such that

sup
BRj

(Xj)

u = sup
BRj

(Xj)

wz <
Rj

j
.(5.2)

Define

wj(X) =
w(Xj +RjX)

R2
j

, uj(X) =
u(Xj +RjX)

Rj
X ∈ B1.

It follows that wj solves the equation LÃj
wj = aRjuj(X)+ℓχ{uj>0} in B1. Here Ãj(x) = A(Xj +RjX).

Furthermore, wj has the following properties

sup
B 1

2

wj ≥
C0

4
, ∥wj∥C1,1 ≤ C, uj(0) = wj(0) = 0, sup

B1

uj ≤
1

j
, ∥uj∥C0,1(B1)

≤ C(5.3)

where C is independent of j and C0 = ℓ
8NΛ

, see Lemma 3. Using a standard compactness argument we

can extract a subsequence {jm} such that

(i) wjm ⇀ w0 weakly in H1(B1) for some function w0 ∈ H1(B1),

(ii) wjm → w0 uniformly in B1,

(iii) Ãjm → Ã0 uniformly in B1, where Ã0 is a constant uniformly elliptic matrix.
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We claim that div(Ã0∇w0) = 0 in B1. Indeed, from (5.2) we infer that χ{uj>0} → 0 almost everywhere.

Thus from Lebesgue’s dominating convergence theorem we get that lim
j→∞

´
B1
χ{uj>0}φ = 0 for any φ ∈

C∞
0 (B1). Therefore w0 is a weak solution of div(Ã0∇w0) = 0 in B1. Moreover, w0 ≥ 0, supB 1

2

w0 ≥ C0
4

and w0(0) = 0, thanks to (5.3). But this is in contradiction with the maximum principle. �

Next, we record some properties of the blow up limits. Recall that the blow up limit of u at X0 is

defined as v0(X) = lim
rj→0

u(X0+rjX)

rj
where X0 ∈ ∂{u > 0} and {rj} is a sequence of positive numbers

tending to zero. Notice that the sequence uj(X) =
u(X0+rjX)

rj
is Lipschitz continuous in view of The-

orem 1, hence by a customary compactness argument one can extract a converging subsequence from

r−1
j u(X0 + rjX) for any sequence {rj}, rj → 0. It is worthwhile to point out that v0 solves the equation

div(A(X0)∇v0) = ℓ∂z(H(v0)) in RN .

Lemma 5. Let v0 ≥ 0, v0(0) = 0 be a blow up limit of u. Then v0 is non-degenerate, i.e. for any

bounded domain D ⊂ RN there exists cD > 0 such that

(5.4) sup
Br(X0)

v0 ≥ cDr, ∀X0 ∈ ∂{u > 0} ∩D,Br(X0) ⊂ D.

Proof. It is enough to notice that sup
Bs

u(X0+rjX)

rj
≥ C1 for a fixed s > 0 and small rj . To see this one

needs to apply Lemma 4 and use a customary compactness argument. �

Corollary 2. Let v0 be as in Lemma 5, then there is a constant CD such that 
Br(X0)

v20 ≥ CDr
2, ∀X0 ∈ ∂{u > 0} ∩D,Br(X0) ⊂ D.

Proof. If not then there existXj ∈ ∂{v0 > 0}∩D and a sequence 0 < rj ↓ 0 such that
ffl
Brj

(Xj)
v20 ≤ 1

j
.

Set vj(X) = r−1
j v0(Xj + rjX), then clearly  

B1

v2j ≤
1

j
.

Since ∇vj(X) = ∇v0(Xj + rjX) and v0 is Lipschitz, it follows from Arzelà-Ascoli theorem that there

exists a subsequence jk such that vjk(X) → V (X) uniformly in B1 for some function V . In particularffl
B1
V 2 = 0. However this contradicts the non-degeneracy of v0, Lemma 4, because

sup
B1

vj =
1

rj
sup

Brj
(Xj)

v0 ≥ cD > 0.

�

Corollary 3. Let v0 be as in Lemma 4. Then there exists C′
D > 0 such that 

Br(X0)

|∇v0|2 ≥ C′
D > 0, ∀X0 ∈ ∂{v0 > 0} ∩D, Br(X0) ⊂ D.

