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Abstract

We introduce a simple method, allowing to simplify the regularity issues for weak

solutions to refractor problem. It avoids the use of covariant derivatives and it is

straightforward. Main idea is to use a suitable parametrization of unit sphere used

in [KW] in connection to reflector problem.

1 Introduction and main result

It is well-known that ellipse and hyperbola have simple refraction properties, namely if

rays of light diverge from one focus, then after refraction they pass parallel to the major

axis (see figure 1). If the ellipse (resp. hyperbola) represents the boundary separating

two medias, with refractive constants n1, n2 then according to refraction law

n1 sin α = n2 sin β,

where α and β are the angles between normal and respectively the ray before and after

refraction. Introduce the refractive index, k = n1/n2, then one can verify that k = 1/ε,

where ε is the eccentricity of ellipse (resp. hyperbola) [M]. These properties are limiting

cases of solutions to more general problems of determining the surface required to refract

rays of light diverging from one point and after refraction covering a given set of directions
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on the unit sphere. More precisely let us assume we are given two sets Ω, Ω∗ on unit sphere

centered at origin, and nonnegative integrable functions f, g defined respectively on Ω and

Ω∗. For every X ∈ Ω we issue a ray from origin passing through X, which after refraction

from the unknown surface Γ is another ray given by Y = Y (X) ∈ Ω∗. It is clear that

mapping Y is determined by Γ. Now the problem is the following: given two pairs (Ω, f)

and (Ω∗, g) satisfying to mass balance condition
∫

Ω

f =

∫

Ω∗
g, (1.1)

find a surface Γ, such that for corresponding mapping Y (X) we have

Y (Ω) = Ω∗.

Suppose that Γ = {Z, Z = Xρ(X)}, then mathematically this problem is amount to solve

a Monge-Ampère type equation

det(D2
ijρ− σij(x, ρ, Dρ)) = h(x, ρ, Dρ), (1.2)

subject to boundary condition

Y (Ω) = Ω∗. (1.3)

Here Ω is a subset of upper half sphere. The solution to (1.2), should be sought in the

class of functions such that the matrix D2
ijρ− σij(x, ρ, Dρ) ≥ 0. If ρ is smooth and ρ1 is

the radial, smooth function defining Γ1 such that Γ1 touches Γ from above, moreover

D2
ijρ1 − σij(x, ρ1, Dρ1) = 0,

then it is easy to see that it implies D2
ijρ−σij(x, ρ,Dρ) ≥ 0. It turns out that the suitable

support functions with above properties are ellipsoids and hyperboloids of revolution (see

Section 2.1).

Recently C.Gutierrez and Q.Huang proved that the problem above is an optimal trans-

fer problem [U] with cost function

c(X,Y ) = log
1

1− 1
k
(X · Y )

.

A similar cost function appears in reflector problem introduced by X-J. Wang [W1], [W2].

The regularity of the solutions to optimal transfer problems are discussed in [MTW] and
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Figure 1: Refraction from ellipse and hyperbola.

[TW1]. The most important thing is the so-called A3 condition, imposed on matrix σij

[MTW]. As soon as one has it the rest of the regularity, both local and global will follow

from the classical framework established in [MTW], [TW1] and [TW2]. In [GH] authors

have verified the A3 condition, however without using Euclidian coordinates.

In this note we give a simple way of verifying the A3 condition, for k > 1 without

invoking to covariant derivatives. It is also explicit, strict and straightforward (2.16).

Main idea is to find a simple formula for mapping Y (X) using a parametrization of upper

unit half sphere, used in [KW]. Then the rest will follow along the arguments of [KW].

This method is very general and one can apply it to far-field problem. Indeed if one

considers a map z = ρx + ty, where t is the stretch function, then detDz will give the

equation for far-field problem. However we don’t discuss this problem in present note. It

is worth noting that, if support functions are hyperbolas, i.e. k < 1 the A3 condition is

in general not fulfilled (see (2.16)). Our main result is contained in the following

Theorem 1 If ρ is the radial function defining Γ, and u = 1/ρ, then u is a weak solution
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to

det

{
D2u− (Id +

x⊗ x

1− |x|2 )
1

B

}
= h, (1.4)

h =
f(x)

g(y)

|Yn+1V |
(k|δ|)n

1

(1− |x|2)|detµ| ,

where b = u2 + |Du|2 − (Du · x)2, V =
√

u2 − δb and µ is given by (2.8). Furthermore

let’s assume that Ω∗
0 is c∗ convex with respect to Ω0, where Ω0 and Ω∗

0 are the orthogonal

projections of respectively Ω and Ω∗ onto hyperplane xn+1 = 0 and

c(x, y) = log
{

1− ε(x · y +
√

1− |x|2
√

1− |y|2)
}

.

If ε < 1, then B−1 is concave in gradient, and hence the weak solution u is locally smooth,

provided densities f ∈ C2(Ω), g ∈ C2(Ω∗) and 0 < λ ≤ f, g ≤ Λ < ∞.

For definition of c∗ convexity we refer to [MTW].

