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Abstract

In this paper we are interested in establishing up-to boundary uniform estimates for the one phase
singular perturbation problem involving a nonlinear singular/degenerate elliptic operator. Our main
result states: if Ω ⊂ Rn is a C1,α domain, f ∈ C1,α(Ω) for some 0 < α < 1 and uε verifies

div A
(
x,uε,∇uε

) = βε

(
uε

)
in Ω, 0 � uε � 1 in Ω, uε = f on ∂Ω,

where ε > 0, βε(t) = 1
ε β

(
t
ε

)
and

0 � β(t) � Bχ{0<t<1},
∫
R

βε(t) dt = M > 0,

with some positive constants B and M , then there exists a constant C > 0 independent of ε such that
‖∇uε‖

L∞(Ω)
� C.
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1. Introduction

In this paper we prove an up to boundary uniform gradient estimate for solutions to one
phase singular perturbation problem involving nonlinear degenerate elliptic operator. This
estimate then allows us to obtain existence for corresponding free boundary problem. In
what follows we focus only on the case of model equation

Δpu = div
(|∇u|p−2∇u

)
, 1 < p < ∞, (1)

the p-Laplace operator.
We recall here that u ∈ W 1,p(Ω) is said to be p-harmonic in Ω if∫

Ω

|∇u|p−2∇u∇ϕ = 0

for every ϕ ∈ C∞
0 (Ω). One of the most important properties of p-harmonic functions is

Harnack inequality (see [12,13]), which will be used throughout of the paper. It is worth
noting that our technique admits generalization to operators of the general type

Lu = div
(
A(x,u,∇u)

)
,

having p-Laplace type structure (see [7,12,13] and references therein).
The solution of the free boundary problem in question is expected to verify

{
Δpu = 0 in Ω ∩ {u > 0},
|∇u| = c on Ω ∩ ∂{u > 0},
u = f on ∂Ω.

(2)

Here c is a positive constant. The problem above arises in combustion theory and has
been intensively studied by several authors for linear elliptic and parabolic operators, that
is when in our case p = 2.

Following [3], the solution to (2) is derived from an approximating family of functions,
which are solutions to some Dirichlet problems. More precisely, let uε satisfy the following
singular perturbation problem

{
Δpuε = βε(u

ε) in Ω,

0 � uε � 1 in Ω,

uε = f on ∂Ω,

(3)

(see Section 3 for details), then our main result says, that gradients of uε are uniformly
bounded in Ω . This, in turn, implies that for a subsequence uε → u, uniformly in Ω , and
u solves the free boundary problem (2) in some weak sense.

The study was initiated by pioneering work of [1] for nonnegative solutions of (3) for
linear uniformly elliptic operators under zero oblique derivative condition on the boundary.
The interior Lipschitz regularity of uε has been explored by several authors (see [2,3] and
references therein). It is also worth pointing out, that boundary regularity in some extent



560 A.L. Karakhanyan / J. Differential Equations 226 (2006) 558–571
appears also in [1], since zero oblique derivative condition considered there with half ball
mappings allows reflecting solution to be defined in a whole ball and hence reducing the
boundary case to the local one.

In contrast to linear operators, even the local analysis of the nonlinear problem is not
so well developed. As to p-Laplace operator, the (3) has been studied by [4], where they
extend the local results of [3] to this case.

The first complete treatment of up to the boundary regularity for two phase linear elliptic
case was obtained by Gurevich [6] under assumption, that the gradient of boundary data
vanishes whenever the function does it, i.e.

∇f (x) = 0 whenever f (x) = 0. (4)

He has also shown that Lipschitz regularity breaks down if condition (4) is violated for
arbitrary boundary data. One of the main techniques used there is a splitting argument for
uε similarly to that of used in [2,8]. That is writing uε = uε

1 + uε
2, where uε

1 is harmonic
with the same boundary values as uε , while uε

2 vanishes on the boundary and it solves the
semilinear equation.

