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Abstract We prove that any distribution q satisfying the grad-div system ∇q = div f for
some tensor f = ( f i

j ), f i
j ∈ hr (U ) (1 ≤ r < ∞) -the local Hardy space; q is in hr and q is

locally represented by the sum of singular integrals of f i
j with Calderón-Zygmund kernel. As

a consequence, we prove the existence and the local representation of the hydrostatic pressure
p (modulo constant) associated with incompressible elastic energy-minimizing deformation
u satisfying |∇u|2, |cof ∇u|2 ∈ h1. We also derive the system of Euler–Lagrange equations
for volume preserving local minimizers u that are in the space K 1,3

loc [defined in (1.2)]—
partially resolving a long standing problem. In two dimensions we prove partial C1,α regu-
larity of weak solutions provided their gradient is in L3 and p is Hölder continuous.

Mathematics Subject Classification (2000) Primary 35J60 · 42A40 · 73C50 · 73V25

1 Introduction

Let � ⊂ R
n , n = 2, 3 be a bounded Lipschitz material body. For Neo-Hookean or Mooney-

Rivlin materials [1,17,19] such as vulcanized rubber, in the equilibrium state one is interested
in minimizing the elastic energy
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628 N. Chaudhuri, A. L. Karakhanyan

E[w] :=
∫

�

L(∇w(x))dx (1.1)

for incompressible W 1,2-deformations w : � ⊂ R
n → R

n subject to its own boundary
condition, and corresponding to a given smooth bulk energy L : M

n×n → R. Let us define
the subspace K 1,r for 1 ≤ r < ∞, by

K 1,r (�,Rn) := {
w ∈ W 1,r (�,Rn) : cof ∇w ∈ Lr (�,Mn×n)

}
, (1.2)

where W 1,r denotes the usual Sobolev spaces (see for example, [14, Chapter 7]) and cof P is
the cofactor matrix of P . Using the identity Pt cof P = I dn det P , it follows that det ∇w ∈
L1 for any w ∈ K 1,2. Since |P| = |cof P| for any P ∈ M

2×2, the function spaces K 1,r and
W 1,r are equal in R

2. Let us denote the admissible set of deformations

A := {
w ∈ K 1,2(�,Rn) : det ∇w = 1 a.e. in �

}
. (1.3)

We call u ∈ A to be a local minimizer of E[·] if and only if

E[u] ≤ E[w] for all w ∈ A and supp (w − u) ⊂ �. (1.4)

Under the hypothesis that the energy density L is smooth, polyconvex (convex function of
minors) [1] and satisfies the growth condition

C1(|X |2 + |cof X |2)− C2 ≤ L(X) ≤ C3(1 + |X |2 + |cof X |2), (1.5)

for all X ∈ M
n×n , for some C1 > 0, C2 ≥ 0, C3 > 0, where X : Y := trace(Xt Y ) =∑

i j x i
j yi

j is the scalar product on M
n×n and |X |2 := X : X ; using direct methods in the

calculus of variations together with weak continuity of the determinant, Ball [1] proved
the existence of local minimizers u ∈ A of the energy E[·]. An example of polyconvex
L satisfying the growth condition (1.5) is the stored-energy for incompressible isotropic
Mooney-Rivlin materials in R

3, given by

L(X) = µ1

2
(I1(X)− 3)+ µ2

2
(I2(X)− 3) , (1.6)

where I1(X) := trace(C) = |X |2, I2(X) := 1
2 [(trace(C))2 − trace(C2)] = |cof X |2 are the

first two principle invariants of the right Cauchy-Green strain tensor C := Xt X and µ1, µ2

are positive material constants.
Though the existence of the local minimizers of E[·] in A is known for over 30 years,

the existence of integrable hydrostatic pressure, the derivation of system of Euler–Lagrange
equations and determining partial regularity for such minimizers remains a challenging open
problem. In this article we prove the following results:

(I) The hr (1 ≤ r < ∞)—integrability and local representation of any distribution q
satisfying the grad-div system ∇q = div f, where f := ( f i

j ), f i
j ∈ hr —the local

r-Hardy space (Theorem 2.2).
(II) Existence of a hydrostatic pressure (Lagrange multiplier) p satisfying an equation of

the form ∇ p = div σ where σ := (DL(∇u))t∇u is the Cauchy-Green strain tensor
associated with the volume preserving minimizer u of E[·]. Lr estimates on σ yields
Lr estimates on p if r > 1. The borderline case: a h1-Hardy estimate on σ leads to
a h1 estimate for p (Theorem 3.1).

(III) Validity of Euler–Lagrange equations if the minimizer u is in K 1,3
loc . The pair (u, p)

satisfies the system
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Euler–Lagrange equations 629

div(DL(∇u(x))− p(x) cof ∇u(x)) = 0 in �, (1.7)

in the sense of distribution, where the divergence is taken in each rows (Theorem 4.1).
(IV) Partial C1,α regularity in two dimensions for weak solutions of (1.7) provided their

gradient is in L3 and p is Hölder continuous with exponent 0 < α < 1 (Theorem 5.1).

L2-version of the result in (I) is classical (see [23, Remark 1.4, p. 11]) and plays an important
role in incompressible fluids [23]. The result in (I) is a crucial ingredient in proving (II). The
h1-version of (I) is quite delicate and to the best of our knowledge it is new, and may be of
independent interest. For the case r > 1, it follows that ∇q ∈ W −1,r ; adapting the classical
functional-analytic approach demonstrated for r = 2 (see [17,23]), or arguing directly by
duality and solving the Bogovskii [2] problem of the type

div w = f in V ⊂⊂ U, w = 0 in ∂V,

(see for example, [7, p. 472–474]) one can prove that q ∈ Lr
loc(U ). However, both of these

approaches fail to provide information for the critical case r = 1 and do not give a representa-
tion of q . Whereas, our unified singular integral approach is self-contained and provide local
hr -estimates of q , as well as a representation of q . Main ideas in our proof is to represent the
localized-mollified distribution of q in terms of the Newtonian potential in R

n and finding
its uniform hr estimates, by using Calderón–Zygmund estimate [4,11]. Finally we show that
the local representation of q consists the sum of Calderón-Zygmund type singular integrals
of the tensor f (see Eq. (2.27) in Sect. 4).