Proof. We argue as in the proof of the previous Corollary. Thus there are Xj ∈ ∂{v0 > 0} ∩D and

0 < rj ↓ 0 such that
ffl
Brj

(Xj)
|∇v0|2 ≤ 1

j
. Put vj(X) = r−1

j v0(Xj + rjX) then it follows that

 
B1

|∇vj |2 ≤
1

j
,

because ∇vj(X) = (∇v0)(Xj + rjX), thus in particular the sequence {vj} is uniformly Lipschitz contin-

uous in B1. By a customary compactness argument we can extract a subsequence jk such that vjk → V

uniformly in B1 and ∇vjk ⇀ ∇V weakly in B1.
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By the semicontinuity of Dirichlet integral we get

0 = lim inf
k→∞

ˆ
B1

|∇vjk |
2 ≥

ˆ
B1

|∇V |2

implying that V ≡ 0 in B1 (recall that v0(Xj) = 0 which translates to vjk(0) = 0). But this contra-

dicts the non-degeneracy of v0, see (5.4), because 1
rj

supBrj
(Xj)

v0 = supB1
vj ≥ cD and by uniform

convergence this yields supB1
V ≥ cD. �

We close this section by giving an application of Corollary 3, see [2]. It provides a rough estimate for

the measure of a neighbourhood of free boundary and will be used in the proof of strong monotonicity

of u in the next section.

Lemma 6. Let v0 be as in Lemma 5. Then there is a tame constant C > 0 such that for any R, and

small σ, 0 < σ < R the following inequality holds

|{0 < v0 < σ} ∩BR| ≤ CσRN−1.

Proof. Let σ > 0 be fixed and 0 < t < σ < R. Let vσ,t = max
(
min (v0, σ) , t

)
. Recalling that

div(A(X0)∇v0) = ℓ∂zH(v0) we see that div(A(X0)∇v0) = 0 in {v0 > 0}. Applying Green’s formula we

get

0 =

ˆ

BR

vσ,tLA(X0)v0 =

ˆ

∂BR

vσ,t(A(X0)∇v0)ν −
ˆ

BR∩{t<v0<σ}

(A(X0)∇v0)∇v0.

Notice that t < vσ,t ≤ σ and v0 is Lipschitz continuous, thereby

λ

ˆ

BR∩{t<v0<σ}

|∇v0|2 ≤

∣∣∣∣∣∣∣
ˆ

∂BR

vσ,t(A(X0)∇v0)ν

∣∣∣∣∣∣∣ ≤ CΛσRN−1.

Sending t to zero we conclude

(5.5)

ˆ

BR∩{0<v0<σ}

|∇v0|2 ≤ CσRN−1.

Next, we define the maximal distance of {v0 = σ} from ∂{v0 > 0}, i.e. d = sup
Z∈∂{v0>0}

dist(Z, {v0 =

σ}∩BR). Let us show that d ≤ Cσ. To see this we make a use of the non-degeneracy of v0 in Bd(Z)(Z),

where d(Z) = dist(Z, {v0 = σ}), Z ∈ ∂{v0 > 0}. Thus by (5.4) sup
Bd(Z)(Z)

v0 ≥ cDd(Z). On the other

hand Bd(Z)(Z) ∩ {v0 > 0} ⊂ {0 < v0 < σ}, hence sup
Bd(Z)(Z)

v0 ≤ σ and d(Z) ≤ σ
cD
≡ Cσ for any

Z ∈ ∂{v0 > 0} ∩BR.

This, in particular, yields {0 < v0 < σ} ∩ BR ⊂ B2Cσ(Γ0) where Γ0 = ∂{v0 > 0} and B2Cσ(Γ0) is

the 2Cσ neighborhood of the free boundary Γ0. Observe that by Sard’s theorem {v0 = σ} is smooth for

almost every σ > 0.