In our set-up we consider arbitrary C1,α Dirichlet data. It is shown in [10,14–16], that
solutions to Dirichlet problems for p-Laplace type equations have at most C1,α regularity,
for some α > 0. Therefore our assumptions on the boundary data are optimal.

Moreover in view of the nonlinearity of Δp , the splitting argument of [6] does not work
in our case and we need to use nonlinear techniques. In particular we are using scaling
argument and sharp gradient estimates of [11]. These methods are in some extent advanced
applications of Krylov-type Harnack inequality [9]. Fortunately many of the geometrical
arguments of [6] can successfully be used.

2. Preliminaries

In this section we start with introducing basic notations, used throughout the paper and
two technical lemmas.

2.1. Notations

Ω Open connected set in n-dimensional Euclid space Rn, n � 2.
Π Hyperplane {xn = 0}, x = (x1, . . . , xn).
x̂ Projection of x on Π .
ν Inner normal to a boundary point of Ω .
Γx Cone with vertex at point x ∈ Π , such that |y − ŷ| � 1

2 |y − x|.
Br(x) Ball with center at x and radius r .
Br Ball with center at origin.
B+

r (x) Br(x) ∩ {xn > 0}.
B ′

r (x) Ball with center at x and radius r in Π .
Ωε(u) The set of the points x ∈ Ω , where u(x) � ε.
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2.2. Background results

We need two preliminary lemmas, both quite standard in uniform elliptic theory.

Lemma 2.1. Suppose that u � 0, Δpu = 0 in B+
1 and u(x) � σ > 0 for any x ∈ B ′

1. Then
there exists a constant c = c(n,p), such that

u(x) � cσ, x ∈ B+
3/4.

Proof. Suppose that w is the solution to Dirichlet problem

⎧⎨
⎩

Δpw = 0 in B+
1 ,

w = σ on B ′,
w = 0 on ∂B1 ∩ {xn > 0}.

(5)

According to [11, Lemma 2], w ∈ C1,α(B+
3/4). Furthermore by virtue of maximum prin-

ciple we infer that

0 � w � σ (6)

in B+
1 . Now let us define w̃ in whole B1 in the following way

w̃(x) =
{

w(x) if x ∈ B+
1 ,

2σ − w(x1, . . . ,−xn) if x ∈ B1 ∩ {xn < 0}.
It is easy to see, that w̃ is p-harmonic in B1 and according to (6)

σ � w̃ � 2σ

in the lower half ball. Hence 0 � w̃ � 2σ in B1. Therefore from local Harnack inequality
[12,13]

sup
B3/4

w̃ � c inf
B3/4

w̃,

and in particular

w(x) � c−1σ in B+
3/4.

Coupling this inequality with comparison principle the result follows. �
Lemma 2.2. Assume that Δpu = 0 in Br(x) and u � 0 in Br(x). Assume also that for
some x0 ∈ ∂Br(x)

u(x0) = 0 and
∂u(x0) � k,
∂ν
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where ν is the inward normal direction at x0 on ∂Br . Then there is a constant c = c(n,p)

such that

u(x) � ckr.

Proof. This lemma is a slight modification of Theorem 2.2 in [1]. However for complete-
ness we present the proof. Observe, that considering the scaled function

v(y) = u(x + ry)

r
, y ∈ B1

we can reduce the general case to the unit ball B1. Introduce the function w(y) =
γ (e−λ|y|2 − e−λ), where the positive constants γ and λ will be determined below. Com-
puting the derivatives of w we have

∂w

∂yi

= −2γ λyie
−λ|y|2 ,

∂2w

∂yi∂yj

= 4γ λ2yiyj e
−λ|y|2 − 2γ λδi,j e

−λ|y|2 ,

|∇w| = 2γ λe−λ|y|2 |y|.
Invoking the explicit form of p-Laplace operator we get

Δpw = |∇w|p−2Δw + (p − 2)|∇w|p−4
n∑

i=1

n∑
j=1

wiwjwi,j

= γ λe−λ|y|2(2γ λe−λ|y|2 |y|)p−2[4λ(p − 1)|y|2 − 2(n + p − 2)
]
.

