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The reflector design problem

Aram Karakhanyan Xu-Jia Wang ∗

Abstract

In this paper we review the mathematical advances achieved in recent
years on a reflector design problem. This problem can be reduced to
the solvability of a fully nonlinear partial differential equation of Monge-
Ampere type, subject to a second boundary condition. In the far field
case the existence and regularity of solutions was established in [W1].
In the near field case, the existence of weak solutions was obtained in
[KO]. The regularity is a very complicated issue but we found precise
conditions for it [KW]. In this paper we also prove the C1 regularity of
the reflector, assuming less regular energy distributions.
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1. Introduction

The reflector system we study in this paper consists of a light source at
the origin O, a reflecting surface Γ and a bounded, smooth object Σ to
be illuminated. Assume that Γ is a radial graph over a domain U in the
unit sphere Sn, namely

Γ = Γρ = {Xρ(X) | X ∈ U}. (1.1)

Let f ∈ L1(U) be the density of light radiated from O, and let g ∈ L1(Σ)
be a nonnegative function on Σ. We are concerned with the existence
and regularity of the reflector Γ such that the light from O is reflected
off to Σ and the distribution of the reflected light is equal to g.

A special and important case is the so called far field case, such
as a reflector antenna, which can be regarded as the limit of the above

∗Aram Karakhanyan: Department of Mathematics, University of Texas at Austin,
TX78712, USA. E-mail: aram@math.utexas.edu.

Xu-Jia Wang: Centre for Mathematics and Its Applications, Australian National
University, Canberra ACT 0200, Australia. Email: wang@maths.anu.edu.au.

The second author was supported by the Australian Research Council grant
DP0664517 and the Natural Science Foundation of China grant 10428103.



2 Aram Karakhanyan Xu-Jia Wang

problem with Σ = {dX : X ∈ V }, d →∞, where V is a domain in Sn.
Accordingly we may regard g as a function in V , g ∈ L1(V ). In contrast,
the above general reflector problem is often referred to as the near field
case.

Due to its applications in electro-magnetics and optics, the reflec-
tor design is a very practical problem, and has been extensively studied
in engineering. This problem has also attracted attentions from math-
ematicians, see, e.g., problem 21 in [Y]. There are numerous works on
numerical analysis and computation for the problem. The law of re-
flection, namely the angle of reflection is equal to that of incidence, is
simple and elegant. However, mathematically the problem is extremely
complicated. It involves a fully nonlinear partial differential equation of
Monge-Ampere type, subject to a nonlinear second boundary condition.

The Monge-Ampere type equation in the near field case was first de-
rived in [KW]. In the far field case, the equation was derived in [ON, W1],
and was also obtained in [We] for a dual problem. The existence of weak
solutions can be obtained by approximation by piece-wise paraboloidal
surfaces in the far field case [CO, W1] or by piece-wise ellipsoidal sur-
faces [KO, KW], as for the standard Monge-Ampere equation. The main
issue is the regularity. In the far field case the interior regularity was
established in [W1] in dimension 2 and in [GW] in high dimensions, and
the regularity near the boundary was recently obtained in [TW2]. But
in the near field case it is a very complicated issue. We found that

• the regularity depends on the position of the reflector Γ;
• it also depends on the position and geometry of the object Σ;
• it also depends on the geometry of the boundary ∂Σ.

More precisely, we show that there is a region D in the cone

CU = {tX : t > 0, X ∈ U}, (1.2)

which is independent of the distributions f and g (but we assume that
f, g are positive and smooth), such that the part of the reflector Γ lying
in D is smooth, and the part staying outside D may not be C1 smooth
for some smooth, positive f and g. Moreover, the region D varies if one
translates, rotates, or bends the surface Σ. Also D varies if one deforms
smoothly the boundary ∂Σ. These phenomena show that regularity of
the reflector problem in the near field case is extremely complicated,
much more complicated than that in the far field case. However we
found precise conditions for a point to be in the region D [KW]. See §5
below for details. We emphasize that all conditions in §5 are sharp.

This paper is arranged as follow. In Section 2 we introduce the
equation, which was derived in [KW]. It is interesting to point out that
when the receiving surface Σ is a plane passing through the origin, the
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equation is the standard Monge-Ampere equation

detD2u = h (1.3)

for some h depending on f, g, u and Du, where u = ρ−1. In Section 3
we deal with the existence of weak solutions. In Section 4 we establish
the a priori estimates. Section 5 is devoted to the regularity of weak
solutions. We show the part of the reflector lying in the region D is
smooth, provided f, g are smooth and positive, and show that the part
staying outside D may not be C1 smooth for some smooth, positive f, g.
All these results are included in [KW].

In Section 6 we include a new C1 regularity result under weaker
assumptions on f, g. We use a similar proof as Loeper [L] for the optimal
transportation problem. We note that in the near field case, the C1

regularity is also local, i.e., it holds only in the region D. Therefore we
need to show that a local supporting ellipsoid at some point in D must
be a global one.

In Section 7 we briefly discuss the far field case of the reflector
problem, which has been studied by many more people. As mentioned
above, the existence and regularity of weak solutions were obtained in
[W1]. Theoretically one may also consider the case when U = V = Sn

and the reflector Γ is a closed radial graph without boundary. In this
case, a weak solution was obtained in [CO], and a smooth solution was
obtained in [GW]. An important property in the far field case is that
it is an optimal transportation problem (Theorem 4.1, [W2]), and so it
becomes a linear programming problem. See [W3,GO] for details. In the
far field case the C1 regularity was proved in [CGH] and later in [TW3],
and the C1,α regularity was obtained in [L], and also later in [Liu], for
measurable densities f and g.

In this paper we will consider the reflector problem in Euclidean
space Rn+1 for any n ≥ 2, as the dimension n > 2 does not bring any
substantial new difficulty to our treatment.

