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Abstract

This paper focuses on probabilistic matching systems where two classes of users arrive at the

system to match with users from the other class. The users are selective and the matchings occur

probabilistically. Recently, Markov chain models are proposed to analyze these systems, however

an exact analysis of these models to completely characterize the performance is not possible

due to the probabilistic matching structure. In this work, we propose approximation methods

based on fluid and diffusion limits using different scalings. We analyze the basic properties of

these approximations and show that some performance measures are insensitive to the matching

probability agreeing with the existing results. We also perform numerical experiments with our

approximations to gain insight into probabilistic matching systems.

1 Introduction

The Internet has provided the society a new medium to carry out business and personal transactions.

In this work, our goal is to provide tractable methods to analyze probabilistic matching systems

introduced in Büke and Chen [3] to study the web portals that serve as a meeting point for suppliers

and customers of a specific product or service. The examples of such systems include employment
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and rental portals, matrimonial and dating websites and general purpose classified advertisement

websites.

The users of a probabilistic matching system can be classified into two groups as customers

(e.g. employers) and suppliers (e.g. employees). Customers arrive at the system according to a

stochastic process. When a customer arrives at the system, she searches the list of suppliers to see

if there is anybody selling the product (or the service) she demands. If she finds suppliers with

suitable products, she buys a product choosing one uniformly at random and both the customer and

the supplier leave the system together. If there are no suitable products available, then she posts

an advertisement on the system indicating her demand and waits until a supplier with suitable

product arrives at the system. The suppliers also exhibit a similar behavior.

The double-ended queue introduced in Kashyap [12] is a precursor for the matching systems and

considers the queueing process of taxis and customers at a taxi stop. Taxis and customers arrive at

the stop according to independent Poisson processes and if a taxi (customer) arrives when there are

no customers (taxis) waiting at the stop, she waits until a customer (taxi) arrives. Recently, there

has been a growing interest to study matching systems which can be perceived as generalizations

of double-ended queues. For these systems each class of users has several subclasses, which we

refer to as types, and these types determine whether users from different classes can match or not.

Drawing an analogy between these matching systems and the taxi problem of Kashyap [12], in

these systems there are different types of taxis each of which serves to a set of neighborhoods and

a taxi accepts a customer, in other words matches with the customer, if and only if she is going

to a neighborhood served by the type that the taxi belongs to. For these models, once the types

of users are known, the matchings occur deterministically and the main goal is to devise policies

to decide on which users should be matched with each other. Specifically, Adan and Weiss [1] and

Caldentey et al. [5] focus on systems where multiple types of customers arrive at the system to be

matched with multiple types of suppliers (servers). Caldentey et al. [5] focus on the ergodicity of

these systems and analyze the matching rates between different types of users. Adan and Weiss [1]

consider the first-come-first-serve matching policy and derive a product-form expression for the

stationary probabilities when they exist. Bušić et al. [4] focus on computational complexity for

2



evaluating whether a matching system is stable under a given policy. In a recent work, Gurvich

and Ward [10] study a similawr system where different types of users can match with each other

and develop asymptotically optimal policies to minimize the holding cost.

The key feature which differentiates probabilistic matching systems from the conventional

matching systems in the literature is the probabilistic nature of the matching process. When a

customer arrives at the system, she checks the products of all the suppliers and may find each

product suitable with a given probability independent of the others. Hence, with positive probabil-

ity she may not find any suitable product, even if there are several suppliers offering a product in

the system. To make this argument more concrete consider an employment portal as an example.

An employer arriving at the employment portal first scans through the resumés of all the employ-

ees in the system and she may hire each potential employee with a given probability. There is a

positive probability that she may not find any of the existing candidates suitable, in which case

she posts a job advert and waits in the system until a suitable candidate arrives. Hence, unlike the

double-ended queues, users from different classes can co-exist in the system when the matchings are

probabilistic, which makes it essential to model the queueing system as a two dimensional stochas-

tic process. Büke and Chen [3] study the effects of the matching probability on the performance

of these systems using an exact analysis, show that if uncontrolled these systems are unstable and

suggest admission control policies to stabilize these systems.