In two dimensions, under the stronger hypothesis that the local minimizers of E[·] are
classical (C1,α-diffeomorphism), namely in the Sobolev space W 2,r for some r > 2,
LeTallec and Oden [17] established the system of equations in (1.7). For n = 2, Bauman,
Owen and Phillips [3] proved that if a minimizer is in W 2,r for some r > 2, then it is smooth.
For such W 2,r , r > 2 minimizers, the authors in [3] argued directly on the level of the
Euler–Lagrange equations exploring the existence of integrable hydrostatic pressure. Evans
and Gariepy [9] proved that any non-degenerate, Lipschitz area-preserving local minimizers
of E[·] are in C1,α(�0), for some 0 < α < 1 and a dense open subset �0 ⊂ �. We believe
that the Euler–Lagrange equations (1.7) that we derived for K 1,3-minimizers may be useful
in understanding the partial regularity of such minimizers, as evidenced by the result in (IV).

In order to prove the existence of an integrable pressure p associated with an incompress-
ible local energy-minimizer u, we require the additional mild assumptions that |∇u|2 log(2+
|∇u|2) and |cof ∇u|2 log(2 + |cof ∇u|2) are locally integrable. For n = 2, to derive the sys-
tem of equilibrium equations (1.7) for (u, p) in �, we need u to be in W 1,3; whereas the
previous results in this direction were for W 2,r -minimizers, r > 2.

We organize the paper as follows. In Sect. 2, we prove (I); in Sect. 3, we prove (II); in
Sect. 4, we prove (III), and finally in Sect. 5, we prove (IV). Throughout this article C is a
generic absolute constant depending on n, U , �, u(�), V ⊂⊂ u(�), r , and L . Its value can
vary from line to line, but each line is valid with C being a pure positive number.

2 Local integrability of solutions of ∇q = div f

We recall some of the basic definitions and terminologies of Hardy spaces. Let 1 ≤ r < ∞.
A distribution f belongs to Hr (Rn) if and only if f ∈ Lr (Rn) and R j ( f ) ∈ Lr (Rn) (see for
example, [21, Proposition 3, p. 123]) for j = 1, . . . , n, where R j is the Riesz transform of
f given by
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630 N. Chaudhuri, A. L. Karakhanyan

R j ( f )(x) := lim
ε→0

cn

∫

|y|≥ε

y j

|y|n+1 f (x − y) dy , cn := �( n+1
2 )

π(n+1)/2
,

so that R̂ j ( f )(ξ) = i
ξ j
|ξ | f̂ . In short, we will write Hr (Rn) as simply Hr . For f ∈ Hr , the

norm is defined as

‖ f ‖Hr := ‖ f ‖Lr +
n∑

j=1

‖R j ( f )‖Lr .

A standard result [20, p. 237] states that a positive function f , the Riesz transform R j f ∈ L1
loc

if and only if f log(2 + f ) ∈ L1
loc, if and only if the maximal function

(M f )(x) := sup
ρ>0

1

meas Bρ(x)

∫

Bρ(x)

| f (y)| dy

is locally integrable. For 1 < r < ∞, a classical result asserts that f ∈ Hr if and only if f ∈
Lr , see [20, p. 220]. The celebrated Fefferman duality theorem (see [10], [11, Theorem 2],
[21, Theorem 1, p. 142]) asserts that the dual of H1 is the BMO—the functions of bounded
mean oscillations. The following theorem is due to Calderón-Zygmond [4], Fefferman and
Stein [11, Corollary 1, p. 149–151] and Stein [20, Theorem 3, p. 39].

Theorem 2.1 (Calderón-Zygmond, Fefferman-Stein) Let 1 ≤ r < ∞ and f ∈ Hr . Let G
be a C1 function on R

n\{0} homogeneous of degree 0 with mean value 0 over the unit sphere
S

n−1, that is ∫

Sn−1

G(x) dσ(x) = 0. (2.1)

Then the function defined as

T0 f (x) := lim
δ→0

∫

|y|≥δ

G(y)

|y|n f (x − y) dy (2.2)

exists a.e. and furthermore,

‖T0 f ‖Hr ≤ Cn,r‖ f ‖Hr . (2.3)

In particular, R j ’s are bounded linear operator on Hr for any 1 ≤ r < ∞. Let us recall
the definition of local Hardy spaces introduced by Goldberg [13]. A distribution f on R

n is
said to be in the local r -Hardy space, written as f ∈ hr , if and only if the maximal function

Mloc f (x) := sup
0<ε<1

|(ρε ∗ f )(x)|

is in Lr , where ρε := ε−nρ(x/ε) is a standard approximation of the identity. The hr norm of
f is defined to be the Lr norm of the maximal function Mloc f . It follows that if f ∈ hr then
η f ∈ hr for any smooth cut-off function η and Hr ⊂ hr . For bounded Lipschitz domain
� ⊂ R

n , we adopt the definition of Hardy spaces hr (�) introduced by Miyachi [18]. A
distribution f on � is said to be in hr (�) if f is the restriction to � of a distribution F in
hr (Rn), i.e.,

hr (�) := {
f ∈ D′(�) : ∃ F ∈ hr (Rn), such that F

∣∣
�

= f
}

= hr (Rn)
/{F ∈ hr (Rn) : F = 0 on �}.
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Euler–Lagrange equations 631

The norm on this space is the quotient norm: the infimum of hr norms of all possible
extensions of f in R

n . For 1 < r < ∞ the spaces hr (�) is equivalent to Lr (�). For
smooth bounded domains �, the Theorem 2.1 is valid for f ∈ h1(�), see [5,18].

Theorem 2.2 Let U ⊂ R
n, n ≥ 2 be a bounded Lipschitz domain (open and connected) and

1 ≤ r < ∞. Let f = ( f i
j ) be such that f i

j ∈ hr (U ) for 1 ≤ i, j ≤ n. Then any distribution
q (modulo a constant) on C∞

0 (U ) satisfying the linear system of equations

∇q = div f in D′(U,Rn) ⇐⇒ 〈∇q, v〉 = −
∫

U

f(x) : ∇v(x) dx (2.4)

for v ∈ C∞
0 (U,R

n), is in hr (V ) for any V ⊂⊂ U. Furthermore, q is locally represented by
sum of singular integrals of f i

j (see Eq. (2.27)), and for any V ⊂⊂ U, there exists C > 0
depending only on U, V and r, such that

‖q‖hr (V )/R ≤ C‖f‖hr (U,Mn×n)/V ,

where hr (V )/R := {q ∈ hr (V ) : ∫
V q = 0} and V := {g ∈ hr (U,Mn×n) : div g = 0}.

