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1 Introduction

The Fast Fourier Transform (commonly abbreviated as FFT) is a fast algorithm for computing the
discrete Fourier transform of a sequence. The purpose of this project is to investigate some of the
mathematics behind the FFT, as well as the closely related discrete sine and cosine transforms. I will
produce a small library of MATLAB code which implements the algorithms discussed, and I will also look
into two real-world applications of the FFT: solving partial differential equations and JPEG compression.

2 Methods

I began by studying the Fourier transform and the discrete Fourier transform, by reading the textbook
[1], which has a chapter dedicated to the FFT and related concepts. From here I gained an understanding
of how the discrete Fourier transform is related to the continuous Fourier transform, as well as how the
FFT works.

The Fourier transform is an integral transform given by the formula

F{f(t)} = f̂(k) =

∫ ∞
−∞

e−2πiktf(t) dt.

It takes the function f(t) as input and outputs the function f̂(k). We usually think of f as a function

of time t and f̂ as a function of frequency k. The Fourier transform has various properties which
allow for simplification of ODEs and PDEs. For example, if f (n) denotes the nth derivative of f , then
F{f (n)(t)}(k) = (2πik)nF{f(t)}(k) = (2πik)nf̂(k) [2].

The discrete Fourier transform (DFT) of an array of N complex numbers f0, f1, . . . , fN−1 is another
array of N complex numbers F0, F1, . . . , FN−1, defined by

Fn =

N−1∑
j=0

fje
−2πinj/N .

The DFT can provide an approximation to the continuous Fourier transform of a function f . Suppose
we take N samples fj = f(tj), where tj = jh, j = 0, 1, . . . , N −1, where h is the sampling interval. Then

we can estimate that f̂(kn) ≈ hFn at the frequencies kn = n
Nh , n = −N2 ,−

N
2 + 1, . . . , N2 .

Taking inspiration from the algorithms at [4] and [5], I implemented the FFT in two slightly different
ways using the programming language MATLAB. I then used a MATLAB script to compare the runtimes
of both algorithms.

Given an ODE dy
dt = f(t, y) and an initial condition y(t0) = y0, we can approximate the solution y

with Euler’s method. Fix a step size h, then let tn = t0 + hn, for n = 0, 1, . . . , N . Then perform the
recurrence relation yn+1 = yn + hf(tn, yn) for n = 0, 1, . . . , N , to obtain the approximation y(tn) ≈ yn.
This is the simplest method for numerically solving initial value problems, but with a small enough step
size, it can be very accurate [6].

One final technique, which is the central idea behind the compression of JPEG image files, is the
discrete cosine transform. The DCT is similar to the DFT, but one main difference is that it uses real
numbers only. The reason the DCT is well-suited to compression is because a signal can be reconstructed
with reasonable accuracy from just a few low-frequency components of its DCT.

3 Results

If we consider the array of fjs as a vector ~f , and its DFT as a vector ~F , then we can compute the DFT

via a matrix-vector multiplication: ~F = W ~f , where

W =



1 1 1 1 · · · 1
1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2(N−1)

1 w3 w6 w9 · · · w3(N−1)

...
...

...
...

. . .
...

1 wN−1 w2(N−1) w3(N−1) · · · w(N−1)2


.
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Multiplying a vector by a matrix requires O(N2) operations, which can be very slow for large N . The

Danielson-Lanczos Lemma states that the DFT of ~f can be rewritten in terms of two DFTs of length
N/2. If we impose the restriction that N is a power of 2, then this lemma can be applied recursively
until we are left with the N transforms of length 1, and the DFT of length 1 is just the identity function.
Calculating the DFT in this manner reduces the number of operations to O(N log2N), and is the main
idea behind the Fast Fourier Transform algorithm. The steps in the algorithm are discussed in detail in
appendix B.

I also investigated an even faster algorithm for computing the DFT in the special case where all of
the fj are real numbers. Making use of this, I have written a “fast sine transform” and “fast cosine
transform” as explained in appendix C.

Having now written my own FFT, I went on to explore how the FFT can be used to numerically solve

the PDE known as the heat equation, ∂
∂tu(x, t) = α2 ∂2

∂x2u(x, t), given an initial condition u(x, 0) = f(x),
and periodic boundary conditions. Taking the Fourier transform of both sides of the equation with
respect to the spatial variable x reduces the problem to a first order ODE for each independent value
of the frequency variable k. Taking the Fourier transform of the initial condition u(x, 0) turns this into
an initial value problem, which is solvable via Euler’s method. Figure 1 shows a surface plot of the
numerical solution in the case where u(x, 0) = sinx. More detail is given in appendix D.1.

Figure 1: Solution to the heat equation for x ∈ (0, 2π) and u(x, 0) = sinx

Finally, I investigated another real-world application of the FFT. The JPEG image file format works
by removing some of the detail in an image which will be barely noticed by the human eye, allowing the
image to take up significantly less space in memory. I studied the article [7] in order to find out how
this is done. The idea is to use the DCT and a process called quantization which disregards some of
the higher frequency components, as shown in appendix D.2. I have written a MATLAB script which
demonstrates the main steps in this process.

The MATLAB code I created during the course of this project is available on GitHub:
https://github.com/gillian-smith/fft-project.

4 Discussion/conclusion

The most difficult part of this project was figuring out how the FFT algorithms should be implemented,
as well as the algorithms for the discrete sine and cosine transforms. I dealt with this by re-reading the
textbook [1] and trying each of the steps on a few small examples, or by figuring it out for myself where
there was a lack of explanation in the book. I also spent a lot of time finding where I had made mistakes
in my code.