1.1 Problem Set-up

Let us consider the case of two homogeneous medias, with refractive constants n1 and n2.

Ω and Ω∗ are two domains on the unit sphere Sn = {x = (x1, . . . , xn+1), x
2
1 + · · ·+x2

n+1 =

1}. For X ∈ Sn, x = (x1, . . . , xn, 0). We also suppose that Ω is a subset of upper unit

sphere Sn∩{xn+1 > 0}. In what follows we consider ρ as a function of x ∈ Ω0, with Ω0 as

orthogonal projection of Ω on to hyperplane xn+1 = 0. By Dρ we denote the gradient of

function ρ with respect to x variable Dρ = (Dx1ρ, . . . , Dxnρ). First let us derive a formula

for unit vectors X and Y , using angles α and β. Since X,Y and outward unit vector γ

lie in the same plane, we have

Y = C1X + C2γ (1.5)

for two unknowns, C1 and C2 depending on X. If one takes the scalar product of Y with

γ and then with en+1, then
{

cos β = C1 cos α + C2

cos (α− β) = C1 + C2 cos α.
(1.6)

Multiplying the first equation by cos α and subtracting from the second one we infer

C1 =
sin β

sin α
, C2 = cos β − C1 cos α. (1.7)
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Introduce k = n1/n2, hence we find that C1 = k and C2 = cos β − k cos α, that is

Y = kX + (cos β − k cos α)γ. (1.8)

We can further manipulate (1.8). Note that

n2
2 − n2

2 cos2 β = n2
2 sin2 β = n2

1 sin2 α = n2
1 − n2

1 cos2 α. (1.9)

Dividing the both sides by n2
2 we obtain

k2 cos2 α = (k2 − 1) + cos2 β.

Returning to (1.8) we get

Y = kX + (
√

k2 cos2 α− (k2 − 1)− k cos α)γ = (1.10)

= k
(
X + [

√
(X · γ)2 − δ −X · γ]γ

)
,

where δ = (k2 − 1)/k2. From [KW] we have

γ = − Dρ−X(ρ + Dρ · x)√
ρ2 + |Dρ|2 − (Dρ · x)2

(1.11)

where X = (x,
√

1− |x|2), Dρ = (ρx1 , . . . , ρxn). It is convenient to work with a new

function u = ρ−1. By direct computation we have that

γ =
Du + X(u−Du · x)√
u2 + |Du|2 − (Du · x)2

. (1.12)

Introduce b = u2 + |Du|2 − (Du · x)2, then

Y = k
(
X + [

√
(X · γ)2 − δ −X · γ]γ

)
(1.13)

= k

(
X + [

√
u2

b
− δ − u√

b
]γ

)

= k
(
X + b−1[

√
u2 − δb− u][Du + X(u−Du · x)]

)
,

where we used

X · γ =
u√

u2 + |Du|2 − (Du · x)2
> 0. (1.14)
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It is worth to point out that cos2 β = k2 cos2 α− (k2− 1) ≥ 0 implies that u2− δb ≥ 0.

In its turn this gives a gradient estimate

|Du| ≤ ε√
1− ε2

u

Xn+1

provided ε < 1 and hence δ = 1 − ε2 > 0. Before starting our computations let us note,

that if µ = Id + Cξ ⊗ η for some constant C and for any two vectors ξ, η ∈ Rn, then one

has

µ−1 = Id− Cξ ⊗ η

1 + C(ξ · η)
. (1.15)

Recall that Y is a unit vector, hence DkYn+1 = −y·Dky/Yn+1, where y = (Y1, Y2, . . . , Yn, 0),

so we conclude

dSΩ∗

dSΩ

=

∣∣∣∣∣∣∣∣∣∣∣

Y1,1, · · · , Y1,n, Y1

...
. . . . . .

...

Yn,1, · · · , Yn,n, Yn

Yn+1,1, · · · , Yn+1,n, Yn+1

∣∣∣∣∣∣∣∣∣∣∣

(1.16)

=
1

Yn+1

detDy.

In fact one needs to take the absolute value of the right hand side to obtain the Jacobian

J .

2 Proof of Theorem 1

The aim of this section is to prove the following

Proposition 1 If Y is given as above and

y = k

[
x− δ√

u2 − δb + u
(Du + x(u−Du · x))

]
, (2.1)

then

Dy

k
=

δ

V
µ[Id− x⊗ x]

{
(Id +

x⊗ x

1− |x|2 )
1

B
−D2u

}
, (2.2)

where b = u2 + |Du|2 − (Du · x)2.
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Proof. Introduce V =
√

u2 − δb + u, z = Du + x(u −Du · x). Using these notations

one can rewrite

y = k[x− δ

V
z].

By a direct computation we have

Dy

k
= δij − δ

V
(zi

j −
ziVj

V
). (2.3)

Note that

zi
j = uij − xixmum,j + δ(u−Du · x), (2.4)

Vj = puj − q(um − (um − (Du · x)xm))umj,

p =
V − δ(u−Du · x)

V − u
, q =

δ

V − u
.