2. The equation

Let Γ = Γρ be a reflector. Suppose a ray X = (x1, · · · , xn, xn+1) is
reflected off at a point Xρ(X) ∈ Γ in direction Y = (y1, · · · , yn, yn+1)
and reaches a point Z = (z1, · · · , zn, zn+1) ∈ Σ. Denote by γ the unit
normal of Γ and by T = Tρ : X → Z the reflection mapping. Then by
the reflection law,

Y = X − 2(X · γ)γ,

Z = Xρ + Y d,
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where d = |Z −Xρ| is the distance from Xρ to Z, and X · γ denotes the
inner product in Rn+1.

Let Ω be the projection of U on {xn+1 = 0}, so that

x = (x1, · · · , xn) ∈ Ω
m

X = (x, xn+1) ∈ U,

where xn+1 =
√

1− |x|2. In the following we may also regard ρ as a
function on Ω, and T as a mapping on Ω. By restricting to a subset we
may assume that U is in the north hemisphere.

Case I: Σ ⊂ {xn+1 = 0}. That is when the receiving surface lies in a
plane passing through the origin. In this case the Jacobian determinant
of the mapping T is given by

dSΣ

dSΩ
= detDz,

where dS denotes the surface area element, z = (z1, · · · , zn). Let f and
g be the energy distributions on U and Σ respectively. Assume there
is no loss of energy in the process of reflection. Then by the energy
conservation, ∫

U

f =
∫

Σ

g. (2.1)

Note that dSΩ = ωdSU , where ω(x) =
√

1− |x|2. Hence we have the
equation

detDz =
f

ωg
.

After a long and tricky computation, we obtain

det
{−D2ρ + 2ρ−1Dρ⊗Dρ

}
=
−an+1

2nρ2nb

f

ωg
, (2.2)

where Dρ = (∂1ρ, · · · , ∂nρ) is the gradient of ρ, D̂ρ = (Dρ, 0), D2ρ =
(∂i∂jρ) is the Hessian matrix of ρ,

a = |Dρ|2 − (ρ + Dρ · x)2,
b = |Dρ|2 + ρ2 − (Dρ · x)2.

Let u = 1
ρ . Then u satisfies the standard Monge-Ampère equation

detD2u = h(x, u, Du). (2.3)
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Case II: The receiving surface Σ is given by

Σ = {p ∈ Rn+1 : ψ(p) = 0}. (2.4)

We may assume that ψn+1 = ∂xn+1ψ < 0, by replacing ψ by −ψ if
necessary. A special case is when Σ is a Euclidean graph of the form

Σ = {X ∈ Rn+1 : xn+1 = ϕ(x), x ∈ Ω∗} (2.5)

or a radial graph of the form

Σ = {Xϕ(X) : X ∈ V }, (2.6)

where Ω∗ is a domain in Rn and V is a domain in the unit sphere Sn.
Computing the Jacobian of the mapping T we get

dSΣ

dSΩ
= − |∇ψ|

ψn+1
detDz.

So we have the equation

detDz = − fψn+1

ωg|∇ψ| .

To compute Dz, let Z0 be the intersection of the reflected ray with the
plane {xn+1 = 0} and denote

t =
|Z −Xρ|
|Z0 −Xρ| . (2.7)

By a direct but very tricky computation, we obtain

det
{−D2ρ +

2
ρ
Dρ⊗Dρ +

a(1− t)
2tρ

N}
= h, (2.8)

where

h = − an+1

2ntnρ2n+1b

f

ω2βg|∇ψ| ,

N = I +
x⊗ x

1− |x|2 .

From (2.8), we also obtain the equation on the sphere

det
{−D2ρ +

2
ρ
Dρ⊗Dρ− cos θ

sin θ
|Dρ|I}

= h in U. (2.9)

where I is the unit matrix, D is the covariant derivative in a local or-
thonormal coordinates, and θ is the angle between OX and OZ.
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Equation (2.9) is a fully nonlinear partial differential equation of
Monge-Ampere type. A special but natural boundary condition for the
reflector problem is

T (U) = Σ. (2.10)

This is a second boundary condition. For example, if Σ ⊂ {xn+1 = 0}
and Σ is the unit ball in Rn, then (2.10) is equivalent to |T (X)| = 1 for
any X ∈ ∂U .

3. Existence of weak solutions

3.1. Ellipsoid of revolution

In the study of the reflector problem, ellipsoid of revolution, namely
ellipsoid obtained by rotating an ellipse along its major axis, plays a
crucial role (in the far field case it is paraboloid of revolution). Such
an ellipsoid E has two foci F1, F2. A ray from one focus will always be
reflected to the other one.

Let F1 = 0 be the origin of the coordinates. Then in the polar
coordinate system, E can be represented as

E = {Xe(X) : X ∈ Sn}

with

e(X) =
a(1− ε2)
1− εX · ` (3.1)

=
a2 − c2

a− cX · ` ,

where a is the major axis, which equals half of the diameter of E, c =
1
2 |F2| is the distance from the center of E to its foci, ε = c

a is the
eccentricity, and ` = F2/|F2|.

If the reflector Γ locally coincides with the ellipsoid E and if F2 is
a point on the receiving surface Σ, then the matrix

W = {−D2ρ +
2
ρ
Dρ⊗Dρ +

a(1− t)
2tρ

N}
(3.2)

vanishes identically.
This property is also true for more general mappings, such as the

reflection in the far field case and the mappings in optimal transporta-
tion. More precisely, if the image of a mapping is a fixed point, then the
Jacobian matrix of the mapping vanishes identically.
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3.2. Terminology related to convexity

We look for solutions to (2.9) (2.10) such that the matrix W is positive
definite. Inspired by early works on Monge-Ampere type equations [P,
W1, CO, KO], we introduce the following terminologies.

Supporting ellipsoid. An ellipsoid E = {Xe(X) : X ∈ Sn} is a
supporting ellipsoid of Γ = Γρ at X̄ρ(X̄) if one of its foci is at the origin
and the other one on Σ, and E satisfies

ρ(X̄) = e(X̄),
ρ(X ′) ≤ e(X ′) ∀ X ′ ∈ U.