Therefore Δpw � 0 in B1 \ B1/2 if λ � 2(n+p−2)
p−1 . Now by Harnack inequality

v(0) � sup
B1/2

v � c inf
B1/2

v.

Hence v(y) � 1
c
v(0) in B1/2. Choosing γ = v(0)

c(e−λ/4−e−λ)
we have w � v on ∂B1 ∪ ∂B1/2

and comparison principle gives, that w � v in B1 \ B1/2. Then

∂w(x0)

∂ν
� ∂v(x0)

∂ν
.

Explicitly this means, that γ λe−λ � k, i.e.

v(0) � kc(e− λ
4 − eλ)

λe−λ
.

Returning to the function u the assertion follows. �
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3. Uniformly Lipschitz estimate

3.1. Problem set-up

Let Ω be a smooth bounded domain in Rn. Assume that f ∈ C1,α(Ω). Let us introduce
the family of approximate identities {βε} defined as

βε(t) = 1

ε
β

(
t

ε

)
,

where β is a nonnegative bounded continuous function on Rn, β � B , suppβ ⊂ [0,1], and∫
R

β = M > 0.

Apparently suppβε ⊂ [0, ε] and ∫
R

βε = M > 0.

3.2. Main result

Theorem 3.1. Suppose Ω ⊂ Rn is a bounded C1,α domain and f ∈ C1,α(Ω),
‖f ‖C1,α(Ω) � R, 0 < α < 1. Let uε be a solution to the following singular perturbation
problem

{
Δpu = βε(u

ε) in Ω,

0 � uε � 1 in Ω,

uε = f on ∂Ω.

(7)

Then there is a constant C = C(n,p,B,R), independent of ε, such that∥∥∇uε
∥∥

L∞(Ω)
� C.

Remark 3.2. It is proved in [4, Theorem 2.1], that for any compact K � Ω there is a
positive constant CK depending only on n,p,M and distance between Ω and K such that∥∥∇uε

∥∥
L∞(K)

� CK.

Hence our theorem generalizes this result up to ∂Ω for smooth enough ∂Ω and data.

Proof of Theorem 3.1. Without loss of generality (see [11]) we can restrict ourselves to
the case of upper half unit ball. Indeed since Ω is a smooth domain then we can using a
smooth map reduce the general case to that one on B+

1 and the boundary data will be given
on B1 ∩ {xn = 0}.
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We consider B+
1 as a union of two sets Ωε(u

ε) and B+
1 \ Ωε(u

ε). In what follows we
write Ωε instead of Ωε(u

ε) for short. �
3.3. Lipschitz regularity in Ωε = {uε � ε}

Proposition 1. For x ∈ B+
1/2 ∩ Ωε there is a constant C1 = C1(n,p,B,R) such that

∣∣∇uε(x)
∣∣ � C1.

Proof. Assume that x ∈ B+
1/2 ∩ Ωε and dist(x,Π) � ε, where Π = {xn = 0}. Then con-

sider scaled functions

vε(y) = uε(x + εy)

ε
, y ∈ B1

and apply [4, Lemma 2.2]. This gives

vε(y) � c, y ∈ B1/2.

By local gradient estimates (see, e.g., [5]), we have then

∣∣∇vε(0)
∣∣ = ∣∣∇uε(x)

∣∣ � c(n,p,B).

In order to prove the assertion for the case dist(x,Π) < ε we need the following lemma.

Lemma 3.3. Assume that x ∈ Ωε ∩ B+
1/2 and dist(x,Π) < ε. Then there exists a constant

c(n,p,B), such that

uε(x̂) � cε. (8)

Here x̂ is the projection of x on the hyperplane Π .

