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Overview PDE 1 course

Not much about structure of hyperbolic PDEs, but only focusing on elliptic and
parabolic equations.

Not much about solution generating techniques. E.g. we will not discuss Perron’s
method but will touch upon the energy method

Much about the function spaces they act on.

Much about existence and uniqueness of solutions.
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Operator picture

A : X → Y

A is an operator – comes from the PDE.
X , Y are function spaces.

Af = g in U ⊂ Rn

and f = h on ∂U.

Given g ∈ Y ,

h ∈ Z

prove existence of f ∈ X .

We can use the powerful tools of functional analysis to study solvability of equations
involving A.
The main work is to find the right spaces X , Y and the abstract operator A, not the
functional analysis parts itself.
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Second order PDEs

The theory about the function spaces we study in this course can be used to study
basically any PDE, but here we will mainly study R valued second order linear PDEs on
Rn or on a bounded domain U. We have three main types

Elliptic (Laplace eq.
∑n

i=1 uxixi = 0)

Parabolic (Heat eq. ut −
∑n

i=1 uxixi = 0)

Hyperbolic (Wave eq. utt −
∑n

i=1 uxixi = 0)

We will study the elliptic and hyperbolic case in detail, but not the parabolic case.
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Definition

Let U be an open subset of Rn. The linear partial differential operator Lu : Rn → R
given by

Lu = −
n∑

i ,j=1

aij(x)uxixj +
n∑

i=1

bi (x)uxi + c(x)u, (1)

is uniformly elliptic if there is a constant θ > 0 such that

n∑
i ,j=1

aij(x)ξiξj ≥ θ|ξ|2 for a.e. x ∈ U and all ξ ∈ Rn. (2)

If the inequality holds for θ = 0, the operator is degenerate elliptic.

Remark

aij is always symmetric.

Other example is the divergence form equation

div[a(x)∇u(x)] = 0.

⇒ ∂i [a
ijuj ] = 0.
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Definition

The operator ∂
∂t + L with L as in (1) but a, b and c are allowed to depend on both x

and t is uniformly parabolic if (2) is satisfied for 0 < t ≤ T for some T > 0.

Definition

The operator ∂2

∂t2 + L with L as in (1) but a, b and c are allowed to depend on both x
and t is uniformly hyperbolic if (2) is satisfied for 0 < t ≤ T for some T > 0.

Remark

More general definitions which does not explicitly separate the variable t are possible.
Divergence forms are also useful.
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Notation

For partial derivatives we will use the notation uxi = ∂xi u etc. We will also use
multi-indices α = (α1, . . . , αn), |α| = α1 + · · ·+ αn.

Dαu =
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n

u.

U, V and W usually denote open subsets of Rn. B0(x , r) the open ball centred at x
with radius r , and B(x , r) the corresponding closed ball.
V is compactly contained in U (denoted V b U or V ⊂⊂ U) if V ⊂ V ⊂ U and V is
compact.
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Weak maximum principle

Recall Lu = −
∑n

i ,j=1 aij(x)uxixj +
∑n

i=1 bi (x)uxi + c(x)u, where aij , bi and c are

continuous functions and aij is uniformly elliptic. In the two theorems below we assume
that U is bounded.

Theorem (Weak maximum principle)

Assume u ∈ C 2(U) ∩ C 1(Ū) and

c = 0 in U.

1 If Lu ≤ 0 in U, then
max
Ū

u = max
∂U

u.

2 If Lu ≥ 0 in U, then
min
Ū

u = min
∂U

u.
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Weak maximum principle c ≥ 0

Theorem (Weak maximum principle c ≥ 0)

Assume u ∈ C 2(U) ∩ C 1(Ū) and

c ≥ 0 in U.

1 If Lu ≤ 0 in U, then
max
Ū

u ≤ max
∂U

u+.

2 If Lu ≥ 0 in U, then
min
Ū

u ≥ −min
∂U

u−.

3 In particular if Lu = 0 in U then

max
Ū
|u| = max

∂U
|u|.
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Strong maximum principle.

The weak maximum principle: A subsolution attains its maximum on the
boundary.

The strong maximum principle: A subsolution can not attain its maximum at an
interior point unless it is constant. (On a connected region.)