(3.3)

R-convexity of function. We say ρ, or Γ = Γρ, is R-convex (with
respect to Σ) if for any point X̄ ∈ U , there is a supporting ellipsoid at
X̄ρ(X̄).

R-polyhedron. We say Γ is an R-polyhedron (relative to Σ) if it is
R-convex and is a piecewise ellipsoidal surface, namely

Γ =
⋃k

i=1
(Ei ∩ Γ). (3.4)

Moreover, for each ellipsoid Ei above, one of its foci is located at the
origin and the other one on Σ.

If Γ is R-convex, it can be approximated by R-polyhedra. The ap-
proximation sequence can be obtained by choosing finitely many points
p1, · · · , pm ∈ Γ, and shrinking the supporting ellipsoids of Γ at these
points slightly.

Reflection cone. Let γ1 and γ2 be two unit vectors (γ1 6= γ2). Let
p 6= 0 be a point in CU . The reflection cone Cp,γ1,γ2 is the set of points
q ∈ Rn+1 which satisfy

p− q

|p− q| = 2
c1γ1 + c2γ2

|c1γ1 + c2γ2| −
p

|p| (3.5)

for all possible constants c1, c2.

Remark 3.1. The geometric meaning of the reflection cone Cp,γ1,γ2 is
as follows. Let Γρ1 and Γρ2 be two surfaces passing through the point p,
whose normals at p are γ1 and γ2, respectively. Let ρt = tρ1 + (1− t)ρ2,
where −∞ < t < ∞. Obviously Γρt passes through the point p. Then a
ray from the origin, reflected by Γρt at p, will fall in the cone Cp,γ1,γ2 .

One can verify that Cp,γ1,γ2 is a convex cone ([KW], Lemma 4.7). It
becomes a plane if and only if the vectors γ1, γ2 and ~Op lies in a 2-plane.

R-convexity of boundary. We say ∂Σ is R-convex with respect to a
point p ∈ CU if for any unit vectors γ1, γ2, the intersection Cp,γ1,γ2 ∩ Σ
is connected. We say ∂Σ is R-convex with respect to CU , or simply
R-convex, if it is R-convex with respect to all points p ∈ CU .
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3.3. Weak solutions

We can introduce two weak solutions. Recall that in the theory of con-
vex bodies, one can introduce respectively the curvature measure and
the area measure. For the standard Monge-Ampère equation, one can
introduce a weak solution of Aleksandrov, which corresponds to the cur-
vature measure, and a weak solution of Brenier, which corresponds to
the area measure. Here we introduce a type A weak solution and a
type B weak solution, corresponding respectively to the weak solutions
of Aleksandrov and Brenier.

First we define two multiple valued maps, T : U → Σ and τ : Σ →
U . For any X ∈ U ,

T (X) = {Z ∈ Σ : Z is a focus of a SE of Γ at Xρ(X)},
τ(Z) = {X ∈ U : ∃ a SE of Γ at Xρ(X) with Z as its focus}.

where SE means supporting ellipsoid. Note that at any differentiable
point of ρ, T is single valued and is exactly the reflection mapping. For
any subset ω ⊂ U we denote T (ω) = ∪X∈ωT (X). Similarly we extend
the definition of τ to subsets of Σ. If Γ is smooth and T is one-to-one,
then τ is the inverse of T .

Let Γ be an R-polyhedron, as given in (3.4). Let Z1, · · · , Zk ∈ Σ
be the foci of the ellipsoids E1, · · · , Ek. Then for any Z = Zk, τ(Z) =
Γ ∩ Ek and τ(Σ′) has measure zero, where Σ′ = Σ − {Z1, · · · , Zk}. By
approximation one sees that if Γ is an R-convex surface, then for any
Borel set ω ⊂ Σ, τ(ω) is also Borel. Therefore we may define

µb(ω) =
∫

τ(ω)

f ∀ ω ⊂ Σ. (3.6)

For any two Borel sets ω1, ω2 ⊂ Σ with ω1∩ω2 = ∅, the set τ(ω1)∩τ(ω2)
has measure zero, as ρ is twice differentiable a.e.. Hence µb is countably
additive and so it is a measure. If

µb(ω) =
∫

ω

g, (3.7)

for any Borel set ω ⊂ Σ, we say that Γ, or equivalently ρ, is a weak
solution of type B to the reflector problem.

Similarly we can define a measure µa on U , that is

µa(ω) =
∫

T (ω)

g ∀ ω ∈ U. (3.8)

We say that Γ, or equivalently ρ, is a weak solution of type A to the
reflector problem if

µa(ω) =
∫

ω

f (3.9)
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for any Borel set ω ⊂ Ω.
An advantage of type B weak solution is that one can easily prove

the weak continuity, and so also the countable additivity, of the measure
µb. One can also prove the weak continuity of µa by an idea in [TW1].
If f, g are positive, then two types of weak solutions are equivalent.

3.4. Uniform and gradient estimates

Assume that the reflector Γ is a radial graph given by (1.1) and Σ is
contained in the cone CV = {tX : t > 0, X ∈ V }, where V is a domain
on the sphere Sn. Suppose

U ∩ V = ∅. (3.10)

Then if Γρ is a weak solution to the reflector problem, we have the
Harnack type inequality

sup
X∈U

ρ(X) ≤ 2
1− β

inf
X∈U

ρ(X), (3.11)

where β = sup{X · Y : X ∈ U, Y ∈ V }.
This is because at any point p ∈ Γ, there is a supporting ellipsoid at

p. Hence the above estimate follows from the expression (3.1). Similarly
by the supporting ellipsoid, we also obtain the gradient estimate

sup
X∈U

|Dρ|(X) ≤ C, (3.12)

where C depends only on supU ρ, β and

d0 = sup{|Z| : Z ∈ Σ}. (3.13)

If assumption (3.10) is not satisfied, one may consider large reflec-
tor, namely solution ρ satisfying

inf ρ(X) > d0 (3.14)

and establish similar estimates.