Proof. Indeed suppose that our assertion fails, then for some ε we have

uε(x̂) � Nε,

for some large N . Denote d0 = dist(x̂,Ωε) and suppose for some x0 ∈ Ωε ∩ ∂Bd0(x̂) we
have

d0 = |x0 − x̂|.

Let now Γx̂ be the cone with vertex at x̂ ∈ Π such that |y − ŷ| � 1 |y − x̂| for every y ∈ Γx̂ .
2
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Case 1. x0 ∈ Γx̂ . Let us consider ball Bd0/2(x0). Since x0 ∈ Γx̂ , then clearly Bd0/2(x0)

⊂ B+
1 . For the auxiliary function vε(y) = uε(x0+(d0/2)y)

ε
, y ∈ B1, we have

Δpvε(y) =
(

d0

2

)p
β(vε)

εp
� M

2p

since d0 < ε. Also vε(0) � 1 and hence we can apply [4, Lemma 2.2] to conclude vε(y) � c

for y ∈ B1/2, i.e.

uε(x) � cε, x ∈ Bd0/4(x0).

On the other hand, for z ∈ B ′
d0

(x̂) we have

f (z) � f (x̂) − R|z − x̂| � Nε − Rd0 � (N − R)ε

since d0 < ε. Hence the scaled function wε(y) = uε(x̂+d0y)
ε

is p-harmonic in B+
1 , and

wε � N − R on B ′
1 therefore according to Lemma 2.1 wε � c(N − R) in B+

3/4, i.e.

uε(x) � εc(N − R) in B+
3/4d0

(x̂).

Hence for the point ξ belonging to ∂B3d0/4(x̂) ∩ ∂Bd0/4(x0) we have εc(N − R) �
uε(ξ) � cε, which is a contradiction if N is too large.

Case 2. x0 /∈ Γx̂ . Let x1 ∈ Ωε be such that d1 = dist(x̂0,Ωε) is realized. Observe that

|x1 − x̂| � |x1 − x̂0| + |x̂0 − x̂| � d1 + d0 � d0

2
+ d0

since d1 � d0
2 . If x1 ∈ Γx̂ we are done. Otherwise let x2 be such that d2 = dist(x̂1,Ωε) is

realized. Observe that

|x2 − x̂| � |x̂1 − x2| + |x̂1 − x̂| � d2 + |x1 − x̂| � d0

4
+ d0

2
+ d0

since d2 � d1
2 � d0

4 . There are two possibilities: either after finite steps we come to Case 1
or we have a sequence of points xi ∈ ∂Ωε , i = 0,1,2, . . . , xi+1 /∈ Γx̂i

and

di+1 � di

2
� d0

2i+1
,

|xi − x̂| � d0 + d0

i∑ 1

2k
� 2d0.
k=1
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Therefore at least for a subsequence, again denoted xi we have xi → ξ ∈ B ′
2d0

, f (ξ) = ε.
But

f (ξ) � f (x̂) − R|x̂ − ξ | � ε(N − 2R),

which contradicts to f (ξ) = ε, if N is too large. Hence the result follows in this case too.�
To continue the proof of Proposition 1, let w solve the following Dirichlet problem{

Δpw = 0 in B+
1 ,

w = uε on ∂B+
1 .

(9)

Then w ∈ C1,α(B+
3/4) and by comparison principle we have uε � w. Note that by [11,

Lemma 2],

|∇w| � C
(
oscB+

1
w + ‖f ‖C1,α

)
� C in B+

3/4

which in conjunction with (8) yields

uε(y) � w(y) � w(x̂) + C|y − x̂| � Cε, if y ∈ B+
2ε(x̂).