I chose to program in MATLAB because I have used it many times before for university coursework
and for personal programming projects. It is also fairly user-friendly, so I did not have to worry too much
about the low-level aspects I might have had to consider if I had used another programming language.
Additionally, MATLAB makes it relatively easy to produce figures and plots since it comes with various
in-built functions for doing so.

The biggest cultural impact of any of the topics covered in this project is that of the discrete cosine
transform and JPEG compression. The JPEG format is one of the most popular image file formats,
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due to its ability to store large photographs in great detail in a relatively small amount of memory.
Furthermore, a modified version of the discrete cosine transform is used for encoding MP3 audio files.

Overall, the objectives of this project have been achieved. Given more time, I would have liked to try
solving another more complicated PDE using Fourier methods, or explore convolution, which is another
useful application of the Fourier transform.

5 Personal statement

This project has helped me to build on my existing programming skills and gain more experience with
MATLAB. Writing this report has tested my skills in communicating mathematics. It was also useful
to gain some experience of what it is like to do research. Additionally, I have had the opportunity to
investigate an area of mathematics that I might not have studied in depth otherwise.

6 Summary

In this project I aimed to understand and implement the Fast Fourier Transform, an algorithm which
has many important applications. I also investigated some related algorithms, and how to use the Fast
Fourier Transform to solve the heat equation, a physics problem which describes the distribution of heat
in a material over time. Finally, I found out how JPEG files can compress detailed images so that they
take up less space in computer memory.

7 Itinerary

Approximately 5 weeks were spent on researching the topics covered and writing MATLAB code, and
the final 1 week was spent writing the report, although part of the report was written during the research
phase. The financial support was used for subsistence.

8 Acknowledgements

I would like to thank my supervisor, Dr Ben Goddard, for his help and guidance throughout the project.
I would also like to thank the University of Edinburgh’s College of Science and Engineering for awarding
me a College Vacation Scholarship.
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Appendices

A The Fourier transform and discrete Fourier transform

A.1 Defining the Fourier transform

The Fourier transform of an integrable function f : R→ C is an integral transform, defined as

F{f(t)} = f̂(k) =

∫ ∞
−∞

e−2πiktf(t) dt, (1)

and the inverse Fourier transform (when it exists) is defined as

F−1{f̂(k)} = f(t) =

∫ ∞
−∞

e2πiktf̂(k) dk. (2)

One can think of the Fourier transform as changing a function of time into a function of frequency.
In other words, if f(t) tells us the amplitude of a signal at time t, then f̂(k) tells us “how much” of each

frequency is present in the signal. The functions f and f̂ are known as a Fourier transform pair.
It is worth mentioning that there are a few different ways to define the Fourier transform. One

possibility is to let 2πk = ω, so that F{f(t)} =
∫∞
−∞ e−iωtf(t) dt and F−1{f̂(k)} = 1

2π

∫∞
−∞ eiωtf̂(k) dk.

Another option is to multiply both the Fourier transform and its inverse by 1√
2π

: then F{f(t)} =
1√
2π

∫∞
−∞ e−iωtf(t) dt, and F−1{f̂(k)} = 1√

2π

∫∞
−∞ eiωtf̂(k) dk [2].

These various choices of definition are purely conventions and no particular definition is any more
correct than the others, however most people have one that they prefer to use. The ω convention is
commonly used in physics because it represents angular frequency. I will stick to definitions 1, 2 for the
rest of this report.

A.2 Existence of the Fourier transform and inverse Fourier transform

Since the Fourier transform is defined as an improper integral, it is only defined under certain conditions.
If f is absolutely integrable, meaning that

∫∞
−∞ |f(t)|dt < ∞, then it has a Fourier transform. This is

because |f̂(k)| = |
∫∞
−∞ e−2πiktf(t) dt| ≤

∫∞
−∞ |e

−2πiktf(t)|dt =
∫∞
−∞ |e

−2πikt||f(t)|dt =
∫∞
−∞ |f(t)|dt. So

if f is absolutely integrable, then |f̂(k)| <∞ for all k [2].
It is also possible (and useful) to define Fourier transforms of sine and cosine functions, as well as

complex exponentials, although the result is defined in terms of delta functions [3] [6, Chapter 6.5]. A
list of properties of the Fourier transform, as well as a list of common Fourier transform pairs, can be
found on Wikipedia https://en.wikipedia.org/wiki/Fourier transform.

A.3 The discrete Fourier transform

The discrete Fourier transform (DFT) of a finite sequence of N complex numbers f0, f1, . . . , fN−1 is
another sequence of N complex numbers F0, F1, . . . , FN−1, where

Fn =

N−1∑
j=0

fje
−2πinj/N . (3)

We can recover the fjs from the Fns via the inverse discrete Fourier transform:

fj =
1

N

N−1∑
n=0

Fne
2πinj/N . (4)

To make intuitive sense of equation 3, suppose we want to estimate the Fourier transform of a function
f from a finite number N of samples fj = f(tj), where tj = jh, for j = 0, 1, 2, . . . , N − 1. The sampling
interval h is the distance between consecutive tj . The sampling frequency, the number of samples per
second, is 1/h. Since we have N input samples we will be able to produce no more than N independent
outputs.
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We will seek estimates of F{f} = f̂ at frequencies kn = n
Nh , for n = −N2 ,−

N
2 + 1, · · · , N2 . Note that

we have N + 1 values of n rather than N , but the existence of the extra output will be resolved later.
Approximating the integral in the Fourier transform as a sum, we estimate that

f̂(kn) =

∫ ∞
−∞

f(t)e−2πiknt dt ≈
N−1∑
j=0

hfje
−2πikntj = h

N−1∑
j=0

fje
−2πi n

Nh jh = h

N−1∑
j=0

fje
−2πinj/N = hFn.