Now let us consider a Besicovitch type covering
∪

iBri(Zi), Zi ∈ ∂{v0 > 0} of the free boundary such

that the balls have finite overlapping. Applying Corollary 3 we obtain
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C′
D|{0 < v0 < σ}| ≤ C′

D

∑
j

rNj(5.6)

≤
∑
j

ˆ

Brj
(Zj)

|Dv0|2

≤ C(N)

ˆ

B4Cσ(Γ0)
∩
{v0>0}

|Dv0|2.

By Lipschitz continuity, Theorem 1, v0(X) ≤ 4Cσ∥Dv0∥∞ for any X ∈ B4Cσ(∂{v0 > 0})
∩
{v0 > 0}.

Thereby

(5.7) B4Cσ(∂{v0 > 0})
∩
{v0 > 0} ⊂ {0 < v0 < 4Cσ∥Dv0∥∞} .

Combining (5.6), (5.7) and (5.5) we get

|{0 < v0 < σ} ∩BR| ≤ CσRN−1

and we arrive at the desired inequality. �

6. Lipschitz regularity of free boundary

Now we are ready to demonstrate the strong monotonicity of u in the z−direction.

Proposition 3. Let u be the weak solution to (2.1) such that (5.4) holds. Then there exist c1 > 0 such

that we have

(6.1) inf
X∈D∩Γ

 lim inf
Y →X∈Γ
Y ∈{u>0}∩D

∂zu(Y )

 ≥ c1 > 0, D ⊂⊂ CL.

Proof. The proof is by contradiction. Suppose that (6.1) fails, then there are points Xj ∈ D∩Γ such

that lim inf
Y →Xj

∂zu(Y ) < 1
j
and there exists Yj ∈ {u(X) > 0} such that

(6.2) 0 ≤ ∂zu(Yj) ≤
2

j
, dist(Yj , ∂{u > 0})→ 0.

Let X̃j ∈ ∂{u > 0} be such that the distance ρj
def≡ dist(Yj , ∂{u > 0}) is realized and ρj = |X̃j − Yj |.

Introduce vj(X) =
u(X̃j+ρX)

ρj
where ρj = |X̃j −Xj | and X ∈ B2.

Clearly B1(Ỹj) ⊂ {vj(X) > 0}, with Ỹj =
Yj−X̃j

ρj
and it touches the free boundary of vj at the origin

0 ∈ ∂{vj > 0}, see Figure 1. Moreover, (6.2) implies

(6.3) 0 ≤ ∂zvj(Ỹj) = (∂zu)(Yj) ≤
2

j
.

Notice that ∇vj(X) = (∇u)(X̃j+ρjX), X ∈ B2 and hence by local Lipschitz continuity of u, Theorem

1, we conclude that the functions vj(X) are uniformly Lipschitz continuous in B2.

Next, we claim that vj is uniformly C2 continuous in B 1
2
(Ỹj). Indeed, letting ṽj(ξ) = vj(Ỹj+ξ), ξ ∈ B1

we conclude that ṽj ≥ 0 in B1 and ṽj ∈ C0,1(B1) uniformly. Moreover in B1 ṽj solves the equation

div(A(X̃j + ρjX)∇ṽj(X)) = aρj∂z ṽj(X), a > 0, see (2.3). Thus by (2.5) and Schauder’s estimate

∥ṽj∥C2(B 1
2
) is uniformly bounded. Returning to vj the claim follows.
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O

∂{vj > 0}

vj > 0

B1

2

(Ỹj)

B1(Ỹj)

Ỹj

B2

Figure 1. The structure of the free boundary of vj near the origin.

Thus for any ε > 0 there is δ > 0 such that uniformly in j

(6.4) |∂zvj(X)− ∂zvj(Ỹj)| < ε

whenever |X − Ỹj | < δ. Notice that |∂zvj(Yj)| → 0 by (6.3).

Since Ỹj ∈ B2 and by Arzelà-Ascoli theorem there is a subsequence jk and a function v0 ∈ C2(B2)

such that

Ỹjk → Y0 ∈ B2,

vjk → v0 uniformly in Cα(B2) ∩ C2(B 1
2
(Y0)), ∀α ∈ (0, 1),

B1(Y0) ⊂ {v0(X) > 0},

div(A0∇v0) = ℓ∂zH(v0), in B2,

sup
B1

v0 ≥ cD,

where A0 is some constant positive definite matrix (thanks to condition (2.5)), H is the Heaviside function

and the last inequality follows from (5.4), the definition of vj and the uniform convergence of vjk in B2.