We show this by analysing the outer normal derivative
∂u

∂ν
at a boundary

maximum point.
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Lemma (Hopf’s Lemma)

Assume u ∈ C 2(U) ∩ C 1(Ū) and c = 0 in U. Suppose further Lu ≤ 0 in U, and there
exists a point x0 ∈ ∂U such that

u(x0) > u(x) for all x ∈ U. (3)

Assume finally that U satisfies the interior ball condition at x0; that is, there exists an
open ball B ⊂ U with x0 ∈ ∂B.

1 Then
∂u

∂ν
(x0) > 0,

where ν is the outer unit normal to B at x0.

2 If c ≥ 0 in U, the same conclusion holds provided

u(x0) ≥ 0.
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Remark

The importance of point 1 is the strict inequality. Observe that ∂u
∂ν (x0) ≥ 0 is obvious

because
∂u

∂ν
(x0) = lim

x→x0

u(x0)− u(x)

|x0 − x |
.

Note that the interior ball condition automatically holds if ∂U is C 2.
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Proof

Assume c ≥ 0 and u(x0) ≥ 0. We may as well further assume B = B0(0, r) for some
radius r > 0. For λ > 0 define

v(x) = e−λ|x |
2 − e−λr

2
(x ∈ B(0, r)).

x0

R

U

∂U

0
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Then using the uniform ellipticity condition, we compute:

Lv = −
n∑

i ,j=1

aijvxixj +
n∑

i=1

bivxi + cv

= e−λ|x |
2

n∑
i ,j=1

aij(−4λ2xixj + 2λδij)− e−λ|x |
2

n∑
i=1

bi2λxi + c(e−λ|x |
2 − e−λr

2
)

≤ e−λ|x |
2

(−4θλ2|x |2 + 2λ TrA + 2λ|b||x |+ c) ,

for A = ((aij)), b = (b1, . . . , bn). Consider next the open annular region
R = B0(0, r)− B(0, r/2). If we choose λ > 0 large enough, we get

Lv ≤ e−λ|x |
2
(−θλ2r 2 + 2λ TrA + 2λ|b|r + c) ≤ 0 in R. (4)

14 / 25



From (3) we get that there exists a constant ε > 0 so small that

u(x0) ≥ u(x) + εv(x) (x ∈ ∂B(0, r/2)). (5)

In addition note
u(x0) ≥ u(x) + εv(x) (x ∈ ∂B(0, r)), (6)

since v = 0 on ∂B(0, r).
As u and v are subsolutions we find

L(u + εv − u(x0)) ≤ −cu(x0) ≤ 0 in R, (7)

and from (5), (6) we observe u + εv − u(x0) ≤ 0 on ∂R.
The weak maximum principle gives u + εv − u(x0) ≤ 0 in R.
But u(x0) + εv(x0)− u(x0) = 0, and so

∂u

∂ν
(x0) + ε

∂v

∂ν
(x0) ≥ 0.
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Consequently

∂u

∂ν
(x0) ≥ −ε∂v

∂ν
(x0) = − ε

r
Dv(x0) · x0 = 2λεre−λr

2
> 0,

as required.
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Theorem (Strong maximum principle.)

Assume u ∈ C 2(U) ∩ C (Ū) and c = 0 in U. Suppose also U is connected and open.

1 If Lu ≤ 0 in U and u attains its maximum over Ū at an interior point, then u is
constant within U.

2 Similarly, if Lu ≥ 0 in U and u attains its minimum over Ū at an interior point,
then u is constant within U.
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Proof.

Write M = maxŪ u and C = {x ∈ U|u(x) = M}.
Then if u 6≡ M, set

V = {x ∈ U|u(x) < M}.

Choose a point y ∈ V satisfying
dist(y ,C ) < dist(y , ∂U), and let B = B(r , y) with
largest r such that B0(r , y) ⊂ V . Then there exists
some point x0 ∈ C , with x0 ∈ ∂B.
Clearly V satisfies the interior ball condition at x0.
Hopf’s Lemma point 1, gives ∂u

∂ν (x0) > 0. But this
is a contradiction: since u attains its maximum at
x0 ∈ U, we have Du(x0) = 0.

x0 V

∂U

y

C
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Theorem (Strong maximum principle with c ≥ 0.)

Assume u ∈ C 2(U) ∩ C (Ū) and c ≥ 0 in U. Suppose also U is connected.