Proof of Theorem 2.2 Let U ⊂ R
n , n ≥ 2 be a bounded Lipschitz domain. Let f := ( f i

j ) ∈
M

n×n and f i
j ∈ hr (U ) for 1 ≤ r < ∞ and 1 ≤ i, j ≤ n. Let q ∈ D′(U ) be such that

∇q = div f in D′(U,Rn). (2.5)

Our idea is to mollify the equations in (2.5) and use Calderón-Zygmund estimate to obtain
uniform bound for the mollified q . Let V ⊂⊂ U be a sub-domain and 0 < ε < dist(V, ∂U ).
Let ρε be the usual mollification kernel, and define the convolution qε : V → R by

qε(x) = (q ∗ ρε)(x) := 〈q, (ρε)x 〉 for x ∈ V, where (ρε)x (y) := ρε(y − x), y ∈ U.

Then by the standard properties of the mollification [6, Proposition 1, p. 492], qε is smooth
and for any 1 ≤ i ≤ n

∂

∂xi
(q ∗ ρε) = ∂q

∂xi
∗ ρε = q ∗ ∂ρε

∂xi
.

Thus, mollifying the system of equations in (2.5) yields

∇qε = div fε in V, (2.6)

where the divergence is taken in each rows of fε :=
(
( f i

j )ε

)
, here ( f i

j )ε := f i
j ∗ ρε are the

mollification of f i
j . Since f i

j ∈ hr (U ), we conclude that

( f i
j )ε → f i

j strongly in hr (V ) as ε → 0, (2.7)

for all 1 ≤ i, j ≤ n. Applying the divergence operator to the both sides of the Eq. (2.6), we
obtain

�qε = div(div fε) in V . (2.8)

Since there is no control on the boundary values of qε , we need to localize the Eq. (2.8). Let
W ⊂⊂ V ⊂⊂ U . Let η ∈ C∞

0 (R
n), 0 ≤ η ≤ 1 be a cut-off function such that η ≡ 1 in W

and η ≡ 0 outside V . Let q̄ε := ηqε be the localization of qε . Then q̄ε is the solution of
Poisson equation

�q̄ε = f̄ε in R
n, (2.9)
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632 N. Chaudhuri, A. L. Karakhanyan

where

f̄ε := η�qε + 2〈∇qε,∇η〉 + qε�η

= η div(div fε)+ 2〈div fε,∇η〉 + qε�η. (2.10)

Therefore q̄ε is represented by the Newtonian potential in R
n . In other words,

q̄ε(x) = −
∫

Rn

(x − y) f̄ε(y) dy , (2.11)

where  is the fundamental solution of the Laplace equation in R
n given by

(x) :=
⎧⎨
⎩

− 1
2π log |x | if n = 2

1
n(n−2)α(n)

1
|x |n−2 if n ≥ 3,

(2.12)

for x ∈ R
n\{0}, and α(n) := πn/2

�( n
2 +1) is the volume of the unit ball in R

n . Using (2.10) in

(2.11), we obtain

q̄ε(x) = −
∫

Rn

η(y)(x − y) div(div fε(y)) dy − 2
∫

Rn

(〈div fε,∇η〉 + qε�η)(x − y) dy

:= −I 1
ε (x)− 2I 2

ε (x)− I 3
ε (x), (2.13)

where

I 1
ε (x) :=

∫

Rn

η(y)(x − y) div(div fε(y)) dy , (2.14)

I 2
ε (x) :=

∫

Rn

〈div fε(y),∇η(y)〉 (x − y) dy , (2.15)

I 3
ε (x) :=

∫

Rn

qε(y)(x − y)�η(y) dy. (2.16)

By direct computations, observe that, for 1 ≤ i, j ≤ n

()yi = ηyi(y)− 1

ωn

η yi

|y|n , (2.17)

(η )yi y j = ηyi y j (y)− 1

ωn

yiηy j + y jηyi

|y|n − 1

ωn

(
δi j − n

yi y j

|y|2
)

η

|y|n , (2.18)

where δi j is the Krönecker delta and ωn := nαn is the surface area of the unit sphere S
n−1.

We now establish an uniform local hr -estimates (1 ≤ r < ∞) for qε through the following
steps:

Step 1: Limit of I 3
ε . Let us fix x ∈ W ⊂⊂ V ⊂⊂ U . Since �η = 0 on W , the integrand in

I 3
ε (x) is smooth. Since qε is determined up to a constant, by adding a constant, if necessary,

we can assume
∫

Rn qε(y) dy = 0, so that

I 3
ε (x) =

∫

Rn

qε(y)

⎛
⎝(x − y)�η(y) dy −

∫

Rn

(x − z)�η(z) dz

⎞
⎠ dy.
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Euler–Lagrange equations 633

Thus we can add − ∫
Rn (x −z)�η(z) dz to the function y �→ �η(y)(x − y), if nessecary,

to ensure that it has vanishing integral. For each fixed x ∈ W , let vx : V → R
n be the solution

of the Bogovskii problem
⎧⎨
⎩

div vx (y) = �η(y)(x − y) for y ∈ V

vx = 0 on ∂V .
(2.19)

Then using (2.19), integrating by parts and the convergence of fε , we obtain

I 3
ε (x) =

∫

Rn

qε(y)�η(y)(x − y) dy

=
∫

Rn

qε(y) div vx (y) dy

= −
∫

Rn

〈∇qε(y), vx (y)〉 dx

= −
∫

Rn

〈div fε(y), vx (y)〉 dy

=
∫

Rn

fε(y) : ∇yvx (y)〉 dy

→
∫

Rn

f(y) : ∇yvx (y) dy as ε → 0

:= I 3
0 (x) for x ∈ W ⊂⊂ V . (2.20)

Thus, the strong convergence of fε → f in hr (V,Mn×n) yields strong convergence of I 3
ε →

I 3
0 in hr (W ) as ε → 0.

