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The fermentation process in brewing is modelled using Langevin’s equations. They are solved by
an Euler-Mayruma scheme and the density is found to follow a normal distribution with increasing
variance. An advection-diffusion equation is recovered and using pseudospectral methods it is solved
on a brewing cylinder composed by three quadrilaterals. The sedimentation time is found to be 5
time units at which point 70 % has sedimented in the two bottom shapes.

In the brewery, one is interested in producing beer as
quickly as possible with minimal contamination risks9.
To fully model the fermentation process one would re-
quire to do experiments with ethanol rate, CO2 concen-
tration etc10. This project does not aim to propose such a
full model but to use basic dynamical-density functional
theory (DDFT) to study the concentration of yeast and
sedimentation time on a realistic geometry.

In the fermentation process, yeast particles of size 1
mm4 are suspended in water molecules of size 1 nm11.
Larger particles suspended in smaller ones were already
studied by Robert Brown in 1827 when he discovered that
pollen travelled in water according to Brownian motion5.
Einstein showed in 1905 that Brownian particles give rise
to a diffusion equation for the density1 whose exact solu-
tion is a normal distribution with variance 2Dt, where D
is a diffusion coefficient depending on measurable factors.

The difference in mass between the yeast particles and
water molecules means the latter will move much faster.
The difference in scale makes the problem practically
impossible to solve exactly7. However, it allows us to
approximate the collisions of yeast particles and water
molecules as noise f, a normally distributed random vari-
able which is independent in time and space, and thereby
obtain a model for only the yeast particles. The posi-
tion r = (r1, . . . , rN ) and momentum p = (p1, . . . ,pN )
of N yeast particles can be described by Langevin’s
equations2,

dr

dt
=

p

m
,
dp

dt
= −∇rV (r, t)− γ(r)p +A(r)f(t). (1)

where m is the mass, γ is friction, V a potential (e.g
electric charge) and A =

√
2mkBTγ where T is absolute

temperature and kB Boltzmann’s constant. As no exper-
iments have been done and to avoid a small scale, we set
m = kBT = 1.

Equation (1) has no analytic solution even for two par-
ticles and we thus turn to numerical methods. An Euler-
Mayruma scheme is applied with 1000 timesteps and 30
particles with γ = 3 and V (r, t) = 2(0.045r4 − r2). For
each particle, the initial position, momentum and ran-
dom force are generated from the distributionN(0, 1) and
Equation (1) is solved for each time step. This is iterated

FIG. 1. Density of particles as function of position

100 times and an average of positions at the timesteps is
taken. The distribution of the positions of the particles
r (one of the space coordinates in fact) at 0.1, 0.3 and 2
seconds is shown Figure 1. It seems to follow a normal
distribution with increasing variance, which agrees with
Einstein’s solution of the Brownian motion problem1.

Even with a numerical method, Langevin’s equations
are computationally intensive2. For an overdamped sys-
tem, that is γ >> 1, one can approximate Langevin’s
equations with an advection-diffusion equation for the
particle density. To model a brewing process, we would
like to solve it on a geometry as in Figure 2. Basic DDFT
and pseudo-spectral methods allow us to do this. Using
code base developed by Ben Goddard and Andreas Nold
at Imperial College in 2013 and ideas in 3, the diffusion
equation

∂ρ

dt
= D

∂2ρ

∂t2
, ρ(boundary) = 0, ρ(0) = exp (− y2

4Dt
) (2)

where y is position, is solved on an infinite line, semi-
infinite line with different boundary conditions and a
square. The equation is solved on [−1, 1] ([−1, 1]×[−1, 1]
in two dimensions) and a mapping is used to go to the
physical space. 30 collocation points are used to approx-
imate the solution. The solution is shown in Figure 3,
4, 5, 6, 7 and 8. It starts with a Delta distribution and
the variance increases with time so that the density con-
verges to zero. Note that this agrees with the stochastic
analysis carried out in Figure 1. To model yeast sedi-
mentation in a brewing cylinder, an advection-diffusion
equation

∂ρ

dt
= ∆ρ+ div(−ρv + g + ρMρ), (3)
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where M is a linear operator, was solved on three quadri-
laterals glued together as in Figure 2. The density was
forced to agree where the shapes are joined and no flux
was applied on left, right, top and bottom. Differ-
ent initial conditions, inflows, velocity flows and gravity
strengths were tried to obtain a reasonable result.