3.5. Existence of weak solutions

In the far field case, the existence of a type A weak solution was proved
in [W1], and that of type B weak solution for closed reflector was proved
in [CO], which was extended to the near field case in [KO]. In [KO]
the authors discussed the existence of large reflectors only, namely they
considered reflector Γρ with inf ρ > 2d0. The following existence theorem
is an extension of that in [KO].
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Theorem 3.1. Consider the reflector problem with distributions f
and g satisfying the balance condition (2.1).
(a) For any point p ∈ CU with |p| > 2d0, there is a weak solution ρ = ρp,
such that the reflector Γρ passes through the point p.
(b) Suppose that Σ ⊂ CV and (3.10) holds. Then for any point p ∈ CU ,
there is a weak solution ρ = ρp such that the reflector Γρ passes through
the point p.

To prove the theorem, choose a sequence of discrete measures gk,
which satisfies (2.1) and converges weakly to g. One can prove that for
a fixed point p ∈ CU , there is a sequence of type B weak solutions ρk

with distribution gk, which passes through the point p. By the weak
continuity of the measure µb and the uniform and gradient estimates, ρk

converges to a weak solution ρ which passes through the point p.

3.6. The boundary condition

Suppose both f and g are positive. By the energy conservation (2.1), it
is easy to show that a weak solution obtained above satisfies T (Ω) ⊃ Σ
and the set {x ∈ Ω : T (x) 6∈ Σ} has measure zero. Moreover, if ρ is
differentiable at x0 ∈ Ω, then Tρ(x0) ⊂ Σ.

4. A priori estimates

4.1. A priori estimates

Consider the more general equation

det{D2u−A(x, u,Du)} = h(x, u, Du) in Br(x0), (4.1)

where h is a positive, smooth function, A = (Aij(x, u, p)) is a symmetric
n× n matrix satisfying

Aij,pkpl
ξiξjηkηl ≥ c0|ξ|2|η|2 (4.2)

for any vectors ξ, η ∈ Rn, ξ ⊥ η, where c0 is a positive constant, and
Aij,pkpl

= ∂2

∂pk∂pl
Aij .

Lemma 4.1. Let u ∈ C4 be a solution to (4.1) such that the matrix
W = D2u − A(x, u,Du) is positive definite. Suppose h ∈ C1,1, h ≥ h0

for some constant h0 > 0. Then we have the estimate

|D2u|(x) ≤ C ∀ x ∈ Br/2(x0), (4.3)

for some C independent of u.
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Proof. Denote F [W] = log detW, W = {Wij}, and h̄ = log h. Then we
have the equation

F [W] = h̄. (4.4)

Differentiating the equation twice, and by the concavity of F , we get

F ijWij,kk = −∂2[detW]1/n

∂Wij∂Wrs
Wij,kWrs,k + D2

kh̄ ≥ D2
kh̄,

where Wij,k = ∂xk
Wij , F ij = ∂

∂Wij
F [W]. Let z(x, ξ) = ρ2ξiξjWij .

Suppose sup{z(x, ξ) : x ∈ Br(0), |ξ| = 1} is attained at x̄ and ξ =
(1, 0, · · · , 0), where ρ(x) = (1− |x|2

r2 )+. By a rotation of axes we assume
that {Wij} is diagonal at x̄ such that W11 ≥ · · · ≥ Wnn. Then at x̄, F ij

is diagonal and

0 = (log z)i =
2ρi

ρ
+

W11,i

W11
,

0 ≥ (log z)ii = (
2ρii

ρ
− 6ρ2

i

ρ2
) +

W11,ii

W11
.

We have

W11,ii = u11ii −A11,pipiu
2
ii −A11,pk

ukii + O(1 + u11),
Wii,11 = u11ii −Aii,p1p1u

2
11 −Aii,pk

uk11 + O(1 + u11).

By (log z)i = 0, we have |u11k| ≤ C(1 + W11)/ρ. Note that

F iiukii = F iiWii,k + F ii∂xk
Aii = ∂xk

F [W] + O(1 + FT ),
F iiu2

ii ≤ F iiW 2
ii + O(1 + F) ≤ O(1 + F + T ),

where F =
∑

F ii and T is the trace of the matrix W. Hence

F iiW11,ii = F iiWii,11 + F iiAii,p1p1u
2
11 + O(

1
ρ
(1 + FT ))

≥ F iiAii,p1p1u
2
11 + O(

1
ρ
(1 + FT )).

By (4.2), Aii,p1p1 ≥ c0 > 0. Hence

F iiAii,p1p1 ≥ c0

∑

i>1

F ii =
1
2
c0F > 1

provided W11 is large enough. We obtain

0 ≥
∑

i

F ii(log z)ii ≥ −C

ρ2
F + F ii W11,ii

W11

≥ −C

ρ2
F + c0W11F + O(

1
ρ
(1 + F))



12 Aram Karakhanyan Xu-Jia Wang

We obtain ρ2W11(x) ≤ ρ2W11(x̄) ≤ C for any x ∈ Br(x0). Hence (4.3)
holds.

We remark that similar proof of Lemma 4.1 can be found in [W1,
GW, MTW]. Once the second derivative estimate is established, the
least eigenvalue of the matrix W has a positive lower bound and so
equation becomes uniformly elliptic. By Evans-Krylov’s regularity for
fully nonlinear uniformly elliptic equations, we obtain the higher order
derivative estimate.

Theorem 4.1. Under the assumption of Lemma 4.1,

‖u‖C3,α(Br/2(0)) ≤ C (4.5)

4.2. Verification of (4.2)

To apply Theorem 4.1 to equation (2.8), let u = 1
ρ . Then equation (2.8)

becomes

det
{
D2u− â(t− 1)

2ut
N}

= h (4.6)

for a function h = h(x, u,Du), defined on Ω× R1 × Rn, where

â = |Du|2 − (u−Du · x)2.