To finish the proof, it remains to establish that v0 ≡ 0 in B2, since then it will contradict the inequality

supB1
v0 ≥ cD.

Let h = ∂zv0, then h ≥ 0 and harmonic in B1(Y0). Moreover by (6.4) |h(X)| ≤ ε whenever |X−Y0| ≤
δ. Thus h(Y0) = 0 and by the strong maximum principle it follows that h = 0 wherever A0−harmonic,

i.e. h = 0 in {v0(X) > 0} implying that

∂zv0(X) = 0, X ∈ {v0 > 0}.

Since div(A0∇v0) = ℓ∂zH(v0) in B2, then for any ψ ∈ C∞
0 (B2) the following identity holdsˆ

B2∩{v0(X)>0}

ℓ∂zψ =

ˆ

B2

ℓH(v0)∂zψ =

=

ˆ

B2

(A0∇v0)∇ψ.
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Let σ > 0 be small, fixed number. Then
ˆ

B2∩{v0(X)>0}

ℓ∂zψ =

ˆ

B2∩{v0(X)≥σ}

ℓ∂zψ +

ˆ

B2∩{0<v0(X)<σ}

ℓ∂zψ.

By Sard’s theorem, ∂{v0 > σ} is smooth for almost every σ. Thus, if necessary, we can take a slightly

different domain D ⊂ B2 such that {u > σ} ∩D has Lipschitz continuous boundary. Thereby applying

Green’s formula
ˆ

B2∩{v0(X)≥σ}

ℓ∂zψ =

ˆ

B2∩∂{v0>σ}

ℓψ

(
eN ·

∇v0
|∇v0|

)
=

ˆ

B2∩∂{v0>σ}

ℓψ
∂zv0
|∇v0|

= 0

for a.e. σ since ∂zv0 = 0 in {v0 > 0} and by Sard’s |∇v0| ̸= 0 on ∂{v0 > σ} for a.e. σ > 0.

Finally utilizing Lemma 6 we infer that
ˆ

B2∩{0<v0(X)<σ}

ℓ∂zψ → 0

as σ → 0. Hence div(A0∇v0) = 0 in B2. Because v0 ≥ 0 and v0(0) = 0 we conclude, again from the

maximum principle, that v0 ≡ 0 in B2 which contradicts to supB1
v0 ≥ cD. �

Remark 3. It is worthwhile to point out that if ∂zu(X0) = 0 for some X0 ∈ {u > 0}, then ∂zu = 0 in

{u > 0}. This follows from (2.5), the maximum principle for ∂zu ≥ 0 and it solves the linear equation

LA∂zu = a∂z(∂zu) with a > 0. Of course, the boundary data and (2.7) prevents this from happening.

Thus ∂zu stays positive away from free boundary.

6.1. Proof of Theorem 2. From Proposition 3 and Theorem 1 we have

u(x2, z2)− u(x1, z1) = [u(x2, z2)− u(x2, z1)] + u(x2, z1)− u(x1, z1)

≥ c1(z2 − z1)− C|x1 − x2| ≥ 0

provided that z2 − z1 ≥ C
c1
|x1 − x2|. Let h(x) = inf{z, u(z, x) > 0} the height function of the free

boundary over x ∈ Ω. Thanks to ∂zu ≥ c1 > 0, h is continuous and the free boundary is a continuous

graph over Ω. Then for small ε > 0 we take z2 = h(x1) + ε + C
c1
|x1 − x2| and z1 = h(x1) + ε. Clearly

z2 − z1 = C
c1
|x1 − x2| and hence u(x2, z2) ≥ u(x1, z1) > 0 because z1 = h(x1) + ε > h(x1). Therefore

h(x2) < z2 = h(x1) + ε+ C
c1
|x1 − x2| or equivalently h(x2)− h(x1) ≤ ε+ C

c1
|x1 − x2|. Swapping x1 and

x2 and letting ε→ 0 the result follows. �

7. Proof of Proposition 2

The proof is very similar to [3] Lemma 2.1, however there are technical complications due to the heat

condition coefficients Aij .