Then again applying the gradient estimates of [11], the result follows. �
3.4. Lipschitz regularity in B+

1/8 \ Ωε

Lemma 3.4. For x ∈ B ′
1/4 \ Ωε there exists a constant A = A(n,p) > 0 such that

f (x) − ε � Adist(x,Ωε). (10)

Proof. Assume that x0 ∈ B ′
1/4 \ Ωε and inequality (10) is violated. Then for some ε we

have

f (x0) − ε � N dist(x0,Ωε),

where N is large. Let dε = dist(x0,Ωε) and xε ∈ ∂Ωε be such that the distance is realized,
i.e., dε = |x0 − xε|.

Case 1. xε ∈ Γx0 . Let us define vε to be the scaled function

vε(y) = uε(x0 + dεy) − ε

dε

in B+
1 .

Obviously vε(y) � 0, Δpvε = 0 in B+
1 . Observe, that for x ∈ B ′

dε
(x0) we have

f (x) � f (x0) − R|x − x0| � ε + Ndε − Rdε � ε + N
dε
2
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(if N is large), that is vε(y) � cN for y ∈ B ′
1. Hence we can apply Lemma 2.1 to conclude

that vε � cN in B+
3/4 or in terms of uε

uε(x) � ε + cNdε, x ∈ B+
3dε/4(x0). (11)

Now let B ′′ be the ball with radius dε

4 and centered at x̄ε = xε + x0−xε

4 . Observe that
uε − ε satisfies to the conditions of Lemma 2.2 since xε ∈ ∂B ′′. This gives

uε � ε + Cdε. (12)

Now at the point x̄ε belonging to ∂B3dε/4(x0) we have (according to (11) and (12))

ε + Ncdε � uε(x̄ε) � cdε,

which is a contradiction if N is chosen large enough.

Case 2. xε /∈ Γx0 . In this case the proof goes in the same way as in Case 2 of
Lemma 3.3. �
Proposition 2. If x ∈ B+

1/8 \ Ωε then there is a constant C2 = C2(n,p,R) such that

∣∣∇uε(x)
∣∣ � C2.

Proof. Let x ∈ B+
1/8 \ Ωε and dε = dist(x,Ωε) and d = dist(x,Π).

Case 1. dε � d . Without loss of generality we may assume, that dε � 1
8 . Indeed if dε > 1

8 ,
then gradient bound follows from local estimates of [4]. Therefore let us assume, that
dε � 1

8 and let xε ∈ ∂Ωε be such that dε = |x − xε|. Observe

|xε| � |x| + dε � 1

4

and hence by Proposition 1 ∣∣∇uε(xε)
∣∣ � C1.

Consider

vε(y) = uε(x + dεy) − ε

dε

, y ∈ B1.

Clearly for these functions we have

⎧⎪⎨
⎪⎩

Δpvε(y) = 0, y ∈ B1,

vε(yε) = 0, yε ∈ ∂B1,

|∇vε(yε)| � C1,
ε

(13)
v (y) � 0, y ∈ B1,
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where yε = xε−x
dε

∈ ∂B1. According to Lemma 2.2

vε(0) � c

for any ε. Moreover by Harnack’s inequality vε(y) � c, when y ∈ B1/2. Hence applying
local gradient estimates of [5], we get |∇vε(0)| � c for some c = c(n,p), which completes
the proof of Case 1.

Case 2. d < dε � 4d . Without loss of generality we may assume, that dε � 1
8 , otherwise,

as in the Case 1 the gradient bound follows from local estimates of [4]. Let w be the
solution to Dirichlet problem

{
Δpw(x) = 0, x ∈ B+

1 ,

w(x) = uε(x), x ∈ ∂B+
1 .

(14)

Since 0 � uε � 1 then by [11, Lemma 2] w ∈ C0,1(B+
3/4) and

∣∣∇w(x)
∣∣ � C

(
oscw + ‖f ‖C1,α

)
� C(2 + R).