Denote

τ =
(t− 1)â

t
. (4.7)

Then τ is a function of x, u and p := Du. Condition (4.2) is equivalent
to

{τpipj} ≥ c0I (4.8)

By some very tricky computation, we have

τpkpl
= − â

t2(∇ψ · ξ) (Z ′pk
∇2ψZpl

) +
2
t

∇ψ · Z
∇ψ · ξ (δkl − xkxl), (4.9)

where Z ′ is the transpose of Z, Zpk
= ∂pk

Z. Note that Z = T (X) is a
point of Σ, which is determined by X, Γ and Σ. Therefore we have

Theorem 4.2. Suppose Σ is convex radial graph given by (2.6).
Suppose that

|(q − p) · ν| > 0 (4.10)

for any point p ∈ CU , q ∈ Σ, where ν is the normal of Σ at q. Then
the a priori estimate (4.3) and (4.5) hold for any R-convex solution to
(4.6).

Indeed, when Σ is a convex radial graph given by (2.6), then the
matrix {Z ′pk

∇2ψZpl
} is nonnegative, and â < 0, ∇ψ ·Z > 0, ∇ψ · ξ > 0.
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Hence (4.8) is satisfied. Assumption (4.10) implies that the right hand
side function h is positive.

After more careful computation, we find that (4.8) is equivalent to

II +
sin θ cosβ

4 sin α cos3 α

|q|2
|p| |p− q|2 I > 0, (4.11)

for any q ∈ Σ, where I and II are the first and the second fundamental
forms of Σ along the direction p − q, θ is the angles between Op and
Oq, α is the angle of reflection, and β is the angle between Oq and the
normal of Σ at q. Hence we have

Theorem 4.3. Suppose (4.10) and (4.11) holds. Then the a priori
estimate (4.3) and (4.5) hold for any R-convex solution to (4.6).

5. Regularity of solutions

5.1. The regularity domain D
The domain D introduced in the introduction is defined as follow. A
point p ∈ D if and only if the following conditions are satisfied:

(i) (4.10) holds for all q ∈ Σ;
(ii) (4.11) holds for all q ∈ Σ;
(iii) ∂Σ is R-convex with respect to points in CU near p.

Assumption (i) and (ii) are required in the a priori estimates (Theorem
4.3). Assumption (iii) is needed for the comparison principle below. It
is easy to see that the set D is in general not a cone, and is in general
a proper subset of CU . Therefore the near field case is not an optimal
transportation problem.

5.2. A comparison principle

Let ρ be a weak solution in Theorem 3.1. By §3.6 we have T (U) ⊃ Σ
and |{x ∈ U : T (x) 6∈ Σ}| = 0. To prove the regularity of solutions, we
show that in a sufficiently small ball, the weak solution coincides with
a smooth solution. For this purpose we need a comparison principle. A
crucial ingredient for the comparison principle is the inclusion

T (U) ⊂ Σ (5.1)

We show that the inclusion (5.1) holds, provided that ∂Σ is R-
convex. Indeed, if Γ is C1, then (5.1) holds, since Tρ(x0) ⊂ Σ at any
differentiable point x0. If Γ is not C1 at some point p ∈ Γ, let E0, E1 be
two supporting ellipsoids at p, with normals γ0, γ1. Let Cp,γ0,γ1 be the
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reflection cone (see §3.2). Since ∂Σ is R-convex, Cp,γ0,γ1∩Σ is connected,
which means (5.1).

By (5.1) we have the following comparison principle.

Lemma 5.1. Let ρ1, ρ2 be weak solutions of (2.8) in Ω with f =
f1, f2, respectively, where Ω is a smooth domain in B1(0) ⊂ Rn. Suppose
that Tρ1(Ω) ⊂ Σ. Suppose f1 < f2 in Ω and ρ1 ≤ ρ2 on ∂Ω. Suppose
Γ1, the graph of ρ1, lies in the region D. Then we have ρ1 ≤ ρ2 in Ω.

Indeed, if the lemma is not true, denote ω = {x ∈ Ω : ρ1(x) >
ρ2(x)}. Then we have

Tρ2(ω) ⊂ Tρ1(ω). (5.2)

Hence ∫

ω

f2 >

∫

ω

f1 =
∫

Tρ1 (ω)

g ≥
∫

Tρ2 (ω)

g, (5.3)

which is in contradiction with the definition of weak solutions.
Note that we have used the inclusion (5.1) for the equality in (5.3).

The assumption that Γ1 is contained in the region D is such that a local
supporting ellipsoid is also a global one (see §6.2 below), which is used
in (5.2). If ρ1 is C1 smooth, then there is a unique supporting ellipsoid
at every point and a local supporting ellipsoid is automatically a global
one. Hence Lemma 5.1 holds if ρ1 is C1 smooth.

5.3. Regularity of weak solutions

Theorem 5.1. Let ρ be the weak solution in Theorem 3.1. Suppose that
f, g are positive and smooth. Then if p ∈ Γρ is a point in D, ρ is smooth
near p.

To prove the theorem, let Br is a small ball such that the point p
is contained in the graph of ρ in Br. Consider equation (2.8) in Br with
the Dirichlet boundary condition ρ = ϕε. We choose ϕε properly, e.g.,
ϕε is the mollification of ρ. Then one can establish the global a priori
estimates to the Dirichlet problem as in [W1]. Hence by the continuity
method, there is a smooth solution ρε to the Dirichlet problem. By the
interior a priori estimates (Theorem 4.3) and the comparison principle,
ρε converges to ρ in Br. Namely the weak solution ρ is smooth in Br.

5.4. Assumptions (i)-(iii) in §5.1 are sharp

To show condition (iii) is sharp, we use the idea from [W1] (page 362),
see also §7.3 of [MTW]. The argument is roughly as follows.

• Choose a sequence of positive distributions gk ∈ C∞(Σ) which
converges weakly to g = δq1 + δq2 , where q1, q2 are two points on
Σ. Let ρk be the solution corresponding to the distributions f and
gk.
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• If ρk ∈ C1, then Tρk
(Ω) ⊂ Σ. Hence if ρk ∈ C1 for all k, then

Tρ0(Ω) ⊂ Σ. But since Γρ0 reflects almost all rays to either q1 or
q2, we have either ρ0 = e1 or ρ0 = e2, where ei is an ellipsoid with
one focus at the origin and the other at qi, i = 1, 2.