Using ξ ∈ C∞
0 (CL), ξ ≥ 0 in the weak formulation of solution u and supersolution u⋆ we get

ˆ
CL

−(∇u⋆ −∇u)A∇ξ + (η⋆ − η)∂zξ ≤ 0.

After integration by parts we get

(7.1)

ˆ
CL

(u⋆ − u)LAξ + (η⋆ − η)∂zξ −
ˆ
∂CL

(u⋆ − u)(A∇ξ)ν ≤ 0.
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First we show that (A∇ξ)ν ≤ 0 on CL. Take v(X) = ξ(X0 +A(X0)(X −X0)) with X0 ∈ ∂CL \ (∂Ω×
{0} ∪ ∂Ω× {L}). Since v ≥ 0 and v(X0) = 0 it follows

∂νv(X0) = lim
X→X0

−ξ(X0 −A(X0)(X −X0))

|X −X0|
≤ 0.

Notice thatX0−Aνt ∈ CL if t > 0 is small enough thanks to the ellipticity ofA. Thus lim
t→0+

−ξ(X0−Aνt)
t

=

(∇ξAν)(X0) and the claim is proved.

Hence omitting the boundary integral in (7.1) we obtain

(7.2) 0 ≥
ˆ
CL

(u⋆ − u)LAξ + (η⋆ − η)∂zξ −
ˆ
∂CL

(u⋆ − u)(A∇ξ)ν ≥
ˆ
CL

(η⋆ − η)(∂zξ + µLAξ) ≤ 0

where

µ =

{
u⋆−u
η⋆−η

if η⋆ ̸= η,

1 if η⋆ = η.

In order to estimate µ from below we utilize (2.6). If u⋆(X) > 0 for some X then µ(X) = (u⋆ −
u)/(au⋆ + ℓ − η) = 1/a provided that u(X) > 0. If u(X) = 0 then µ(X) ≥ ρ

aρ+ℓ
where ρ is from

the condition (2.6). The estimate for other cases follows by similar reasoning. It also follows that

µ ≤ max(1, 1
a
).

Next, for φ ∈ C∞
0 (CL), φ ≥ 0 consider homogeneous boundary value problem{

µnLAξ
n + ∂zξ

n = −φ in CL
ξn = 0 on ∂CL

where µn is chosen so that
∥∥∥(η⋆ − η)µn−µ√

µn

∥∥∥
L2(CL)

→ 0 and 1
n
≤ µn ≤ 1 + 1

a
. It is possible to construct

{µn} because u, u⋆ ∈ H1(CL) and hence by Sobolev’s embedding theorem η⋆ − η ∈ L2+ε(CL) for some

ε > 0.

Moreover,

∥µn − µ∥L2(CL) ≤ ∥µ
√
µn(u

⋆ − u)∥
L2(CL)

∥∥∥∥ 1µ µn − µ√
µn(u⋆ − u)

∥∥∥∥
L2(CL)

→ 0

thus without loss of generality we assume that µn ≥ ρ
aρ+ℓ

.

Multiplying the equation by LAξ
n we obtain

ˆ
CL

µn(LAξ
n)2 = −

ˆ
CL

(φ+ ξnz )LAξ
n

= −
ˆ
∂CL

φ(A∇ξn)ν +

ˆ
CL

∇φA∇ξn −
ˆ
CL

ξnz (A∇ξn)ν +

ˆ
CL

∇ξnzA∇ξn

= −
ˆ
CL

ξnLAφ+

ˆ
CL

∇ξnzA∇ξn −
ˆ
∂CL

ξz(A∇ξn)ν

= I1 + I2 + I3,

where

I1 = −
ˆ
CL

ξnLAφ, I2 =

ˆ
CL

∇ξnzA∇ξn, I3 = −
ˆ
∂CL

ξz(A∇ξn)ν.