Step 2: Limit of I 2
ε . Let us fix x ∈ W ⊂⊂ V ⊂⊂ U . Integrating by parts, invoking (2.17)

and letting ε → 0 we have

I 2
ε (x) =

∫

Rn

〈div fε(y),(x − y)∇η(y)〉 dy

= −
∫

Rn

fε(y) : ∇y ((x − y)∇η(y)) dy

= −
∫

Rn

fε :
(
(x − y)∇2η − (y − x)⊗ ∇η

ωn |y − x |n
)

dy

→ −
∫

Rn

f :
(
(x − y)∇2η − (y − x)⊗ ∇η

ωn |y − x |n
)

dy

:= I 2
0 (x) for x ∈ W, (2.21)

where a ⊗ b := (ai b j )1≤i, j≤n for a, b ∈ R
n . Using the strong convergence of fε in hr (V ),

it follows that I 2
ε → I 2

0 in hr (W ) as ε → 0.
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634 N. Chaudhuri, A. L. Karakhanyan

Step 3: Limit of I 1
ε . Integrating by parts twice and invoking (2.18) we have

I 1
ε (x) =

∫

Rn

η(y)(x − y) div(div fε(y)) dy

=
∫

Rn

fε(y) : ∇2
y (η(y)(x − y)) dy

=
∫

Rn

fε(y) :
(
(x − y)∇2η(y)− 1

ωn

∇η ⊗ (y − x)+ (y − x)⊗ ∇η
|x − y|n

)
dy

− 1

ωn

∫

Rn

fε(y) :
(

I dn − n
(y − x)⊗ (y − x)

|x − y|2
)

η

|x − y|n dy

:= I 11
ε (x)+ I 12

ε (x), for x ∈ W,

where I dn is the n × n identity matrix. Using the convergence of fε, observe that as ε → 0,

I 11
ε (x) :=

∫

Rn

fε :
(
(x − y)∇2η − ∇η ⊗ (y − x)+ (y − x)⊗ ∇η

ωn |x − y|n
)

dy

→
∫

Rn

f :
(
(x − y)∇2η − ∇η ⊗ (y − x)+ (y − x)⊗ ∇η

ωn |x − y|n
)

dy

:= I 11
0 (x) x ∈ W. (2.22)

In order to estimate I 12
ε , define the kernels �i j : R

n\{0} → R by

�i j (y) := δi j − n
yi y j

|y|2 , y ∈ R
n\{0}, i, j = 1, . . . , n. (2.23)

Since nαn = ωn , integrating by parts, observe that for any i, j = 1, . . . , n,

∫

Sn−1

�i j (y) dσ(y) =
∫

Sn−1

(δi j − nyi y j ) dσ(y)

= ωnδi j − n
∫

Sn−1

yi y j dσ(y)

= ωnδi j − n
∫

B1

∂

∂y j
yi dy

= ωnδi j − nδi jαn

= 0.

Hence each �i j satisfies all the conditions of Calderón-Zygmund Kernel [20]. Therefore,

I 12
ε (x) := − 1

ωn

∫

Rn

ηfε :
(

I dn − n
(y − x)⊗ (y − x)

|x − y|2
)

dy

|x − y|n
)

(2.24)
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Euler–Lagrange equations 635

is the sum of Calderón-Zygmund singular integrals with the homogeneous kernel�i j . Since
f ∈ hr (U,Mn×n) 1 ≤ r < ∞, by Theorem 2.1 we conclude that I 12 ∈ hr (W ). Furthermore,
the following sum of singular integrals

I 12
0 (x) := − 1

ωn

∫

Rn

ηf :
(

I dn − n
(y − x)⊗ (y − x)

|x − y|2
)

dy

|x − y|n (2.25)

exists for almost every x ∈ W ⊂⊂ V and is in hr (W ). From (2.24) and (2.25) we compute

I 12
ε (x)− I 12

0 (x) = − 1

ωn

n∑
i, j=1

∫

Rn

(
η( f i

j )ε(y)− η f i
j (y)

) �i j (x − y)

|x − y|n dy.

Hence by Theorem 2.1, there exists C := C(V,W, r) > 0 such that

‖I 12
ε − I 12

0 ‖hr (W ) ≤ C
n∑

j=1

‖( f i
j )ε − f i

j ‖hr (V ) → 0 as ε → 0. (2.26)

Step 4: Explicit representation of q. To complete the proof, let us define the potential q :
W → R by

q(x) := − (
I 11
0 (x)+ I 12

0 (x)+ 2I 2
0 (x)+ I 3

0 (x)
)
.

Then from (2.20)–(2.22) and (2.26), we conclude that qε → q strongly in hr
loc(U ) for any

1 ≤ r < ∞ and q is represented as

q(x)=
∫

U

f :((x−y)∇2η−∇yvx
)

dy+ 1

ωn

∫

U

f :(∇η ⊗ (y−x)−(y−x)⊗ ∇η) dy

|x−y|n

+ 1

ωn

∫

U

ηf :
(

I dn − n
(y − x)⊗ (y − x)

|x − y|2
)

dy

|x − y|n (2.27)

for any x ∈ W . Since q is the strong limit of the family qε in W , it is independent of the
choice of the cut-off function η. This completes the proof of Theorem 2.2. ��

3 First variation of energy and the existence of hydrostatic pressure

Let � ⊂ R
n , n = 2, 3 be a smooth, simply connected and bounded domain and let L :

M
n×n → R be a smooth function. We are now in a position to establish the existence

of integrable hydrostatic pressure associated with volume preserving local minimizers of
the energy E[·] defined in (1.1). By direct computations, observe that the incompressible
isotropic Mooney-Rivlin bulk-energy given by

L(P) = µ1

2
(|P|2 − 3)+ µ2

2
(|cof P|2 − 3), (3.1)

satisfies the following.