• Let x0 ∈ Ω such that e1(x0) = e2(x0). Let Pt be the plane passing
through the point p = X0e1(X0) with normal tγ1 + (1 − t)γ2,
where t ∈ (0, 1) and X0 = (x0,

√
1− |x0|2). If ρk ∈ C1, then for

any 0 < t < 1, the reflected ray by Pt at the point p will hit Σ.
But if ∂Σ is not R-convex with respect to p, we may choose Z1, Z2

such that the reflected ray by Pt at p will miss the object Σ. Hence
ρk is not C1 for large k.

One can show that (i) (ii) are sharp in a similar way as above [KW].
The case when the receiving surface Σ ⊂ {xn+1 = 0} is at the

borderline for the condition (ii). In this case the equation becomes the
standard Monge-Ampere equation (2.3), subject to the boundary condi-
tion (2.10). Condition (2.10) is different from the boundary condition

Du(Ω) = Σ, (5.4)

studied in [C1, C2]. Therefore even if Σ is a convex domain in {xn+1 =
0} (convexity in the usual sense), ∂Σ may not be R-convex and the
regularity of Caffarelli may not apply. In other words, the regularity of
solutions to the boundary value problem (2.3) (2.10) requires a separate
treatment.

6. C1 regularity of reflector

In the far field case, the C1 regularity of reflector for non-smooth distri-
butions f, g was obtained in [CGH]. As the reflector problem in the far
field case is an optimal transportation problem, the C1 or C1,α regularity
for potential functions [L, Liu, TW3] also apply to the reflector problem
in the far field case. But as indicated above, the reflector problem in the
near field case is not an optimal transportation problem anymore.

To establish the C1 regularity for nonsmooth distributions f, g in
the near field case, we use a similar argument as in [L]. Our proof consists
of the following three steps:
(i) verify a geometric property of (4.8);
(ii) show that a local supporting ellipsoid is a global one;
(iii) establish the continuity estimate.

6.1. A geometric interpretation of (4.8)

Let
Ei = {Xei(X) : X ∈ Sn}, i = 0, 1,
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be two ellipsoids with one focus at the origin and the other one Zi on
the receiving surface Σ, where ei is a function of the form (3.1). Denote
T = {X ∈ Rn+1 : e0(X) = e1(X)} the intersection of E0 and E1.
Let p ∈ T be a given point and let γ0 and γ1 be the normal of E0

and E1 at p. Let Cp,γ1,γ2 be the reflection cone defined in §3.2. Denote
` = Σ∩Cp,γ1,γ2 . Then for any point Z ∈ ` between Z0 and Z1, there is a
unique ellipsoid E = Ep,Z with foci O and Z, passing through the point
p. By the reflection property of ellipsoid, E is tangent to T at p.

Suppose the ellipsoid E = {X e(X) : X ∈ Sn}. Denote w(x) =
1/e(x), wi(x) = 1/ei(x), i = 0, 1, where as before, x is the projection of
X on the plane {xn+1 = 0}. Since E is tangent to T at p, we have

Dw = θDw1 + (1− θ)Dw0 (6.1)

for some θ ∈ (0, 1). Conversely, for any θ ∈ (0, 1), there is a point Z ∈ `
such that (6.1) holds.

Choose a proper coordinate system such that p is on the positive
xn+1-axis and T is tangential to the plane {xn = 0}. Then

D(w1 − w0) = (0, · · · , 0, α)

for some α 6= 0. Note that the matrix W ≡ 0, see (3.2). We have

D2w = τ(Dw)N , (6.2)

where τ is the function in (4.7). If (4.8) holds, we differentiate (6.2) in
θ to get

d2

dθ2
D2w = τpnpn |D(w1 − w0)|2N > 0. (6.3)

The above inequality implies that near x = 0,

w < θw1 + (1− θ)w0 (6.4)

on the plane xn = 0. In particular we have

w(x) < max(w1(x), w0(x)) for x near 0, 6= 0. (6.5)

Remark 6.1. Inequality (6.5) corresponds to Loeper’s geometric prop-
erty of (A3) in optimal transportation. In optimal transportation, we
have a Monge-Ampere type equation of the form (4.1) with A(x,Du) =
D2

xc(x, T (x,Du)), where c(x, y) is the cost function and T is the mapping
determined by the potential u. By Remark 4.1 in [MTW], condition (A3)
is equivalent to (4.2) above. Let ϕ1 = c(·, y1)+a1 and ϕ2 = c(·, y2)+a2.
Suppose ϕ1 = ϕ2 at some point x0. Let {yt : t ∈ [1, 2]} be a c-segment
(with respect to x0) connecting y1 and y2 and let ϕt = c(·, yt) + at,
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where at is chosen such that ϕt(x0, yt) = ϕ1(x0, y1). Then since the ma-
trix {D2ϕt −A(x,Dϕt)} ≡ 0, differentiating the matrix in t we obtain

d2

dt2
D2ϕt = Apkpl

∂k(ϕ2 − ϕ1)∂l(ϕ2 − ϕ1). (6.6)

From (6.6) one obtain Loeper’s geometric interpretation of (A3).

6.2. Local supporting function is global

Let Γρ be a weak solution to the reflector problem. Suppose that E0, E1

are two supporting ellipsoids at the point p. Inequality (6.5) implies that
E is a local supporting ellipsoid of Γρ at p. We claim that E is a global
c-support at p as well.

Lemma 6.1. Let w0, w1 and w be as above. Suppose (6.5) holds
near 0. Then it holds for all x ∈ Ω.

Proof. By (3.1) we have the expressions

w = c0 +
n∑

k=1

ckxk + c∗
√

1− |x|2, (6.7)

wi = ci
0 +

n∑

k=1

ci
kxk + ci

∗
√

1− |x|2, i = 0, 1, (6.8)

where ck, c∗ are constants. Since E is tangential to T , we have ∂kw =
∂kw0 = ∂kw1 for k = 1, · · · , n− 1 at x = 0, namely

ck = c0
k = c1

k, k = 1, · · · , n− 1.