Furthermore, the DFT is periodic in n with period N :

Fn+N =

N−1∑
j=0

fje
−2πi(n+N)j/N =

N−1∑
j=0

fje
−2πinj/Ne−2πij =

N−1∑
j=0

fje
−2πinj/N = Fn

since e−2πij = 1 for any integer j. In particular, F−N/2 = FN/2 and we have only N independent outputs
after all. Due to the periodicity, we can choose to instead let n vary from 0 to N − 1.

We can also represent an N -point DFT as multiplication by an N × N matrix. Let w = e−2πi/N ,
and represent the fjs and Fns as vectors, ~f = (f0, f1, . . . , fN−1)> and ~F = (F0, F1, . . . , FN−1)>. Define
the matrix W by Wjk = wjk (where 0 ≤ j, k ≤ N − 1), or in other words

W =



1 1 1 1 · · · 1
1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2(N−1)

1 w3 w6 w9 · · · w3(N−1)

...
...

...
...

. . .
...

1 wN−1 w2(N−1) w3(N−1) · · · w(N−1)2


.

Then ~F = W ~f .

Algorithm 1 Computing the DFT and inverse DFT by matrix multiplication

1: procedure slow dft(~f , λ)

2: N ← length(~f)
3: θ ← 2πi · λ/N
4: W← N ×N matrix of ones
5: for i← 1, 2, 3, . . . , N − 1 do
6: for j ← 1, 2, 3, . . . , i− 1 do
7: Wij ← exp (ijθ)
8: Wji ←Wij

9: end for
10: end for
11: ~F ←W ~f
12: if λ = 1 then ~F ← 1

N
~F

13: end if
14: return ~F
15: end procedure

B The Fast Fourier Transform

B.1 The FFT algorithm

If we compute the DFT of an N -point sequence directly from the definition (equation 3) or with algorithm
1, the number of operations required is O(N2). This gets very slow as N increases, so we should try to
find a better option. Fast Fourier Transforms (FFT) are a family of algorithms for computing the DFT
in just O(N log2N) operations. This section of the report will explain a simple version of the variant
known as the Cooley-Tukey FFT.
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The Danielson-Lanczos Lemma will help us to develop a divide-and-conquer algorithm for computing
the DFT. It states that a DFT of length N , where N is an even number, can be rewritten in terms of
two DFTs of length N/2. The proof is as follows [1, Chapter 12.2]:

Fn =

N−1∑
j=0

e−2πijn/Nfj

=

N
2 −1∑
j=0

e−2πi(2j)n/Nf2j +

N
2 −1∑
j=0

e−2πi(2j+1)n/Nf2j+1

=

N
2 −1∑
j=0

e−2πijn/
N
2 f2j + e−2πin/N

N
2 −1∑
j=0

e−2πijn/
N
2 f2j+1

= F en + wnF on

where F e denotes the DFT of the even components f2j , F
o is the DFT of the odd components f2j+1,

and w = e−2πi/N .
The following observation enables us to compute Fn and Fn+N

2
at the same time:

Fn+N/2 =

N−1∑
j=0

e−2πij(n+
N/2)/Nfj

=

N−1∑
j=0

e−2πijn/Ne−2πijN/2Nfj

=

N−1∑
j=0

e−2πijn/Ne−πijfj

=

N−1∑
j=0

e−2πijn/N (−1)jfj

=

N/2−1∑
j=0

e−2πi(2j)n/Nf2j −
N/2−1∑
j=0

e−2πi(2j+1)n/Nf2j+1

=

N/2−1∑
j=0

e−2πijn/
N
2 f2j − e−2πin/N

N/2−1∑
j=0

e−2πijn/
N
2 f2j+1

= F en − wnF on

We can calculate the DFT of the whole sequence by using the Danielson-Lanczos lemma several times.
Now that the problem has been reduced to computing F en and F on , we can repeat the same argument to
reduce the problem to computing F een , F eon , F oen , and F oon , the transforms of length N/4.

In the case where N is a power of 2, we can continue to subdivide the transforms until we reach
the N transforms of length 1. It follows from the equation 3 that a 1-point DFT is simply the identity
operation. There exist Fast Fourier Transforms for various cases where N is not a power of 2, but I will
not discuss them in this report. One option is to ‘pad’ the vector with zeroes, that is, add zeroes to the
end of the vector so that its length is a power of 2, and then take the FFT of that vector, however a
slightly different result is produced. For the purposes of this project, it is easiest to just assume that N
is always a power of 2.

Once we have done all of the subdividing, we find that each 1-point transform corresponds to a unique
pattern of log2N es and os. We can find the value of n for which F eoeooee...oeoen = fn as follows: reverse
the pattern of es and os, replace e with 0 and o with 1, and here we have the value of n in binary.
This means we will have to reorder the input data using what is known as bit-reversal permutation [1,
Chapter 12.2].