The probabilistic matching behavior complicates the analysis of these systems and renders a

complete exact analysis intractable. Hence, in this work we propose approximation methods based

on fluid and diffusion limits under two different scalings. Under our first scaling, we only scale time

and space and keep the matching probability constant to obtain the limiting processes. We show

that under this scaling both fluid and diffusion limits do not depend on the matching probability,

which implies that the users from at most one class accumulate in the system and the probability

of a user finding a match upon arrival approaches either zero or one.

To provide tools which address the matching probability explicitly, we propose a second scaling

that also handles the abandonment of impatient users and scales the matching probability and the

abandonment rate along with the time and space. The resulting fluid and diffusion limits under
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this scaling involve differential equations which are not tractable analytically in the general case,

although we can derive an analytical formula for the fluid limit when there are no abandonments.

Büke and Chen [3] show that some performance measures, such as the difference between the average

queue lenghths of different classes, are insensitive to the matching probability under certain control

policies. Despite not imposing any control policy, similar to the results in [3] we show that the

difference between queue lengths for different classes is also insensitive to the matching probability

in the fluid limit.

In addition, we analyze the asymptotic behaviour of the fluid limits. We first compare the fluid

limits under both scalings, i.e., limits with and without scaling the matching probability, and show

that when the abandonment rate is zero, the fluid limits in both scaling regime agree with each

other as time goes to infinity. Further, we show that for non-zero abandonment rates, the fluid

limits converge to a unique fixed point, which is representative of the long run average number of

users in the system. We prove that as the abandonment rate increases, the fixed point component

for the class with lower arrival rate first experiences an increase and then decrease, while for the

class with higher arrival rate it decreases monotonically. Finally we present numerical results of

the fluid and diffusion limits in the second scaling regime.

There exists an extensive literature on fluid and diffusion approximations for Markovian systems

with abandonments. Ward and Glynn [17] suggest diffusion approximations for the M/M/1 queue

with exponential abandonments. They generalize these results to arrival, service and abandonment

times with general distributions in [18]. Garnett et al. [9] consider M/M/N queue with expo-

nential abandonments and suggest diffusion approximations under Halfin-Whitt regime (see Halfin

and Whitt [11]). Generalizing these results, Dai and He [7] and Mandelbaum and Momčilović [15]

suggest diffusion approximations for many-server queues with general arrival, service and abandon-

ment times. A recent work by Liu et al. [14] suggests diffusion approximations for the double sided

queue where arrivals are renewal processes and customers abandon the system if they cannot find

a match after an exponential time. This paper is closest to our work in nature and even though

we restrict ourselves to Poisson arrival processes, our work extends [14] by assuming probabilistic

matching structure.
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2 The Probabilistic Matching Model

In this work, we study probabilistic matching systems introduced in Büke and Chen [3], where two

classes of users, indexed by i = 1, 2 arrive at the system to be matched with users of the other class.

We assume that class-i users arrive according to a Poisson process with rate λi. Any given pair of

class-1 and class-2 users can match with each other with probability q independent of other users.

Let Xi(t) be the number of class-i users in the system at time t. When a class-1 user arrives at time

t, she checks the class-2 queue to see if there exists any suitable users that she can match with. If

she can find one or more suitable class-2 users to match with, she chooses one of them uniformly

at random and they leave the system together. Otherwise, she joins the class-1 queue and waits in

the system until she is picked by an arriving class-2 user. Due to the independence of matchings, a

class-1 user finds a suitable class-2 user to match upon arrival with probability 1− (1− q)X2(t) and

is not able to match with anyone with probability (1− q)X2(t). For the analysis in Section 4 we also

assume that the users are impatient and each user abandons the system without being matched

after waiting an exponential time with rate γ ≥ 0.

Under the assumption of Poisson arrivals, the number of users in a probabilistic matching

system, {(X1(t), X2(t)), t ≥ 0}, can be modelled as a continuous-time Markov chain (CTMC) on a

probability space (Ω,F ,P) with the generator matrix

Q(i,j)(l,k) =



λ1(1− q)j if l = i+ 1 and j = k,

λ2(1− q)i if l = i and k = j + 1,

λ1(1− (1− q)j) + γi if l = i and k = j − 1 ≥ 0,

λ2(1− (1− q)i) + γj if l = i− 1 ≥ 0 and k = j,

−(λ1 + λ2 + γ(i+ j)) if l = i and k = j,

0 otherwise.