By (6.1)
cn = θc1

n + (1− θ)c0
n.

Since all ellipsoids E0, E1, E pass through the point p,

c0 + c∗ = c0
0 + c0

∗ = c1
0 + c1

∗.

By (6.5) we also have

c∗ > θc1
∗ + (1− θ)c0

∗.

Therefore from the expressions (6.7) and (6.8) we have

w < wθ := θw1 + (1− θ)w0

for all x ∈ Ω, x 6= 0.
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Let Es denote the solid ellipsoid enclosed by E. Then Lemma 6.1
implies that

Es
0 ∩ Es

1 ⊂ Es.

In optimal transportation, in order that a local c-support is a global
one, one needs to assume the assumption (A3) in the whole domain Ω.
For our reflector problem, the condition (4.8), which corresponds to (A3),
is assumed in a subdomain D and we still have the property that a local
support is a global one. This is not a surprise, due to ellipsoid’s nice
geometry. Obviously such property is also true for paraboloid.

6.3. Continuity estimate

We prove the following C1 regularity. The proof is similar to that in [L].

Theorem 6.1. Assume that f ≥ 0,∈ Lp(U) with p ≥ n+1
2 , and

c0 ≤ g ≤ c1 for some positive constants c0, c1. Then the part of the
reflector Γρ located in D is C1.

Proof. Let p0 be an any given point in Γρ located in D. Choose a
coordinate system such that p0 is on the positive xn+1-axis. Let u = 1

ρ .
To show that Γρ is C1 at p0, it suffices to show that u is C1 at the origin.

Suppose to the contrary that u is not C1 at O. Then there is two
supporting ellipsoids Ei = {Xei(X) : X ∈ Sn}, i = 0, 1, with focus
at Zi ∈ Σ (the other one is at the origin). By previous discussions, all
local supports are global. Hence to avoid the possible complexity of the
geometry of Σ, we may assume that Z0 and Z1 are relatively close. As
above let γ0 and γ1 be the normal of E0 and E1 at p0, and Cp0,γ1,γ2

be the reflection cone defined in §3.2. Denote ` = Σ ∩ Cp0,γ1,γ2 . Let
Z ∈ ` be a middle point between Z0 and Z1 (by arc-length of `). Then
there is a unique ellipsoid E = Ep0,Z with foci O and Z, which is also a
supporting ellipsoid of Γρ at p0, and is tangent to T at p0, where T is
the intersection of E0 and E1.

Suppose E is given by E = {Xe(X) : X ∈ Sn}, with

e(X) =
a2 − c2

a− cX · `
where a is the major axis of E, c = 1

2 |Z|, and ` = F2/|F2|. We shrink
the ellipsoid E by a small factor δ > 0, to get a new ellipsoid Eδ given
by

eδ(X) =
(a− δ)2 − c2

(a− δ)− cX · ` .

Then the point p0 is located outside of E. Let G be the component of
{p ∈ Γρ : p 6∈ Es} which contains p0, where as above, Es denotes the
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solid body enclosed by E. It is easy to verify that

|G| = Cδ
n+1

2 (6.9)

for some C > 0 depending on Z0 − Z1. Let G′ be the radial projection
of G on Sn, namely G = {Xρ(X) : X ∈ G′}. Then the energy from the
light source at the origin is approximately

∫

G′
f ≤ |G′|1− 1

p

∫

G′
fp (6.10)

= o(1)|G′|1− 1
p = o(1)δ

p−1
p

n+1
2 ,

where o(1) → 0 as |G′| → 0. On the other hand, let Σ′ be the set of
points Z ′ ∈ Σ which is a focus of a supporting ellipsoid of Γρ at some
point in G. By (6.5) and similarly to [L], one can show that Σ′ contains
the σ-neighborhood of `′, where `′ ⊂ ` is a curve whose two endpoints are
respectively the middle points between Z0, Z and Z1, Z, and σ ≥ Cδ1/2,
where C depends on Z0 − Z1. Hence we have

∫

Σ′
g ≥ Cδ

n−1
2 . (6.11)

Therefore by the energy conservation,
∫

G′ f =
∫
Σ′ g, we obtain

δ
n−1

2 ≤ o(1)δ
p−1

p
n+1

2

When p ≥ n+1
2 , we reach a contradiction.

Similarly as in [L], we have ρ ∈ C1,α provided c0 ≤ g ≤ c1, f ∈ Lp

with p > n+1
2 .

7. The far field case

As mentioned before, the far field case of the reflector problem can be
regarded as the limit of the near field case with Σ = {dX : X ∈ V },
d → ∞. It can also be stated as follows. Given two energy densities
f ∈ L1(U), g ∈ L1(V ), where U, V ⊂ Sn, U ∩ V = ∅. Find a reflector Γρ

which reflects the light from O with distribution f such that direction
of the reflected light falls in V and the distribution of reflected light is
equal to g.

7.1. The equation

The equation can be obtained from (2.8) by taking limit [KW]. It can
also be derived by direct computation [ON, W1]. Let X = X(t1, t2)



20 Aram Karakhanyan Xu-Jia Wang

be a smooth parametrization of S2. Denote by e = eijdtidtj the first
fundamental form of S2. Put (eij) = (eij)−1. Denote ∂i = ∂/∂ti,
∇ = eij∂iX∂j . Then the unit normal of Γ at Xρ(X) is given by

γ =
∇ρ− ρX√
ρ2 + |∇ρ|2 = − ∇u + uX√

u2 + |∇u|2 ,

where u = 1
ρ . Suppose a ray X ∈ Sn is reflected by Γ to a direction

Y ∈ Sn. Then the reflection mapping T : X → Y is given by

Y = X − 2〈X, γ〉γ = −1
η
[∇u + (u− η)X],

where η = 1
2u (|∇u|2 + u2). Direct computation show that

∂iY = −1
η
qij(∂jX − uj

u
β), (7.1)

where β = 1
η (∇u+uX), qij = ∇iju+(u−η)eij . The equation is obtained

by computing the Jacobian determinant | dY
dX |. By (7.1) we obtain the

equation [ON, W1, GW]

det(∇iju + (u− η)eij)
ηndet(eij)

=
f(X)

g(T (X))
. (7.2)

The boundary condition is

T (U) = V. (7.3)

As noted in §3.1, the matrix {∇iju + (u− η)eij)} vanishes completely if
the reflector is a paraboloid of revolution with focus at the origin.