DL = µ1 P + µ2

⎛
⎜⎜⎝

cof(SQ)11 : (S P)11 −cof(SQ)12 : (SQ)12 cof(SQ)13 : (S P)13

−cof(SQ)21 : (S P)21 cof(SQ)22 : (S P)22 −cof(SQ)23 : (S P)23

cof(SQ)31 : (S P)31 −cof(SQ)32 : (S P)32 cof(SQ)33 : (S P)33

⎞
⎟⎟⎠ ,

123



636 N. Chaudhuri, A. L. Karakhanyan

where Q := cof P , and (SX)ij is the 2 × 2 submatrix obtained by deleting the i th row and

the j th column of the matrix X ∈ M
3×3. Furthermore, the Cauchy-Green strain tensor is

given by

(DL(P))t P = µ1 Pt P + µ2

⎛
⎜⎜⎝

|Q2|2 + |Q3|2 −〈Q1, Q2〉 − 〈Q1, Q3〉
− 〈Q1, Q2〉 |Q1|2 + |Q3|2 −〈Q2, Q3〉
− 〈Q1, Q2〉 − 〈Q2, Q3〉 |Q1|2 + |Q2|2

⎞
⎟⎟⎠

for all P ∈ M
3×3, where Qi := (cof P)i := ((cof P)i1, (cof P)i2, (cof P)i3) is the i th row of

cof P , i = 1, 2, 3. Motivated by the above calculations, assume that L satisfies the following
growth condition:

max
(|L(P)|, ∣∣(DL(P))t P

∣∣) ≤ C
(
1 + |P|2 + |cof P|2) , (3.2)

for some C > 0, for any P ∈ M
n×n .

Now we prove the existence of an integrable hydrostatic pressure q on the deformed
domain u(�) and establish an explicit representation of q in terms of Calderón-Zygmund
singular integrals of the Cauchy-Green strain σ̃ := (DL(∇u))t∇u)◦u−1 in u(�). Our proof
consists of deriving the first variation of the energy E[·], obtaining the equation ∇q = div σ̃
and finally to use Theorem 2.2 in establishing hr estimates for q .

Theorem 3.1 Let L : M
n×n → R, n = 2, 3 be smooth and satisfies the growth condi-

tion (3.2). Assume that u ∈ A be a continuous and injective local minimizer of E[·] such
that |∇u|2, |cof ∇u|2 ∈ hr

loc(�) for some 1 ≤ r < ∞. Then there exists a scalar function
q ∈ hr

loc(u(�)) satisfying the equation of the form ∇q = div σ̃ in D′(u(�),Rn), such that

‖q‖hr (V )/R ≤ C
(∥∥|∇u|2∥∥hr (u−1(U )) + ∥∥|cof ∇u|2∥∥hr (u−1(U ))

)
, V ⊂⊂ U ⊂⊂ u(�),

for some C > 0 depending on r, V , U, n and u(�), and the pair (u, q) satisfies the integral
identity ∫

�

DL(∇u(x)) : ∇(v ◦ u) dx =
∫

u(�)

q(y) div v(y) dy (3.3)

for all v ∈ C∞
0 (u(�),R

n).

Corollary 3.2 Let W ⊂⊂ V ⊂⊂ u(�) and let η ∈ C∞
0 (V ) be a cut-off function such that

η ≡ 1 on W . Then q is represented as

q(x) =
∫

V

σ̃ : (
(x − y)∇2η − ∇yvx

)
dy + 1

ωn

∫

V

σ̃ : (∇η ⊗ (y − x)− (y − x)⊗ ∇η)

× dy

|x − y|n + 1

ωn

∫

V

ησ̃ :
(

I dn − n
(y − x)⊗ (y − x)

|x − y|2
)

dy

|x − y|n , (3.4)

for any x ∈ W , where is the Newtonian potential in R
n defined in (2.12) and vx as defined

in (2.19).

Remark 3.3 In connection to the study of regularity of finite energy deformations, Šverák
[22] proved that for any W 1,n-deformation w with det ∇w(x) > 0, a.e., there exists a con-
tinuous function ω on R with ω(0) = 0 such that

|w(x)− w(y)| ≤ ω(|x − y|), for any x, y ∈ � ⊂⊂ R
n .
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For n = 2, Iwaniec and Šverák [16] proved that any non-constant W 1,2-deformation w with
integrable distortion K (·,w) := |∇w(·)|2/det ∇w(·), the Stoilow factorization holds, and
therefore the map w can be written as a composition of a homeomorphism with a holomor-
phic function. Hence such maps w are open and discrete (may have isolated branch-points).
Thus in particular, area-preserving W 1,r (r > 2)-deformations in the plane are continuous
and injective. It is now well-known (see [15,24]) that any non-constant W 1,n-deformation w
for which the distortion function K (·,w) := |∇w(·)|n/det ∇w(·) ∈ Lr for some r > n − 1,
the Stoilow factorization holds. However, for n ≥ 3, deformations in K 1,2 may be totally
discontinuous, see for example [22, p. 119].

In order to prove Theorem 3.1, we establish the following first variation of the energy
integral E[·].

Lemma 3.4 (First Variation) Let u ∈ A be a local minimizer of E[·]. We further assume that
u is a continuous and an injective map. Then u satisfies the following integral identity

∫

�

DL(∇u(x)) : ∇(v ◦ u)(x) dx = 0, (3.5)

for all smooth, compactly supported and divergence free vector fields v on u(�).

Proof By the invariance of domain theorem, u(�) is open and u : � → u(�) is a homeo-
morphism. Let v ∈ C∞

0 (u(�),R
n) be a vector field with div v = 0. For each y ∈ u(�)

consider the unique smooth flow φ(y, ·) : R → u(�) given by

dφ

dt
(y, t) = v(φ(y, t)) in R, φ(y, 0) = y. (3.6)

Using the relations ∂

∂pi
j
det P = (cof P)ij and P (cof P)t = I dn det P , by a direct calcula-

tions we observe that

d

dt

(
det ∇yφ(y, t)

) = det ∇yφ(y, t) div v = 0. (3.7)

Since det ∇yφ(y, 0) = 1, from (3.7) it follows that det ∇yφ(y, t) = 1 for all t ∈ R and
y ∈ u(�). Consider the map w : �× R → u(�) defined by

w(x, t) := φ(·, t) ◦ u (x) = φ(u(x), t) for any t ∈ R, x ∈ �.