Now we have an algorithm for computing the DFT: first, permute the ~f vector into bit-reversed
order and store the result in ~F . This gives the set of 1-point DFTs. Then use a loop to double the
length each time in order to compute the transforms of length 2, 4, 8, . . . , N . At each stage, use the
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Danielson-Lanczos lemma and the transforms already computed to construct the next set of transforms
in-place.

The inverse DFT (equation 4) can be calculated via essentially the same algorithm, since the only
differences are the sign of the exponent and multiplication by 1/N in the inverse.

I have explored two slightly different approaches to the FFT, based on algorithms found on the
internet. The first is iterative, using ‘for’ and ‘while’ loops [5], and the second is recursive, calling itself
repeatedly until it reaches the ‘base case’ N = 1 [4]. Algorithms 2 and 3 were implemented in MATLAB,
as functions fft iterative and fft recursive, as well as algorithm 1 for naively computing the DFT
directly from the definition, as a function called slow dft. All of the procedures take an additional
parameter λ = ±1, which should be set to −1 for the forward DFT and 1 for the inverse.

Algorithm 2 An iterative Fast Fourier Transform

1: procedure fft iterative(~f , λ)

2: N ← length(~f)

3: ~F ← BitReversePermute(~f)
4: θ ← 2πi · λ/N
5: ~w ←

(
1, exp θ, exp 2θ, . . . , exp (N2 − 1)θ

)
6: currN ← 2
7: while currN ≤ N do
8: halfcurrN ← currN/2
9: tablestep← N/currN

10: for all i ∈ {0, currN, 2currN, . . . , N − currN} do
11: k ← 0
12: for j ← i, i+ 1, . . . , i+ halfcurrN do
13: temp← wkFj+halfcurrN
14: Fj+halfcurrN ← Fj − temp
15: Fj ← Fj + temp
16: k ← k + tablestep
17: end for
18: end for
19: currN ← 2currN
20: end while
21: return ~F
22: end procedure

Algorithm 3 A recursive Fast Fourier Transform

1: procedure fft recursive(~f , λ)

2: N ← length(~f)
3: θ ← 2πi · λ/N
4: ~w ←

(
1, exp θ, exp 2θ, . . . , exp (N2 − 1)θ

)
5: ~F ← ~0 ∈ CN
6: if N = 1 then
7: F0 ← f0
8: else
9:

(
F0, F1, . . . , FN/2−1

)
← fft recursive((f0, f2, f4, . . . , fN−2), λ)

10:
(
FN/2, FN/2+1, . . . , FN−1

)
← fft recursive((f1, f3, f5, . . . , fN−1), λ)

11: for k ← 0, 1, . . . ,N/2− 1 do
12: temp = Fk
13: Fk = temp+ wkFk+N/2

14: Fk+N/2 = temp− wkFk+N/2

15: end for
16: end if
17: return ~F
18: end procedure

8



Figure 2: Comparison of the runtimes of four DFT/FFT algorithms, for arrays of lengths from 100 to
2000

Figure 3: Same plot as figure 2, but with a smaller upper bound on the runtime axis in order to show
the difference in speed between the iterative FFT and MATLAB’s in-built FFT

Most importantly, the functions slow dft, fft iterative and fft recursive all give the same
output, and they all agree with MATLAB’s built-in fft function (up to small errors).

The runtimes of all three functions, as well as MATLAB’s built-in fft, were compared, taking the
average runtime over five random vectors in CN for N = 2, 4, 8, . . . , 218. The naive approach is slightly
faster than algorithms 2 and 3 up to about N = 32, but in most real-world applications the data set is
much larger. For larger N , the iterative algorithm is significantly faster than the recursive one, despite
its three nested loops, although this is probably a consequence of the way MATLAB handles recursion.

Figures 2 and 3 show the difference in runtimes for values of N from 100 to 2000. For each N ,
ten random vectors of length N were generated and padded with zeroes, and the average runtime of
performing each FFT algorithm on each of these vectors was found and plotted. On figure 2, the
runtimes of algorithm 2 and MATLAB’s in-built FFT are so much faster that they are barely visible.

Given more time and/or computational power, I could have taken the average over more than just
ten vectors for each N . I could have also explored values of N larger than 2000, but by this point it is
fair to assume that the iterative algorithm will be the fastest of the three. Due to the difference in speed,
I will use algorithm 2 for the rest of the project.

9



I have written wrapper functions my fft and my ifft which call fft iterative with λ = −1 and
λ = 1 respectively, for ease of use. Also, my ifft multiplies ~F by 1/N before returning, as is consistent

with equation 4. Both functions will pad the vector ~f with zeroes in the case where its length is not a
power of 2.

B.2 FFT of real-valued vectors

It turns out there is an even more efficient way to compute the DFT in the special case where the input
vector contains real values only. This method tends to be significantly faster, since we do some clever
manipulation of the data and perform an FFT of length N/2 instead of one of length N .

Suppose we have a real-valued vector ~f ∈ RN . We can consider the even-indexed elements as one
array and the odd-indexed elements as another, and define the vector ~h ∈ CN/2 by hj = f2j + if2j+1,

j = 0, 1, . . . ,N/2 − 1. Taking the FFT of ~h (using the existing function my fft) gives another vector
~H ∈ CN/2, where Hn = F en + iF on , for n = 0, 1, . . . ,N/2 − 1. It can be shown that Hn + HN/2−n = 2F en
and Hn − HN/2−n = 2iF on . Now all that is left to do is find each Fn by using the Danielson-Lanczos
lemma again:

Fn = F en + e−2πin/NF on

= Re(Hn) + e−2πin/N Im(Hn)

=
1

2
(Hn +HN/2−n)− i

2
e−2πin/N (Hn −HN/2−n)

for n = 0, 1, . . . ,N/2, using the fact that H0 = HN/2 [1, Chapter 12.3]. We can also use FN−n = Fn
(where z denotes the complex conjugate of z ∈ C) to restore the second half of the array so that the
function’s output matches that of algorithm 2.