The above model reduces to the one introduced in [3] if users do not abandon the system (γ = 0).

It is sometimes useful in our analysis to express the queue length processes, Xi(t), as the

difference of counting processes. We define Ai(t) and Ri(t) to be the number of arrivals and the
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number of user abandonments from class-i up to time t, respectively. Similarly, defining M(t) to

be the number of matched pairs up to time t, we have the basic relation

Xi(t) = Ai(t)−M(t)−Ri(t) for all t ≥ 0 and i = 1, 2.

The essential element distinguishing a probabilistic matching system from a conventional queu-

ing system is the matching probability q. To see this, consider a probabilistic matching system

with no abandonments (γ = 0). For systems with matching probability q = 1, class-1 and class-

2 users cannot co-exist in the system at any time. Hence, the probabilistic matching system

can be modeled as a continuous time random walk on integers {X(t), t ≥ 0} where X(t) = k if

(X1(t), X2(t)) = (0, k)) and X(t) = −k if (X1(t), X2(t)) = (0, k). Also when q = 1, the number of

matched pairs up to time t is equal to the minimum of class-1 and class-2 arrivals. Hence,

Xi(t) = Ai(t)−M(t) = Ai(t)−min{A1(t), A2(t)}, for all t ≥ 0 and i = 1, 2.

However, when 0 < q < 1, analyzing the matching process M(t) is far more difficult. The one

dimensional distribution of the matching process, P(M(t) = k) for a given t ≥ 0 and k ∈ N is

provided in [3] and its complicated nature indicates the difficulty in fully characterizing the law

of the matching process. Hence, in this paper we propose fluid and diffusion approximations for

probabilistic matching systems.

3 Fluid and Diffusion Approximations with Constant Matching

Probability

In this section we focus on fluid and diffusion approximations for probabilistic matching systems ob-

tained by only scaling time (or equivalently the arrival rates) and space while keeping the matching

probability constant. This approach is especially useful in approximating systems where the proba-

bility that a given pair of users matches is high. For scalings with a constant matching probability,

we assume that the users do not abandon the system without being matched, i.e., γ = 0.
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3.1 Fluid Limits

We start with defining the scaled process {(X̄n
1 (t), X̄n

2 (t)), t ≥ 0} as X̄n
i (t) = Xi(nt)

n , i = 1, 2. In

the rest of the paper, we use the notation X(ω, t) when we need to specify the sample path of the

stochastic process X(t) corresponding to a scenario ω ∈ Ω. For any ω ∈ Ω, we say that X̄n
i (ω, t)

converges uniformly on compact sets (u.o.c.) to X̄i(ω, t) if sup0≤t≤T |X̄n
i (ω, t)− X̄i(ω, t)| converges

to 0 for all T > 0 as n → ∞. A direct application of the functional strong law of large numbers

(see e.g. [2, 6, 19]) to Poisson arrival processes yields

Āni (t) :=
Ai(nt)

n

a.s.−→ λit u.o.c. as n→∞, i = 1, 2, (1)

where a.s. indicates that the convergence is almost surely.

As users of a class accumulate in the system, the users of the other class are more likely to

match upon their arrival. This implies that class-1 and class-2 users are unlikely to accumulate in

the system at the same time. Lemma 1 formalizes this argument.

Lemma 1. For any fixed k > 0, min{X1(nt)
nk

, X2(nt)
nk
} a.s.−→ 0 u.o.c. as n→∞.

Proof. If q = 1, since class-1 and class-2 do not co-exist in the system, for any t ≥ 0, min{Xn
1 (t), Xn

2 (t)} =

0, and hence the desired conclusion follows trivially. If 0 < q < 1, to simplify the notation, define

In,k(t) := min(X1(nt)
nk

, X2(nt)
nk

), choose an a ∈ (0, k) and let λ = λ1 + λ2. Then for m ≤ n2 − 1 ∈ N,

we have

P( sup
0≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a)

= P( sup
m
n2
≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a)

= P( sup
m
n2
≤t≤m+1

n2

min(X1(nt), X2(nt)) ≥ nk−a| sup
0≤t≤ m

n2

min(X1(nt), X2(nt)) < nk−a)