Let V := supp v ⊂ u(�), then v(u(x)) = 0 for u(x) �∈ V . This in conjunction with the
uniqueness of φ implies that φ(u(x), t) = u(x) for all points x such that u(x) �∈ V . Since�
is bounded, u is continuous and V is compact,�′ = u−1(V ) is a compact subset of�. Hence
supp(w(x, t) − u(x)) ⊂ �′. Furthermore, det ∇x w(x, t) = det ∇yφ(y, t) det ∇u(x) = 1.
Therefore, w(·, t) ∈ A and supp(u − w(·, t)) ⊂ � for all t ∈ R. Since u is a local minimizer
of E[·],

E[u] ≤ E[w(·, t)] for all t ∈ R.
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Thus, for all smooth, compactly supported and divergence free vector fields v on u(�), we
have

0 = d

dt

∫

�

L(∇w(x, t)) dx

∣∣∣∣∣∣
t=0

=
n∑

i, j=1

∫

�

Li
j (∇w(x, t))

d

dt

(
∂wi

∂x j
(x, t)

)
dx

∣∣∣∣∣∣
t=0

=
n∑

i, j=1

∫

�

Li
j (∇w(x, t))

∂

∂x j

(
dφi

dt
(u(x), t)

)
dx

∣∣∣∣∣∣
t=0

=
n∑

i, j=1

∫

�

Li
j (∇w(x, t))

∂

∂x j

(
vi (φ(u(x), t)

)
dx

∣∣∣∣∣∣
t=0

=
n∑

i, j=1

∫

�

Li
j (∇u(x))

∂

∂x j

(
vi (u(x))

)
dx

=
∫

�

DL(∇u(x)) : ∇(v ◦ u)(x) dx,

where Li
j (P) := ∂L

∂pi
j
(P). This proves the lemma. ��

Proof of Theorem 3.1 Let 1 ≤ r < ∞ and U ⊂⊂ u(�). Let u ∈ A be a local minimizer of
E[·] such that |∇u|2 ∈ hr (U ) and |cof ∇u|2 ∈ hr (U ) for some 1 ≤ r < ∞. Assume further
that u : � → u(�) is continuous and bijective map.

Now let us define g = (g1, . . . , gn) : C1
0 (u(�),R

n) → R by

〈g, v〉 :=
∫

�

DL(∇u(x)) : ∇(v ◦ u)(x) dx, (3.8)

for all v = (v1, . . . , vn) ∈ C1
0 (u(�),R

n). In view of the volume constraint and growth
condition (3.2), it follows that

|〈g, v〉| ≤ C
(

1 + ‖∇u‖2
L2(�)

+ ‖cof ∇u‖2
L2(�)

)
‖∇v‖L∞(u(�)), (3.9)

for any v ∈ C1
0 (u(�),R

n). Hence g is a continuous linear functional on C1
0(u(�),R

n). Using
the the first variation (3.5), we conclude that

〈g, v〉 = 0 ∀v ∈ C1
0 (u(�),R

n) such that div v = 0. (3.10)

Hence there exists q ∈ D′(u(�)) (see [23, Proposition 1.1, p. 10]), such that

g = −∇q in D′(u(�),Rn) (3.11)

modulo translation of a constant. In order to obtain hr estimates of q; for 1 ≤ i, j ≤ n, we
define σ i

j : � → R by

σ i
j (x) :=

n∑
k=1

Li
k(∇u(x))

∂u j

∂xk
(x) for x ∈ �, (3.12)
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so that, the Cauchy-Green strain tensor on � is given by

σ :=
(
σ i

j

)
= (DL(∇u))t ∇u. (3.13)

Define the i j th component of the Cauchy-Green Strain tensor σ̃ i
j on the deformed domain

u(�) by

σ̃ i
j := σ i

j ◦ u−1 on u(�), i, j = 1, . . . , n. (3.14)

The growth condition |σ i
j | ≤ C(1 + |∇u|2 + |cof ∇u|2) and |∇u|2, |cof ∇u|2 ∈ L log L

yields σ̃ i
j ∈ h1(U ). If u ∈ K 1,2r

loc (�,R
n) for some 1 < r < ∞, from the definition of σ i

j , σ̃
i
j

and the condition (3.2) on L , it follows that
∫

U

|(σ̃ i
j |r =

∫

u−1(U )

|σ i
j |r

≤ C
(

1 + ‖∇u‖2r
L2r (u−1(U )) + ‖cof ∇u‖2r

L2r (u−1(U ))

)
, (3.15)

for any U ⊂⊂ u(�). In conclusion, if |∇u|2 ∈ hr and |cof ∇u|2 ∈ hr
loc for some 1 ≤ r < ∞,

we have

σ :=
(
σ i

j

)
∈ hr

loc(�,M
n×n) and σ̃ :=

(
σ̃ i

j

)
∈ hr

loc(u(�),M
n×n).

Observe that, the definition of g in (3.8), σ i
j in (3.12), σ̃ i

j in (3.14) and the change of variables
(see [22, Corollary 1]) yields,

〈g, v〉 =
n∑

i,k=1

∫

�

Li
k(∇u(x))

∂

∂xk
(vi ◦ u)(x) dx

=
n∑

i, j,k=1

∫

�

Li
k(∇u(x))

∂vi

∂y j
(u(x))

∂u j

∂xk
(x) dx

=
n∑

i, j=1

∫

�

σ i
j (x)

∂vi

∂y j
(u(x)) dx

=
∫

�

σ(x) : ∇uv(u(x))dx

=
∫

u(�)

σ̃ (y) : ∇v(y) dy

= −〈div σ̃ , v〉 (3.16)

for any v ∈ C1
0(u(�),R

n). Hence

g = − div σ̃ in D′(u(�),Rn), (3.17)

where the divergence is taken in each rows. Therefore, combining (3.11) and (3.17), we get

∇q = div σ̃ in D′(u(�),Rn). (3.18)
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Applying Theorem 2.2 to (3.18), we conclude that q satisfies the local representation (3.4)
and the estimate

‖q‖hr (V )/R ≤ C‖σ̃‖hr (U,Mn×n)/V
≤ C

(‖|∇u|2‖hr (u−1(U )) + ‖|cof ∇u|2‖hr (u−1(U ))

)
, (3.19)

for any V ⊂⊂ U ⊂⊂ u(�), for some C > 0 depending on r , V , U n and u(�). Since
q ∈ L1

loc(u(�)), from (3.11) it follows that

〈g, v〉 = −〈∇q, v〉 = 〈q, div v〉 =
∫

u(�)

q(y) div v(y) dy

for any v ∈ C1
0 (u(�),R

n). Hence∫

�

DL(∇u(x)) : ∇(v ◦ u)(x)dx =
∫

u(�)

q(y) div v(y) dy, (3.20)

for any v ∈ C1
0 (u(�),R

n). This completes the Theorem. ��

4 Derivation of Euler–Lagrange equations

Theorem 4.1 Let � ⊂ R
n, n = 2, 3 be a smooth, simply connected and bounded domain.