Algorithm 4 Fast Fourier Transform of real data

1: procedure realfft(~f)

2: N ← length(~f)

3: ~h← ~0 ∈ CN/2
4: for j ← 0, 1, . . . ,N/2− 1 do
5: hj ← f2j + if2j+1

6: end for
7: ~H ← my fft(~h)

8: ~H ← ( ~H,H0)
9: θ ← −2πi/N

10: ~F ← ~0 ∈ CN/2+1

11: for n← 0, 1, . . . ,N/2 do
12: Fn ← 1

2 (Hn +HN/2−n)− i
2e
−2πin/N (Hn −HN/2−n)

13: end for
14: F ← (F0, F1, . . . , FN/2−1, FN/2, FN/2−1, . . . , F2, F1)

15: return ~F
16: end procedure

Now we need an algorithm to invert the process, i.e., to find the inverse DFT of an array whose
inverse DFT is known to be real. The process is essentially just algorithm 4 in reverse. Suppose we
begin with F0, F1, . . . , FN−1. For n = 0, 1, . . . ,N/2− 1, let

F en =
1

2
(Fn + FN/2−n) =

1

2
(Fn + FN/2+n),

F on =
1

2
e2πin/N (Fn − FN/2−n) =

1

2
e2πin/N (Fn − FN/2+n).

Then construct Hn = F en+ iF on , and take the inverse FFT of ~H with my ifft to get hj = f2j+ if2j+1.

Finally, extract the even and odd components of ~f from the real and imaginary parts of this array [1,
Chapter 12.3].
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Algorithm 5 Inverse Fast Fourier Transform of real data

1: procedure realifft(~F )

2: N ← length(~F )

3: ~H ← ~0 ∈ CN/2
4: for n← 0, 1, . . . ,N/2− 1 do
5: Hn ← 1

2 (Fn + FN/2+n) + i
2e

2πin/N (Fn − FN/2+n)
6: end for
7: ~h← my ifft( ~H)

8: ~f ← ~0 ∈ CN
9: for j ← 0, 1, . . . ,N/2− 1 do

10: f2j ← Re(hj)
11: f2j+1 ← Im(hj)
12: end for
13: return ~f
14: end procedure

B.3 Multidimensional DFT and FFT

Given a 2-dimensional array (i.e. a matrix) with N1 rows and N2 columns, and entries fj,k, we can define
its two-dimensional discrete Fourier transform as an array of the same size, with entries

Fm,n =

N2−1∑
k=0

N1−1∑
j=0

e−2πikn/N2e−2πijm/N1fj,k.

Rearranging this a little, we find that

Fm,n =

N2−1∑
k=0

e−2πikn/N2

N1−1∑
j=0

e−2πijm/N1fj,k

 . (5)

Equation 5 shows that the 2-dimensional DFT of a matrix can be found by taking the DFT of each
row and then taking the DFT of each column [1, Chapter 12.5]. We can do this with the my fft function,
which imposes the restriction that both N1 and N2 must be powers of 2. This is not necessarily the
quickest way to calculate a 2-dimensional DFT, but at least it gives a very simple algorithm 6.

Algorithm 6 2-dimensional Fast Fourier Transform

1: procedure my fft2(X)
2: Y ← X
3: for all rows ~y of Y do
4: ~y ← my fft(~y)
5: end for
6: Y ← Y>

7: for all rows ~y of Y do
8: ~y ← my fft(~y)
9: end for

10: Y ← Y>

11: return Y
12: end procedure

The inverse 2-dimensional DFT is

fj,k =
1

N1N2

N2−1∑
k=0

N1−1∑
j=0

e2πikn/N2e2πijm/N1Fm,n =
1

N2

N2−1∑
k=0

e2πikn/N2

 1

N1

N1−1∑
j=0

e2πijm/N1Fm,n

 .

We can compute this in a similar way to algorithm 6: take the inverse DFT of each row, then take
the inverse DFT of each column.
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C The Discrete Sine and Cosine Transforms

C.1 Computing the Discrete Sine Transform

The discrete sine transform (abbreviated as DST) of f0 = 0, f1, f2, . . . , fN−1 ∈ R is defined as

Fn =

N−1∑
j=1

fj sin

(
πjn

N

)
. (6)

Note that we always take f0 to be 0. This is because even if we were to include the j = 0 term in
the sum in equation 6, we would get f0 sin(0πn/N) = f0 sin 0 = 0. Therefore the j = 0 term contributes
nothing, so it makes no difference what f0 is.

I have written a function slow dst in MATLAB to compute the DST using a matrix, in a similar way
to how algorithm 1 computes the DFT. But, as before, this is O(N2) - is there a faster way to compute
it making use of the FFT?

Suppose we start with the real-valued data f1, f2, . . . , fN−1 (and f0 = 0). Construct the auxiliary
array ~y as follows:

y0 = 0

yj = sin(jπ/N)(fj + fN−j) +
1

2
(fj − fN−j), j = 1, 2, . . . , N − 1.