Then

Dy

k
= δij − δ

V

[
(Id− x⊗ x)D2u + Id(u−Du · x)− p

V
z ⊗Du (2.5)

− q

V
z ⊗ (Du− (Du · x)x)D2u

]
(2.6)

= [1− δ

V
(u−Du · x)]

[
Id + Az ⊗Du

−B
{

(Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)

}
D2u

]
, (2.7)

where we set

A =
δp
V 2

1− δ
V

(u−Du · x)
, B =

δ
V

1− δ
V

(u−Du · x)
.

Lemma 1 Let µ = Id + Az ⊗Du, then

µ−1
{

(Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)

}
= Id− x⊗ x. (2.8)

Proof. First by (1.15)

µ−1 = Id− Az ⊗Du

1 + A(z ·Du)
.

Let N =
{
(Id− x⊗ x) + q

V
z ⊗ (Du− (Du · x)x)

}
, then by a direct computation we have

µ−1N = (Id− x⊗ x) +
q

V
z ⊗ (Du− (Du · x)x)− Az ⊗Du

1 + A(z ·Du)
(2.9)

+
A

1 + A(z ·Du)
[(Du · x)z ⊗ x− q

V
(Du · z)z ⊗ (Du− (Du · x)x)].
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Let us sum up all ⊗ products with z, the resulting vector is

q

V
(Du− (Du · x)x) +

A

1 + A(z ·Du)
[−Du + (Du · x)x− q

V
(Du · z)(Du− (Du · x)x)]

= [
q

V
− A

1 + A(z ·Du)
(1 +

q

V
Du · z)](Du− (Du · x)x).

On the other hand

q

V
− A

1 + A(z ·Du)
(1 +

q

V
Du · z) =

1

1 + A(z ·Du)
[
q

V
− A]. (2.10)

Using definitions of q, p and A we obtain that

q

V
− A =

δ

V (V − u)
− δp

V (V − δ(u−Du · x))
(2.11)

=
δ

V

(
1

V − u
−

V−δ(u−Du·x)
V−u

V − δ(u−Du · x)

)
= 0

The lemma is proved.

Summarizing we finally obtain

Dy

k
= [1− δ

V
(u−Du · x)]Bµ[Id− x⊗ x]

{
(Id +

x⊗ x

1− |x|2 )
1

B
−D2u

}
(2.12)

=
δ

V
µ[Id− x⊗ x]

{
(Id +

x⊗ x

1− |x|2 )
1

B
−D2u

}
.

Now returning to Jacobian, we have the formula

J =

∣∣∣∣
detDy

Yn+1

∣∣∣∣ (2.13)

=
(k|δ|)n

|Yn+1V |(1− |x|
2)detµ

∣∣∣∣det

{
(Id +

x⊗ x

1− |x|2 )
1

B
−D2u

}∣∣∣∣

=
f(x)

g(y)

thus the equation is

det

{
D2u− (Id +

x⊗ x

1− |x|2 )
1

B

}
= h, (2.14)

h =
f(x)

g(y)

|Yn+1V |
(k|δ|)n

1

(1− |x|2)|detµ| .

The reason why the Hessian of u in above equation comes first is because at each point

where ρ = 1/u can be touched from above by an ellipsoid, the matrix W = D2u− (Id +
x⊗x

1−|x|2 )
1
B

is nonnegative.
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2.1 Ellipsoid and hyperboloid of revolution

In this section we show that W ≡ 0 for u = 1
C
(1 − ε(` · X)), that is when ρ = 1/u is

the radial graph of ellipsoid or hyperboloid of revolution. To fix ideas we assume that

` = en+1. Thus u = 1
C

(1 − εXn+1). It is enough to show that B = CXn+1/ε. By direct

computation

b =
1

C2
(1− 2εXn+1 + ε2) (2.15)

u2 − δb =
ε2

C2
(Xn+1 − ε)2.

Therefore V = (1− ε2)/C, which implies that

B =
δ

V − δ(u−Du · x)
=

CXn+1

ε
.

2.2 Verification of A3 condition

The equation (1.4) is generalized Monge-Ampère equation. To obtain smoothness of

the solution, one needs to show, that B−1 is strictly concave in gradient. This is a

necessary condition, called A3 and first introduced in [MTW], in order to obtain C2 a

priori estimates. It turns out that if δ > 0, i.e. when support functions are ellipsoids of

revolution, then B−1 is strictly concave in gradient. Recall that B−1 = δ−1(
√

u2 − δb+u),

hence it is enough to show that
√

u2 − δb is concave in gradient. Let ξ be the dummy

variable for Du, then we have

∂

∂ξk

√
u2 − δb = − δ√

u2 − δb
bpk

(2.16)

∂2

∂ξk∂ξl

√
u2 − δb = − δ√

u2 − δb
[bξkξl

+ δ
bξk

bξl

u2 − δb
].

On the other hand b = u2 + |ξ|2− (ξ · x)2, which is strictly convex function of ξ, provided

|x| < 1. Hence
∂2B−1

∂ξk∂ξl

< 0.

From here the proof of Theorem 1 follows from [MTW] and [TW2].
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