Notice that ξnz = 0 on ∂Ω × (0, L) hence the last integral is I3 = −
´
Ω×{L} ξz(A∇ξ

n)ν. Therefore to

obtain uniform bound on I3 it is enough to estimate the normal derivative of ξn on Ω× {L}.
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As for the remaining two integrals we first set notice that

I2 =

ˆ
CL

∇ξnzA∇ξn =

ˆ
CL

∂z(∇ξnA∇ξn)−
ˆ
CL

∇ξn∂z(A∇ξn)

=

ˆ L

0

ˆ
Ω

∂z(∇ξnA∇ξn)−
ˆ
CL

∇ξn∂z(A∇ξn).

On the other hand from (2.5) and symmetry of A we conclude that

I2 =

ˆ
CL

∇ξnzA∇ξn =
1

2

ˆ
Ω

∇ξn(x, L)A(x)∇ξn(x, L)dx.

And again we see that we only need to estimate the normal derivative of ξn on Ω× {L}.
We first prove uniform C0 bound for ξn in order to estimate I1 and then an estimate for ∂νξ

n on

Ω× {L}.
It is easy to prove that ξn ≥ 0. Indeed, from φ ≥ 0 and the equation Aijξ

n
ij+∂iAijξj+

ξz
µn

= − φ
µn
≤ 0,

it follows from maximum principle that ξn ≥ min∂CL ξ
n = 0. In order to prove upper bound we introduce

b = C − eTz for some constants C, T > 0 to be fixed below. We have

Aijbij + ∂iAijb
n
j +

bz
µn

= −T 2eTzANN − TeTz∂iAiN −
TeTz

µn

= −TeTz

(
TANN + ∂iAiN +

1

µn

)
≤ −Te

Tz

µn

provided that T ≥ N∥A∥
C0,1

λ
which implies TANN+∂iAiN ≥ 0. Next if we take T = max

(
λ−1N∥A∥C0,1 , supCL

|φ|
)

it will follow that LAb +
bz
µn
≤ LAξ

n + ξz
µn

in CL. Finally choosing C = eTL we see that b ≥ ξn on ∂CL
and hence from comparison principle we infer the estimate ξn ≤ b for any n = 1, 2, . . . .

It remains to estimate the normal derivative near Ω × {L}. Take v = ∥φ∥∞
(
1−

(
1− L−z

ρ

)2)
for

some ρ < ρ to be fixed below. In Ω× (L− ρ, L) we have

LAv +
vz
µn

= −2∥φ∥∞
ρ

(
1

ρ
ANN + ∂iAiN

(
1− L− z

ρ

)
+

1

µn

(
1− L− z

ρ

))
≤ −2∥φ∥∞

ρµn

(
1− L− z

ρ

)

provided that ρ ≤ min( λ
N∥A∥

C0,1
, 1). Furthermore, if z ≤ ρ

2
then LAv +

vz
µn
≤ − ∥φ∥∞

ρµn
≤ − φ

µn
. Summa-

rizing we see that LAv+
vz
µn
≤ LAξ

n+
ξnz
µn

in Sρ = Ω×(L− ρ
2
, L). On the other hand ξn ≤ b ≤ Cv on ∂Sρ

for sufficiently large C > 0 such that Cv ≥ b on Ω × {L − ρ
2
}. Therefore we obtain |∂νξn| ≤ 2LC

ρ
∥φ∥∞

on Ω× {L}. Combining these estimates and bounding the integrals I1, I2 and I3 we obtain the uniform

estimate

ˆ
CL

µn(LAξ
n)2 ≤ C

with some tame constant C > 0.
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Taking ξ = ξn in (7.2) we get

0 ≥
ˆ
CL

(η⋆ − η)(µLAξ
n + ∂zξ

n) =

= −
ˆ
CL

(η⋆ − η)φ+

ˆ
CL

(η⋆ − η)(µ− µn)LAξ
n

≥ −
ˆ
CL

(η⋆ − η)φ−
(ˆ

CL

µn(LAξ
n)2
) 1

2
∥∥∥∥(η⋆ − η)µn − µ√

µn

∥∥∥∥
L2(CL)

−→ −
ˆ
CL

(η⋆ − η)φ

implying η⋆ ≥ η in CL, and the proof is complete. �
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