Let u ∈ A ∩ K 1,s
loc (�,R

n) for some s ≥ 3 be a continuous and injective local minimizer of

E[·]. Then the hydrostatic pressure p := q ◦ u ∈ Ls/2
loc (�), and the pair (u, p) satisfies∫

�

DL(∇u(x)) : ∇φ(x) dx =
∫

�

p(x) cof ∇u(x) : ∇φ(x) dx, (4.1)

for all φ ∈ C1
0(�,R

n), where q ∈ Ls/2
loc (u(�)) as in Theorem 3.1. In other words, the pair

(u, p) satisfies the system of Euler–Lagrange equations

div (DL(∇u(x))− p(x) cof ∇u(x)) = 0 in D′(�,Rn).

Proof We recall that K 1,s(�,Rn) := {w ∈ W 1,s(�,Rn) : cof ∇w ∈ Ls(�,Mn×n} and
A := {w ∈ K 1,2(�,Rn) : det ∇w = 1 a.e.}. Let u be as in the statement of the theorem.
By Theorem 3.1, there exists q ∈ Ls/2

loc (u(�)) such that the pair (u, q) satisfies the identity
(3.20). Let u−1 : u(�) → � be the inverse of u. Then using the volume-constraint we obtain

∇yu−1(y) = (∇x u(x))−1 = (cof ∇u(x))t , y = u(x),

and hence by the change of variables∫

u(�)

|∇u−1(y)|2dy =
∫

�

|cof ∇u(x)|2dx < ∞.

Using the relation cof (XY ) = cof X cof Y , for X, Y ∈ M
n×n , observe that

I dn = cof
(∇yu−1 ∇u

) = cof ∇yu−1 cof ∇u = cof ∇yu−1 (∇u)−t ,

and hence

cof ∇u−1 = (∇u)t .
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Since u ∈ K 1,s
loc (�,R

n), it follows that u−1 ∈ K 1,s
loc (u(�),�) for s ≥ 3. Let V ⊂⊂ u(�)

and φ ∈ C1
0 (u

−1(V ),Rn). Then the composition φ ◦ u−1 ∈ W 1,s
0 (V,Rn). Hence there exists

vε ∈ C1
0(V,R

n) such that vε → ψ := φ ◦ u−1 strongly in W 1,s(V,Rn) as ε → 0. Let
U := u−1(V ). Then Hölder inequality yields∫

U

DL(∇u) : (∇(vε ◦ u)− ∇(ψ ◦ u)) dx =
∫

U

(∇u)t DL(∇u) : (∇zvε(u)− ∇zψ(u)) dx

≤ C‖∇u‖L2s′ (U ) ‖∇(vε − ψ)‖Ls (V ),

where s′ := s/(s −1). Notice that s ≥ 3 yields 2s′ ≤ s and hence ∇u ∈ Ls
loc(�) ⊆ L2s′

loc(�).
Therefore, from (3.8) we obtain

〈g, vε〉 =
∫

u−1(V )

DL(∇u(x)) : ∇(vε ◦ u)(x) dx

→
∫

u−1(V )

DL(∇u(x)) : ∇(φ ◦ u−1 ◦ u)(x) dx as ε → 0

=
∫

u−1(V )

DL(∇u(x)) : ∇φ(x) dx . (4.2)

Since we have ∇u, cof ∇u ∈ Ls
loc, q ∈ Ls/2

loc and Ls/2
loc ⊆ Ls/(s−1)

loc for s ≥ 3, making the
change of variables in (3.20), and letting ε → 0 we obtain

〈g, vε〉 =
∫

V

q(y) trace (∇vε(y)) dy.

=
∫

u−1(V )

q(u(x)) trace (∇uvε(u(x))) dy

=
∫

u−1(V )

q(u(x)) trace
(∇(vε ◦ u)(x) (cof ∇u(x))t

)
dx

=
∫

u−1(V )

q(u(x)) cof ∇u(x) : ∇(vε ◦ u)(x) dx,

→
∫

u−1(V )

q(u(x)) cof ∇u(x) : ∇(φ ◦ u−1 ◦ u)(x) dx

=
∫

u−1(V )

q(u(x)) cof ∇u(x) : ∇φ(x) dx . (4.3)

Hence from (4.2) and (4.3) we obtain∫

u−1(V )

DL(∇u(x)) : ∇φ(x) dx =
∫

u−1(V )

q(u(x)) cof ∇u(x) : ∇φ(x) dx,

for any φ ∈ C1
0 (u

−1(V ),Rn). Finally, choose a sequence of smooth, simply connected
sub-domains Vk ⊂⊂ Vk+1 ⊂⊂ u(�) such that u(�) = ∪∞

k=1Vk . Utilizing the foregoing
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arguments, there exists qk ∈ Ls/2(Vk), k ≥ 1 such that∫

u−1(Vk )

DL(∇u) : ∇φ dx =
∫

u−1(Vk )

qk(u) cof ∇u : ∇φ dx , (4.4)

for φ ∈ C1
0(u

−1(Vk),R
n). Since u is locally volume-preserving homeomorphism, � =

∪∞
k=1u−1(Vk) is an open covering of � and u−1(Vk) ⊂⊂ u−1(Vk+1). Using the identity

div cof ∇u(x) = 0 and the invertibility of ∇u(x), from (4.4) it follows that qk is unique up
to a translation of a constant. Thus adding constant terms as necessary to each qk , we deduce
from (4.4) that for each fixed k ≥ 1

qi (z) = qk(z) for z ∈ Vi , 1 ≤ i ≤ k.

We finally define q : u(�) → R as q(z) := qk(z) for z ∈ Vk , so that q ∈ Ls/2
loc (u(�)). This

proves that for any φ ∈ C1
0 (�,R

n), the pair (u, q) satisfies
∫

�

DL(∇u(x)) : ∇φ(x) dx =
∫

�

q(u(x)) cof ∇u(x) : ∇φ(x) dx .

Now let us define the hydrostatic pressure p on � by

p(x) := q(u(x)) for x ∈ �.
Then for any k ≥ 1,∫

u−1(Vk )

|p(x)|s/2 =
∫

u−1(Vk )

|q(u(x))|s/2dx =
∫

Vk

|q(z)|s/2dz < ∞.