Now take the FFT of ~y. We can use realfft since all of the values in ~y are real. Due to the use of
realfft, we need an input vector ~f whose length is a power of 2 (including f0 = 0). The result is

Yn =

N−1∑
j=0

yje
−2πinj/N

=

N−1∑
j=0

yj

(
cos

(
−2πnj

N

)
+ i sin

(
−2πnj

N

))

=

N−1∑
j=0

yj

(
cos

(
2πnj

N

)
− i sin

(
2πnj

N

))

=

N−1∑
j=0

yj cos

(
2πnj

N

)
− i

N−1∑
j=0

yj sin

(
2πnj

N

)
.

Letting xj = sin(jπ/N)(fj + fN−j), zj = 1
2 (fj − fN−j), we can see that xN−j = xj and zN−j = −zj .

Then we can show that

xN−j cos

(
2πn(N − j)

N

)
= xj cos

(
2πn− 2πnj

N

)
= xj cos

(
2πnj

N

)
(7)

zN−j cos

(
2πn(N − j)

N

)
= −zj cos

(
2πnj

N

)
(8)

xN−j sin

(
2πn(N − j)

N

)
= xj sin

(
2πn− 2πnj

N

)
= −xj sin

(
2πnj

N

)
(9)

zN−j sin

(
2πn(N − j)

N

)
= zj sin

(
2πnj

N

)
(10)

Denote the real and imaginary parts of Yn by Rn and In:
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Rn = Re(Yn)

=

N−1∑
j=0

yj cos

(
2πnj

N

)

=

N−1∑
j=0

(fj + fN−j) sin(jπ/N) cos

(
2πnj

N

)
︸ ︷︷ ︸

use (7)

+
1

2

N−1∑
j=0

(fj − fN−j) cos

(
2πnj

N

)
︸ ︷︷ ︸

=0 due to (8)

=

N−1∑
j=0

2fj sin(jπ/N) cos

(
2πnj

N

)

=

N−1∑
j=0

fj

(
sin

(
(2n+ 1)jπ

N

)
− sin

(
(2n− 1)jπ

N

))
= F2n+1 − F2n−1

In = Im(Yn)

= −
N−1∑
j=0

yj sin

(
2πnj

N

)

= − 1

2

N−1∑
j=0

(fj − fN−j) sin

(
2πnj

N

)
︸ ︷︷ ︸

use (10)

−
N−1∑
j=0

(fj + fN−j) sin (jπ/N) sin

(
2πnj

N

)
︸ ︷︷ ︸

=0 due to (9)

= −
N−1∑
j=0

fj sin

(
2πnj

N

)
= −F2n.

So the even terms of ~F are directly determined by F2n = −In. The odd terms are given by the
recurrence relation F2n+1 = F2n−1 +Rn, for n = 0, 1, . . . ,N/2− 1. To initialize the recurrence start with
n = 0: F1 = F−1 +R0 = −F1 +R0 =⇒ F1 = 1

2R0.

Algorithm 7 Discrete sine transform using the FFT

1: procedure my dst(~f)

2: N ← length(~f)+1
3: ~y ← ~0 ∈ RN
4: for j ← 1, 2, . . . , N − 1 do
5: yj ← sin (jπ/N)(fj + fN−j) + 1

2 (fj − fN−j)
6: end for
7: ~Y ← realfft(~y)

8: ~R← Re(~Y )

9: ~I ← Im(~Y )

10: ~F ← ~0 ∈ RN
11: for n← 0, 1, . . . ,N/2− 1 do
12: F2n ← −In
13: if n = 0 then
14: F1 ← 1

2R0

15: else
16: F2n+1 ← F2n−1 +Rn
17: end if
18: end for
19: return ~F
20: end procedure
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Algorithm 7 calculates the discrete sine transform. The DST is actually its own inverse, up to a factor
of N/2, so to calculate the inverse DST, simply find the DST and then multiply by 2/N [1, Chapter 12.4].

C.2 Computing the Discrete Cosine Transform

There are several versions of the discrete cosine transform, but the one I will focus on is known as the
DCT-II:

Fn =

N−1∑
j=0

fj cos

(
πn(j + 1/2)

N

)
. (11)

Its inverse (times N/2) is the DCT-III:

fj =
1

2
F0 +

N−1∑
n=1

Fn cos

(
πn(j + 1/2)

N

)
. (12)

So if we start with a vector ~f , take the DCT-II, then take the DCT-III of the result, and finally
multiply by 2/N , we will get back the original vector ~f .

Suppose we want to compute the DCT-II of a vector ~f ∈ RN . As we did with the sine transform,
define an auxiliary array ~y as follows:

yj =
1

2
(fj + fN−j−1) + sin

(
π(j + 1/2)

N

)
(fj − fN−j−1), j = 0, 1, . . . , N − 1. (13)

Then, as before, take the FFT using realfft, to get ~Y = ~R+ i~I. We find ~F via

F2n = cos (nπ/N)Rn + sin (nπ/N)In, F2n−1 = sin (nπ/N)Rn − cos (nπ/N)In + F2n+1.

This time we have to iterate backwards to find the odd-indexed elements. Initialize the recurrence with
n = N/2, to find that FN−1 = sin π

2RN/2 − cos π2 IN/2 + FN+1 = RN/2 − FN−1 =⇒ FN−1 = 1
2RN/2.

Now just perform the recurrence for n = N/2 − 1,N/2 − 2, . . . , 1, 0 to find the rest of the elements, and

here we have ~F [1, Chapter 12.4].