7.2. Terminology in the far field case

The terminologies are similar to those in §3.2. But there are also some
differences.

Supporting paraboloid. An paraboloid F = {Xf̂(X) : X ∈ Sn} is
a supporting paraboloid of Γ = Γρ at X̄ρ(X̄) if the focus of F is at the
origin and F satisfies

ρ(X̄) = f̂(X̄),
ρ(X ′) ≤ f̂(X ′) ∀ X ′ ∈ U.

(7.4)

For such a paraboloid, the function f̂ has the form, in the polar coordi-
nates,

f̂(X) =
C

1− 〈X, Y 〉 , (7.5)
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where Y ∈ Sn is the axis of F .

R-convexity of function. We say ρ, or Γρ, is R-convex if for any
point X̄ ∈ U , there is a supporting paraboloid at X̄ρ(X̄). An R-convex
function is called admissible in [W1].

Reflection cone. Let γ1 and γ2 be two unit vectors (γ1 6= γ2). Let
p 6= 0 be a point in CU . The reflection cone C∗p,γ1,γ2

is a translation of
Cp,γ1,γ2 such that its vertex is at the origin, where Cp,γ1,γ2 is defined in
§3.2.

R-convexity of boundary. We say ∂V is R-convex if for any point p ∈
CU and any unit vectors γ1, γ2, the intersection C∗p,γ1,γ2

∩V is connected.

Remark 7.1. We make the translation of the reflection cone, because
in the far field case, we are only concerned with the direction of the
reflected rays, so we need to move the starting point of the reflected ray
to the origin. The R-convexity of ∂V should replace the condition (C)
in [W1].

Equivalently, ∂V is R-convex if the intersection C ∩ V is connected
for any round convex cone C with vertex at O containing a point in U .

7.3. Existence and regularity of solutions

Similarly to the treatment in §3 above for the near field case, one can
introduce two different weak solutions, namely type A and type B weak
solutions, for the far field case. A weak solution of type A was introduced
in [W1], and a weak solution of type B was introduced in [CO].

In [W1] we proved the existence of a type A weak solution to the
above problem, in a similar way as in §3 above. When ∂V is R-convex,
the regularity was also established in [W1], in a similar way as in §4
and §5. That is, one establishes the a priori estimates as in §4.1, and
proves the weak solution is smooth in a small ball by solving a Dirichlet
problem, as in §5. In particular it was also shown in [W1] that the
R-convexity of ∂V is necessary for the regularity.

The regularity in the far field case also follows from the arguments
in §4 and §5 above. Recall that the far field case can be regarded as the
limit of the near field case with Σ = {dX : X ∈ U}, d → ∞. When
d is sufficiently large (compared with with sup ρ), conditions (4.2) and
(4.8) are automatically satisfied, so the solution is smooth provided ∂V
is R-convex.

The existence of a type B weak solutions was obtained in [CO] in
the case when U = V = Sn. The a priori estimates (as in §4.1) were
established in [GW], and the existence of a smooth solution was obtained
by the continuity method.
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Remark 7.2. When the densities f, g are not smooth, Caffarelli, Gutier-
rez, and Huang [CGH] proved the solution is C1 smooth if c1 ≤ f, g ≤ c2

for some positive constants c1, c2. The C1 regularity was also obtained
in [TW3] by a different approach. On the other hand, Loeper proved
the C1,α regularity, assuming that f ∈ Lp for p large enough. Recently,
Jiakun Liu [Liu] also proved the C1,α regularity by a different proof.

7.4. Duality of the reflector problem

In the far field case, there is a dual problem to the above problem. Let
ρ be an R-convex function. Let

ρ∗(Y ) = inf{ 1
ρ(X)

1
1− 〈X, Y 〉 : X ∈ Ω}. (7.6)

This transform was first introduced in Lemma 1.1, [W1]. Then we have
(see [GW])

• ρ∗ is an R-convex function in V ;
• Tρ is the inverse of Tρ∗ ;
• if u = 1

ρ satisfies equation (7.2), then u∗ = 1
ρ∗ satisfies the same

equation, namely

det(∇iju
∗ + (u∗ − η∗)eij)

η∗ndet(eij)
=

g(Y )
f(Tρ∗(Y ))

, (7.7)

where η∗ = 1
2u∗ (|∇u∗|2 + u∗2).

Denote
c(X, Y ) = − log(1− 〈X,Y 〉). (7.8)

and denote ϕ = log u, ψ = log ρ∗. Taking logarithm in (7.6) we have the
formula

ψ(Y ) = inf{c(X, Y )− ϕ(X) : X ∈ U} (7.9)

From the above formula one sees that the far field reflector problem is
an optimal transportation problem. Therefore we have the following
theorem, which was included in [W2].

Theorem 7.1. Suppose f ∈ L1(U), g ∈ L1(V ) are two densities
satisfying the energy conservation (2.1). Then there exists a Lipschitz
continuous (ϕ1, ψ1) of the linear functional

I(ϕ,ψ) =
∫

Ω

f(X)ϕ(X) +
∫

Ω∗
g(Y )ψ(Y )

in the convex set

K = {(ϕ, ψ); ϕ ∈ C(Ū), v ∈ C(V̄ ), and
ϕ(X) + ψ(Y ) ≤ c(X, Y ) ∀ X ∈ U, Y ∈ V },
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such that ρ1 = eϕ1 is a weak solution to the reflector problem. Moreover,
the solution is unique, in the sense that if ρ is a smooth solution, then
either ρ = Cρ1 for some constant C > 0.
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