≤
∞∑
j=0

e−
λ
n (λn)j

j!
jrn

k−a
(2)

=
λ

n2
rn

k−a
.
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We see that the inequality (2) holds using the following argument. For both X1(nt) and X2(nt) to

reach a level above nk−a at some point during [m
n2 ,

m+1
n2 ], at least one of the arrivals occurring during

[m
n2 ,

m+1
n2 ] should fail to match and stay in the system upon arrival when facing at least [nk−a] users

from the other user queue. If we observe k arrivals during this time frame, the probability of this

event is bounded by jrn
k−a

. Then, for any fixed T > 0,

P( sup
0≤t≤T

In,k(t) ≥ n−a) = P( sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

Bn(t) < n−a)P( sup
0≤t≤T− 1

n2

In,k(t) < n−a)

+ P( sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a)P( sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a)

≤ P( sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

In,k(t) < n−a)

+ P( sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a)

≤
Tn2∑
m=0

P( sup
0≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a)

≤
Tn2∑
m=0

λ

n2
rn

k−a

= Tλrn
k−a

For any ε > 0, there exists an Nε, such that for n ≥ Nε such that P(sup0≤t≤T I
n,k(t) ≥ ε) ≤ ε,

which implies In,k(t)
P−→0 u.o.c. Furthermore,

∞∑
n=1

P( sup
0≤t≤T

In,k(t) ≥ n−a) ≤ Tλ
∞∑
n=0

rn
k−a

<∞.

For any ε > 0 choosing N ≥ 1, such that for N−a < ε, we get

∞∑
n=1

P( sup
0≤t≤T

In,k(t) > ε) =
N−1∑
n=1

P( sup
0≤t≤T

In,k(t) > ε) +
∞∑
n=N

P( sup
0≤t≤T

In,k(t) > ε)

≤
N−1∑
n=1

P( sup
0≤t≤T

In,k(t) > ε) +
∞∑
n=N

P( sup
0≤t≤T

In,k(t) ≥ n−a) <∞
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Using Borel-Cantelli lemma we get

P( sup
0≤t≤T

In,k(t) > ε infinitely often) = 0,

and In,k(t) = min(X1(nt)
nk

, X2(nt)
nk

)
a.s.−→ 0 u.o.c.

Theorem 2. X̄n
i (t)

a.s.−→ X̄i(t) u.o.c. as n→∞, where X̄i(t) = λit−min(λ1, λ2)t, i = 1, 2.

Proof. Equation (1) and Lemma 1 imply that there exists a Ω′ ⊂ Ω with P(Ω′) = 1 where for every

ω ∈ Ω′,

Ai(ω, nt)

n
→ λit u.o.c.

min(
X1(ω, nt)

n
,
X2(ω, nt)

n
)→ 0 u.o.c.

for all t ≥ 0 and i = 1, 2. Our first goal is to show M̄n(ω, t) := M(nt)
n → min{λ1t, λ2t} u.o.c. as

n → ∞ for all t ≥ 0 and ω ∈ Ω′. Suppose that there exists some ω′ ∈ Ω′ which this statement

does not hold and without loss of generality assume λ1 ≥ λ2. Also, we know that the number

of matchings is always bounded by the number of arrivals as M(ω, t) < min{A1(t), A2(t)} for all

t ≥ 0. These imply that there exists a δ > 0, Nδ > 0 sequences nj →∞ as j →∞ and 0 ≤ tj ≤ T

such that λ2tj − M̄nj (ω, tj) > δ for all j > Nδ. Boundedness of tj and M(ω, 0) = 0 also implies

that there exists a subsequence tjk → t′ > 0. For any ε > 0, we can choose Nε such that for every

k > Nε we have |Ai(njk tjk )

njk
− λitjk |< ε

2 for i = 1, 2 and |tjk − t′|< ε
2(λ1−λ2) , which in turn implies

A1(njktjk)

njk
− M(njktjk)

njk
=
A1(njktjk)

njk
− M(njktjk)

njk
− (λ1 − λ2)(tjk − t

′) + (λ1 − λ2)(tjk − t
′)

> λ2tjk −
M(njktjk)

njk
+ (λ1 − λ2)t′ − ε

> δ − ε+ (λ1 − λ2)t′.
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Similarly, we also get

A2(njktjk)

njk
− M(njktjk)

njk
> δ − ε.