Using comparison principle, we can estimate uε by w from above as follows

uε(x) � w(x) � w(x̂) + C(2 + R)|x − x̂| � f (x̂) + C(2 + R)d. (15)

Observe that |x̂| � |x| + d � 1
4 and hence we can apply Lemma 3.4:

f (x̂) � ε + Adist(x̂,Ωε) � ε + A(dε + d) � ε + 5Ad. (16)

Coupling (15) and (16) we get uε(x) � ε + (5A + C(2 + R))d .
Now let us consider the following auxiliary function

vε(y) = uε(x + dy) − ε

d
, y ∈ B1.

Clearly Δpvε(y) = 0 in B1 and by Harnack inequality

vε(y) � Cvε(0) � C
(
5A + C(2 + R)

)
, y ∈ B1/2.

Finally, applying local gradient estimates in B1/2 the proof of Case 2 follows.

Case 3. 4d < dε . First let us assume, that dε � 1
8 . Note that if y ∈ B+

dε/2(x̂) then

|y| � |y − x| + |x| � 2
dε

2
+ |x| � 1

4
.

Now using Lemma 3.4 and majorizer w (see (14)) we can estimate uε in B+
dε/2(x̂) as

follows
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u(y) � u(ŷ) + C(2 + R)
dε

2
� ε + Adist(y,Ωε) + C(2 + R)

dε

2
.

Since distance function is Lipschitz continuous with Lipschitz constant 1 then we have

dist(ŷ,Ωε) � dε + |ŷ − x| � 2dε.

Therefore

uε(y) � ε +
(

2A + C(2 + R)

2

)
dε = ε + cdε.

Now we can apply [11, Lemma 2] for function vε = uε − ε in B+
dε/2(x̂), which yields

∣∣∇vε(x)
∣∣ = ∣∣∇uε(x)

∣∣ � C(c + R).

Now assume that dε � 1
8 . Then observe that B+

1/16(x̂) ⊂ B1 \ Ωε , since

|x| � |x̂ − x| + |x̂| � 3

16
.

In this case we have

{
Δpuε = 0 in B+

1/16(x̂),

0 � uε � 1 in B+
1/16(x̂)

(17)

and the estimate follows from [11, Lemma 2]. �

4. Existence

Having in our disposal the uniformly Lipschitz regularity for {uε}, employing Ascoli–
Arzela lemma it is easy to infer, that there exists a solution u for problem (2).

Theorem 4.1. Assume that {uε} is a family of solution to (3). Then for every sequence
εj → 0 there exists a subsequence ε′

j → 0 and Lipschitz continuous function u in Ω such
that

(i) u
ε′
j → u uniformly in Ω ,

(ii) Δpu = 0 in Ω ∩ {u > 0}.

Proof of this theorem is similar to Lemma 3.1 in [4].
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Definition 3. A unit vector η ∈ Rn is said to be the inward normal in measure theoretic
sense to the free boundary ∂{u > 0} at a point x0 ∈ ∂{u > 0} if

lim
r→0

1

rn

∫
Br (x0)

∣∣χ{u>0} − χ{x|(x−x0)·η>0)}
∣∣dx = 0. (18)

Definition 4. Let v be a continuous function in B+
1 . We say that v is not degenerate at point

x0 ∈ B+
1 ∩ {v = 0} if there exists c, r0 > such that

1

rn

∫
Br(x0)

v dx � cr, for any r ∈ (0, r0). (19)

Theorem 4.2. Assume that uε
j is a solution to (3) in Ω such that uε

j → u uniformly in Ω

and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that ∂{u > 0} has an inward unit normal η in
the measure theoretic sense at x0 and suppose that u is nondegenerate at x0. Under this
assumptions, we have

u(x) =
(

Mp

p − 1

) 1
p [

(x − x0) · η]+ + o(x − x0). (20)

Here M = ∫
R β .

The proof of last theorem follows immediately from [4, Theorem 4.3] if we consider a
ball Br(x0) such that Br(x0) ⊂ Ω .
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