Hence p ∈ Ls/2
loc (�) and the pair (u, p) satisfies
∫

�

DL(∇u(x)) : ∇φ(x) dx =
∫

�

p(x) cof ∇u(x) : ∇φ(x) dx, (4.5)

for any φ ∈ C1
0 (�,R

n). In other words, (u, p) satisfies the system of Euler–Lagrange equa-
tions

div (DL(∇u(x))− p(x) cof ∇u(x)) = 0 in �,

in the sense of (4.5). This completes the proof. ��

5 Partial regularity of area-preserving minimizers

In two dimensions, as a consequence of the Euler–Lagrange equations (1.7), together with
the standard elliptic estimates [12], we establish the following theorem.

Theorem 5.1 Let � ⊂ R
2 be a smooth, bounded simply connected domain and let L :

M
2×2 → R be smooth, uniformly convex, such that DL has linear growth and D2 L is

bounded. Let u ∈ W 1,3(�,R2) be an area-preserving minimizer of the energy E[·]. Fur-
thermore, assume that the associated hydrostatic pressure q on the deformed domain u(�)
is C0,α for some 0 < α < 1. Then ∇u is Hölder continuous on a dense open set �0 ⊂ �.
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Proof Since u ∈ W 1,3(�,R2) and u is area-preserving, u(�) is open and u is a
homeomorphism from � to u(�). By Theorem 4.1, there exists q ∈ L3/2

loc (u(�)) and the
pair (u, q ◦ u) satisfies the system

2∑
j=1

∂

∂x j

(
∂L

∂pi
j

(∇u)− p(x) (cof ∇u)ij

)
= 0, in �, i = 1, 2, (5.1)

where p := q ◦ u. Assume that q ∈ C0,α(u(�)). Since u ∈ W 1,3, Sobolev imbedding
theorem yields u ∈ C0,1/3, and hence p is Hölder continuous with the exponent α/3. Let
F : �× M

2×2 → R be the free-energy defined as

F(x, P) := L(P)− p(x) det P x ∈ �, P ∈ M
2×2,

so that we can rewrite the nonlinear system (5.1) as

2∑
j=1

∂

∂x j

(
Ai

j (x,∇u)
)

= 0, in �, i = 1, 2, (5.2)

where

Ai
j (x, P) := ∂F

∂pi
j

(x, P) = ∂L

∂pi
j

(P)− p(x)(cof P)ij .

Let U ⊂⊂ �. Since |cof P| = |P| for any P ∈ M
2×2, |DL(P)| ≤ C(1 + |P|) and D2 L(P)

is bounded,

|Ai
j (x, P)| ≤ C(1 + |P|),

∣∣∣∣∣
∂Ai

j

∂pk
l

(x, P)

∣∣∣∣∣ ≤ C, (5.3)

for any x ∈ U, P ∈ M
2×2. By Hölder continuity of p, it follows that

|Ai
j (x, P)− Ai

j (y, P)|
1 + |P| = |p(x)− p(y)|

∣∣∣(cof P)ij

∣∣∣
1 + |P|

≤ C |x − y|α/3, (5.4)

for any x ∈ U, P ∈ M
2×2. By direct calculations and the ellipticity of L it follows that

2∑
i, j,k,l=1

∂Ai
j

∂pk
l

(x, P)ξi jξkl =
2∑

i, j,k,l=1

∂2 F

∂pi
j pk

l

(x, P)ξi jξkl

=
2∑

i, j,k,l=1

∂2 L

∂pi
j pk

l

(P)ξi jξkl − 2p(x) det ξ

≥ λ0|ξ |2 − 2p(x) det ξ

:= I (x, ξ), for P = (pi
j ), ξ = (ξi j ) ∈ M

2×2, (5.5)
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where λ0 > 0 is the ellipticity constant of L . Completing squares, observe that

I (x, ξ)

λ0
= |ξ |2 − 2

p(x)

λ0
det ξ

= ξ2
11 + ξ2

12 + ξ2
21 + ξ2

22 − 2
p

λ0
(ξ11ξ22 − ξ12ξ21)

=
(
ξ11 − p

λ0
ξ22

)2

+
(
ξ12 + p

λ0
ξ21

)2

+
(

1 − p2

λ2
0

)
(ξ2

22 + ξ2
21). (5.6)

Similarly, we obtain

I (x, ξ)

λ0
=

(
ξ22 − p

λ0
ξ11

)2

+
(
ξ21 + p

λ0
ξ12

)2

+
(

1 − p2

λ2
0

)
(ξ2

11 + ξ2
12). (5.7)

Adding the identities (5.6) and (5.7), we obtain

2
I

λ0
=

(
ξ11 − p

λ0
ξ22

)2

+
(
ξ12 + p

λ0
ξ21

)2

+
(
ξ22 − p

λ0
ξ11

)2

+
(
ξ21 + p

λ0
ξ12

)2

+
(

1 − p2

λ2
0

)
|ξ |2

≥
(

1 − p2

λ2
0

)
|ξ |2. (5.8)

Thus from (5.5) and (5.8), it follows that the map P �→ A(·, P) is strongly elliptic if there
exists µ0 > 0 such that

2∑
i, j,k,l=1

∂Li
j

∂pk
l

(x, P)ξi jξkl ≥ λ0

2

(
1 − p2

λ2
0

)
|ξ |2 ≥ µ0|ξ |2, for x ∈ �, P, ξ ∈ M

2×2,

which is equivalent to assume that

p2 ≤ λ2
0 − 2λ0µ0 �⇒ (p − µ0)

2 ≤ (λ0 − µ0)
2. (5.9)

Since p is defined up to addition of arbitrary constant, the inequality (5.9) is satisfied in
subdomain U ⊂⊂ � if and only if

oscU p < λ0. (5.10)

Since p is Hölder continuous, the estimate (5.10) holds for any subdomain U ⊂ � with
sufficiently small diameter. Hence A(x, P) is strongly elliptic in P for each x ∈ U ⊂⊂ �,
having sufficiently small diameter. This proves that Ai

j (x, P) satisfies all the conditions of
Giaquinta-Modica in [12] on U ⊂⊂ �, with diameter of U being small. Hence by [12,
Theorem 1], we conclude that ∇u is Hölder continuous on a dense open subset U0 of U . By
Vitali’s covering theorem [8, Corollary 2, p. 28] we conclude the proof. ��
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