Algorithm 8 Discrete cosine transform using the FFT

1: procedure my dct(~f)

2: N ← length(~f)
3: ~y ← ~0 ∈ RN
4: y0 ← f0
5: for j ← 1, 2, . . . , N − 1 do
6: yj ← 1

2 (fj + fN−j−1) + sin (π(j + 1/2)/N)(fj − fN−j−1)
7: end for
8: ~Y ← realfft(~y)

9: ~R← Re(~Y )

10: ~I ← Im(~Y )

11: ~F ← ~0 ∈ RN
12: FN−1 ← 1

2RN/2
13: for n← N/2− 1,N/2− 2, . . . , 1, 0 do
14: c← cos (nπ/N)
15: s← sin (nπ/N)
16: F2n ← cRn + sIn
17: if n 6= 0 then
18: F2n−1 ← sRn − cIn + F2n+1

19: end if
20: end for
21: return ~F
22: end procedure
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To invert the process and compute the DCT-III, we can perform the above steps in reverse. Suppose
we already have F0, F1, . . . , FN−1. For the recurrence relation step, first let

R0 = F0, RN/2 = 2FN−1, I0 = 0, IN/2 = 0.

Then for n = 1, 2, . . . ,N/2− 1, let

Rn = RN−n = sin (nπ/N)(F2n−1 − F2n+1) + cos (nπ/N)F2n,

In = −IN−n = − cos (nπ/N)(F2n−1 − F2n+1) + sin (nπ/N)F2n.

Now let ~Y = ~R+ i~I, then take the inverse FFT of ~Y using realifft to get ~y. We can use (13) and some
algebra to show that, for j = 0, 1, . . . ,N/2− 1,

yj + yN−j−1 = fj + fN−j−1

yj − yN−j−1 = 2 sin

(
π(j + 1/2)

N

)
(fj − fN−j−1)

or equivalently,

fj =
yj − yN−j−1

4 sin
(
π(j+1/2)

N

) +
yj + yN−j−1

2
=
yj − yN−j−1

4
csc

(
π(j + 1/2)

N

)
+
yj + yN−j−1

2

fN−j−1 = − yj − yN−j−1
4 sin

(
π(j+1/2)

N

) +
yj + yN−j−1

2
= −yj − yN−j−1

4
csc

(
π(j + 1/2)

N

)
+
yj + yN−j−1

2
.

Note that it is not necessary to multiply ~f by 2
N , because we obtained the inverse by reversing the

steps of algorithm 8, rather than by manipulating definition 12.

Algorithm 9 Inverse discrete cosine transform using the FFT

1: procedure my idct(~F )

2: N ← length(~F )

3: ~R← ~0 ∈ RN
4: ~I ← ~0 ∈ RN
5: R0 ← F0

6: RN/2 ← 2FN−1
7: for n← 1, 2, . . . ,N/2− 1 do
8: c← cos (nπ/N)
9: s← sin (nπ/N)

10: Rn ← s(F2n−1 − F2n+1) + cF2n

11: RN−n ← Rn
12: In ← −c(F2n−1 − F2n+1) + sF2n

13: IN−n ← −In
14: end for
15: ~Y ← ~R+ i~I
16: ~y ← realifft(~Y )
17: for j ← 0, 1, . . . ,N/2− 1 do

18: α← 1
4 (yj − yN−j−1) csc

(
π(j+1/2)

N

)
19: β ← yj+yN−j−1

2
20: fj ← α+ β
21: fN−j−1 ← −α+ β
22: end for
23: return ~f
24: end procedure
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C.3 Multidimensional DST and DCT

Just like with the discrete Fourier transform in equation 5, we can define the discrete sine and cosine
transforms of 2-dimensional data stored in a matrix. We can compute them in a similar way to algorithm
6, i.e. by taking the DST/DCT of each row, then of each column. As in the 1-dimensional case, the
2-dimensional DCT-II and DCT-III are inverses of each other.

D Applications

D.1 Solving the heat equation

The heat equation in one dimension is

∂

∂t
u(x, t) = α2 ∂

2

∂x2
u(x, t), x ∈ (0, L), t > 0. (14)

The PDE (14) describes the distribution of heat in a uniform rod. The constant α2 is known as the
thermal diffusivity, and depends on the material from which the rod is made [6, Chapter 10.5].

In order to solve (14), we also require an initial condition, u(x, 0) = f(x), for all x ∈ [0, L]. We can
also assume the boundary conditions u(0, t) = u(L, t) = 0.

The solution can be found analytically to be u(x, t) =
∑∞
n=1 cne

−n2π2α2t/L2

sin nπx
L , where the con-

stants cn are given by cn = 2
L

∫ L
0
f(x) sin nπx

L dx [6, Chapter 10.5]. For example, if f(x) = sinx, L = 2π,
and α2 = 1, then the solution is u(x, t) = e−t sinx.

Here is a way to solve the problem numerically using the Fast Fourier Transform. To simplify the
problem slightly, suppose α2 = 1 and L = 2π, and use the initial condition u(x, 0) = sinx. Take the
Fourier transform (with respect to x) of both sides of the equation:

∂tu(x, t) = ∂xxu(x, t)

Fx{∂tu(x, t)} = Fx{∂xxu(x, t)}
∂tû(k, t) = (2πik)2û(k, t) = −4π2k2û(k, t).

Now for each independent value of k we have a first order ODE in t, which we can solve with Euler’s
method [6, Chapter 8.1] (or some other appropriate method).