(a) t = 0.1 (b) t = 0.15

(c) t = 2 (d) Mass diagram for the
subshapes

FIG. 2. Model of yeast sedimentation. Polynomial initial
condition, velocity flow v1 = 0.2y2 sin(y2π) in horizontal di-
rection and v2 = 0.2y2 cos((y1 + 1)π)− 1 in vertical direction,
gravity 0.2.

The evolution of density in space (shown by colour)
and the mass at each of the three subshapes are shown
in Fig 2. After around 5 time units, 70 % of the yeast
had sedimented in the bottom two shapes and an equi-
librium was attained. More complicated geometries such
as a loop, hole, two joined squares and a U-formation
were also considered and the result is shown in Figure
9. It was noted the density often builds up near a wall.
The pseudo-spectral method is accurate but rather ex-
pensive. Figure 10 shows that the running time is linear
and Figure 11 that the error converges to 0 exponen-
tially. The drawback of this method is the instability
which boundaries introduce. It was noted that 20 % of
the mass seemed to disappear, due to no flux boundary
conditions. The gluing technique was explored by cutting
a 3× 3 square into quadrilaterals in different ways as in
12(b). The computation time as function of number of
boundaries is shown in Figure 12(a). For 3 boundaries or
less, the problem is solved quickly but with more bound-
aries, the running time increases rapidly. The pseudo-
spectral technique used here extends to other physical
systems. By using a strip, one can model flows in blood
vessels. With more complicated physical systems, e.g
with a sophisticated potential in Equation (1), more in-
teresting dynamics is likely to appear and equilibriums
can be studied2.
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Appendix A: Solutions to the diffusion equation on
different geometries and boundary conditions

(a) t = 0.1 (b) t = 0.15 (c) t = 2

FIG. 3. [−1, 1], Dirichlet boundary conditions, (density as a
function of position)

(a) t = 0.1 (b) t = 0.15 (c) t = 2

FIG. 4. [−1, 1], no flux

(a) t = 0.1 (b) t = 0.15 (c) t = 2

FIG. 5. real line, Dirichlet boundary conditions

(a) t = 0.1 (b) t = 2.5 (c) t = 50

FIG. 6. real line, no flux

(a) t = 0.1 (b) t = 1.5 (c) t = 30

FIG. 7. [0,∞), Dirichlet boundary conditions

(a) t = 0.1 (b) t = 1.5 (c) t = 30

FIG. 8. [0,∞), no flux

(a) Hole (b) Loop

(c) U-formation, red
lines are no flux

boundaries

(d) Two squares

FIG. 9. The advection-diffusion equation solved on compli-
cated geometries. The density profile shown for the final time
t = 3. Matching boundary conditions and exponential initial
condition used.
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Appendix B: Running time and error for
pseudo-spectral method

(a) interval, no
flux

(b) real line, no
flux

(c) box, no flux

FIG. 10. Running time as function of number of collocation
points

(a) real line,
Dirichlet

(b) real line,
no flux

(c) [0,∞)

FIG. 11. Error as function of number of collocation points
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Appendix C: Cost of gluing technique

(a) Running time as a
function of number of

boundaries

(b) Gluing of shapes

FIG. 12. Cost of gluing shapes with matching boundary con-
ditions


	Modelling the fermentation process in the brewing industry
	Abstract
	References
	Solutions to the diffusion equation on different geometries and boundary conditions
	Running time and error for pseudo-spectral method
	Cost of gluing technique