1 If Lu ≤ 0 in U and u attains a nonnegative maximum over Ū at an interior point,
then u is constant within U.

2 Similarly, if Lu ≥ 0 in U and U attains a nonpositive minimum over Ū at an
interior point, then u is constant within U.

The proof is like that above, except that we use point 2 in Hopf’s Lemma.
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A priori estimates

Theorem

Let u ∈ C (U)∩C 2(U) solve aij(x)uij + bi (x)ui + c(x)u ≥ f in the bounded domain U,
aij is elliptic (i.e. aijξiξj ≥ λ|ξ|2, λ > 0) and c ≤ 0. Then

sup
U

u ≤ sup
∂U

u+ + C
supU |f −|

λ

where the constant depends on diamU and β := sup |b|
λ . In particular if

aij(x)uij + bi (x)ui + c(x)u = f then

sup
U
|u| ≤ sup

∂U
|u|+ C

supU |f |
λ

.

Here u± are the positive and negative parts of u respectively defined by
u+ = max(u, 0), u− = −min(u, 0), hence u = u+ − u−. In particular, if U lies between
two parallel planes a distance d apart, then the inequality above is satisfied with
C = e(β+1)d − 1. 20 / 25



Proof

Let U lie in the slab 0 < x1 < d , and set L0u = aijuij + biui . For α ≥ β + 1 we have

L0eαx1 = (α2a11 + αb1)eαx1 ≥ λ(α2 − αβ)eαx1 ≥ λ.

Let

v(x) = sup
∂U

u+(eαd − eαx1)
supU |f −|

λ
.

Then, since L0v + cv ≤ −λ supU(|f −|/λ), consequently

L0(v − u) + c(v − u) ≤ −λ
(

supU |f −|
λ

+
f

λ

)
≤ 0 in U

and v − u ≥ 0 on ∂U. Hence, for C = edα − 1 and α ≥ β + 1 we obtain the desired
result for the case L0u + cu ≥ f .
Replacing u by −u, we obtain the result for the case L0u + cu = f .
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Bernstein’s method

Theorem

Let u be harmonic in B1 = {x ∈ Rn st |x | < 1} and assume that u ∈ C 3(B1) then
there is a constant C depending only on the dimension n such that

|Du(0)| ≤ C sup
B1

|u|.
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Proof

Introduce the auxiliary function w(x) = ζ2|Du|2 + λ|u|2, where λ > 0 is a constant to
be fixed below.
We have that ∆u = 0 and differentiating both sides of this equation in
xi , i = 1, 2 . . . , n it follows that ∆ui = 0. Then we have

∆w = |Du|2∆(ζ)2 + ζ2

2ui∆ui + 2
∑
ij

u2
ij

+ 8ζζiujuij + 2λ|Du|2 + 2λu∆u

= |Du|2
[
2λ+ ∆(ζ2)

]
+ 2ζ2

∑
ij

u2
ij + 8[ζiuj ][ζuij ] ≥

≥ |Du|2
[
2λ+ ∆(ζ2)− 8|Dζ|2

]
where we used the fact that ∆u = 0,∆ui = 0 and Cauchy-Schwartz inequality for the
last line. Choosing λ large enough so that 2λ ≥ sup |∆(ζ2)|+ 8|Dζ|2 we infer that

∆w ≥ 0.
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Applying the weak maximum principle we infer that

sup
B1

w ≤ sup
∂B1

w = λ sup
∂B1

|u|2.

On the other hand supB1
w ≥ supB1

ζ2|Du|2 ≥ ζ2(0)|Du(0)|2. Thus the result follows.
Now we give two applications:

let u be harmonic in Br then

|Du(0)| ≤ C

r
sup
Br

|u|.

Let v(x) = u(rx), x ∈ B1 then Dv(x) = r(Du)(rx). Applying previous theorem
the claim follows.

let u be harmonic in Br , then

|Dku(0)| ≤ C |k|

r |k|
sup
Br

|u|, k = (k1, . . . , kn), |k| = k1 + · · ·+ kn.
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To see this one has to iterate the previous estimate and note that ∆(Dku) = 0 for any
multi index k. For instance for the second order derivative ui , i = 1, . . . , n we have

|Dui (0)| ≤ C

r
sup
Br

|Du| ≤ C 2

r 2
sup
Br

|u|

Since i is arbitrary it follows that

|D2u(0)| ≤ C 2

r 2
sup
Br

|u|
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