First discretize the time interval: pick a step size h and the number of samples N . Then tj = jh,
j = 0, 1, . . . , N − 1. Then discretize the points in space: pick the number of samples M (since we will
be performing a FFT, M should be a power of 2), then the space between points is ∆ = 2π/M . Then
xj = j∆, j = 0, 1, . . . ,M − 1. The values of k are then kn = n/M∆, n = −N/2, . . . ,N/2− 1.

Approximate the initial values û(k, 0) = Fx{u(x, 0)}(k) = Fx{sinx}(k) by taking the FFT of a vector
of samples of sinx at the points xj . The Fourier transform of sinx is actually given in terms of delta
functions as F{sinx}(k) = iπ(δ(k+ 1

2π )− δ(k− 1
2π )). The FFT will approximate it as a function which

is close to zero almost everywhere, apart from two “spikes” at ± 1
2π , as shown in figure 4.

Figure 4: How the FFT approximates the Fourier transform of sinx
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Then Euler’s method gives

û(k, tj+1) ≈ û(k, tj) + h∂tû(k, tj)

= û(k, tj)− 4hπ2k2û(k, tj)

= (1− 4hπ2k2)û(k, tj).

Then, for each time tj , take the inverse FFT: u(x, tj) = F−1x {û(k, tj)}.

Figure 5: Solution to the heat equation with initial condition u(x, 0) = sinx for x ∈ (0, 2π), t ∈ (0, 1)

Figure 5 shows a surface plot of the solution obtained by following the steps above. The same process
can be repeated for other initial conditions, such as sums of sine and cosine functions. Figure 6 shows
the solution for one example.

Figure 6: Solution to the heat equation with initial condition u(x, 0) = sinx+ 1
2 sin 2x+ 1

4 sin 4x+ 1
8 sin 8x

for x ∈ (0, 2π), t ∈ (0, 1)

The idea of taking the Fourier transform and solving an ODE for each k with Euler’s method could
be applied to other PDEs.
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D.2 JPEG compression

The JPEG image file format is one of the most commonly used file formats for storing photographs.
The compression process involves the discrete cosine transform (11), and works by distorting some of
the highest frequencies in the image which the human eye is less sensitive to.

Suppose we start with a grayscale image, which is represented as a matrix where each entry is an
integer between 0 (black) and 255 (white). The encoding process is as follows:

1. Split up the image into blocks of 8 × 8 pixels.

2. Subtract 128 from each entry, so that the entries are now integers between -128 and 127.

3. Take the 2-dimensional discrete cosine transform of the block.

4. Divide the block elementwise by a constant matrix Q known as a quantization matrix, and then
round each entry to the nearest integer.

5. The resulting matrix contains a lot of zeroes, the non-zero entries being concentrated in the upper-
left corner. The reason why JPEGs take up so little space is that the long sequences of zeroes are
easily compressed.

The quantization matrix used for JPEG is

Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


.

The decoding process (to reconstruct the image from the data stored) is essentially the same, but in
reverse:

1. Reconstruct each quantized 8 × 8 block.

2. Multiply elementwise by Q.

3. Take the 2-dimensional inverse DCT.

4. Round to the nearest integer, and add 128 so that the entries are between 0 and 255.

Let’s demonstrate this on one 8 × 8 block, shown in figure 7. As a matrix this is

201 198 196 195 184 183 185 180
206 205 204 203 199 197 197 195
206 207 205 204 204 203 204 204
209 208 193 201 202 202 203 203
212 213 207 210 201 185 185 180
224 227 226 224 220 217 213 200
230 232 230 230 229 229 229 232
230 230 230 229 218 225 229 229


.

Subtract 128 from each entry, take the 2D DCT-II, divide each element by the corresponding entry
of Q, and finally round to the nearest integer:

325 17 0 0 0 1 −1 0
−45 2 0 0 0 0 0 0
10 −3 1 −1 0 0 0 0
−8 6 −2 0 0 0 0 0
−11 2 1 0 0 0 0 0

3 −2 1 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0


.
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Figure 7: An 8 × 8 block of an image before
compression

Figure 8: The same 8 × 8 block after compres-
sion

This matrix contains mostly zeroes. Reversing the process gives the matrix

201 200 195 193 185 181 185 182
204 206 206 208 203 196 196 189
205 204 201 204 204 204 209 205
213 208 201 200 199 200 206 203
213 211 206 206 199 190 186 176
226 227 226 228 222 214 211 202
229 229 228 230 228 227 234 232
230 230 227 228 223 223 230 229


which is similar to what we started with, as shown in figure 8.

References

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 2007 (3rd edition).

[2] Fourier Transform – from Wolfram MathWorld http://mathworld.wolfram.com/FourierTransform.html

Accessed August 6, 2019.

[3] Delta Function – from Wolfram MathWorld http://mathworld.wolfram.com/DeltaFunction.html

Accessed August 6, 2019.

[4] Implementing FFTs in Practice https://cnx.org/contents/ulXtQbN7@15/Implementing-FFTs-in-Practice
Accessed August 6, 2019.

[5] Free small FFT in multiple languages https://www.nayuki.io/page/free-small-fft-in-multiple-languages
Accessed August 6, 2019.

[6] William E. Boyce and Richard C. DiPrima. Elementary Differential Equations and Boundary Value
Problems. Wiley, 2012 (10th edition).

[7] Image Compression and the Discrete Cosine Transform https://www.math.cuhk.edu.hk/ lmlui/dct.pdf

Accessed August 6, 2019.

19