Letting ε→ 0, we get

min{X1(ω, njktjk)

njk
,
X2(ω, njktjk)

njk
} > δ,

which contradicts with Lemma 1 and proves M̄n(t)
a.s.−→ min{λ1t, λ2t} u.o.c. as n → ∞ for all t ≥

0. Then the result follows using continuous mapping theorem ([6], Theorem 5.2).

3.2 Diffusion Limits

Fluid limits provide useful approximations to determine how queue lengths grow, however they fail

to represent the stochastic fluctuations. To understand the fluctuations of sample paths around

the fluid limit, we now focus on diffusion approximations. A direct application of functional central

limit theorem (see e.g. Theorem 5.7 in [6]) on Poisson arrival streams we get

Âni (t) :=
Ai(nt)− nĀi(t)√

n
⇒ Âi(t), i = 1, 2, (3)

where Âi =
√
λiBi, Bi(t), i = 1, 2, is independent one-dimensional standard Brownian motions and

“⇒”denotes weak convergence. We define the process

X̂n
i (t) =

Xi(nt)− X̄i(nt)√
n

.

Now we are ready to state the diffusion limits for probabilistic matching systems when the matching

probability is kept constant.

Theorem 3. As n→∞, X̂n
i ⇒ X̂i, i = 1, 2, where X̂i is defined as:

1. If λ1 = λ2, X̂i = Âi −min(Â1, Â2), i = 1, 2.

2. If λ1 > λ2, X̂1 = Â1 − Â2, X̂2 = 0.
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Proof. We first consider the case when λ1 = λ2 = λ. Define M̂n(t) := M(nt)−λnt√
n

. Using Skorohod

representation theorem (Theorem 5.1 in [6]) there exists versions of Ai(t), Âi(t) and Bi(t), i = 1, 2,

which we denote A′i(t), Â
′
i(t) and B′i(t), i = 1, 2, and matching and scaled processes M(t) and

Ân
′
i (t), i = 1, 2 associated with these versions such that Ân

′
i (t)

a.s.−→ Â′i(t) =
√
λB′i(t), i = 1, 2.

Lemma 1 implies min(Ân
′

1 (t) − M̂n′(t), Ân
′

2 (t) − M̂n′(t))
a.s.−→ 0 u.o.c. Proceeding as in the same

manner as in the proof of Theorem 2, we get M̂n′ a.s.−→ min(Â′1, Â
′
2). Applying the continuous

mapping theorem (Theorem 5.2 in [6]) the result follows for λ1 = λ2 = λ.

When λ1 > λ2, let τn = inf{t ≥ 0 : A2(t) ≥ n} and define a sequence of random variables

{ξn}n≥1 such that

ξn =


1, the n-th arriving user-2 finds a match successfully upon her arrival,

0, otherwise.

We have τn → ∞, as n → ∞, and for any n ≥ 1,
∑A2(t)

n=1 ξn ≤ M(t). Generate a sequence of a

uniform random variables {Un}n≥1 such that Un ∼ U(0, 1), then assuming 00 = 1, we have

P(ξn = 0) = P(Un < (1− q)X1(τn))

≤ P(Un < (1− q)A1(τn)−n)

= E[P(Un < (1− q)A1(τn)−n|A1(τn))]

= E[((1− q)A1(τn)−n) ∧ 1].

Next we show that there exists an N > 0 and c > 0 such that for any n ≥ N ,

E[(1− q)A1(τn)−n] < (1− q)cn.

For any c1 such that 1 < c1 <
λ1
λ2

we have A1(t)
t − c1

A2(t)
t

a.s.−→ λ1 − c1λ2, i.e., there exists a T > 0,

such that for any t > T , A1(t) − c1A2(t) > (λ1−c1λ2)t
2 a.s. Since τn → ∞, there exists an N > 0
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such that for any n ≥ N , we have τn > T and

A1(τn)− c1A2(τn) = A1(τn)− c1n >
(λ1 − c1λ2)

2
τn > 0 a.s.

Choosing c = c1 − 1 we have E[(1− q)A1(τn)−n] < (1− q)cn and

∞∑
n=0

P(ξn = 0) =

∞∑
n=0

P(Un < rX1(T2(n))) =
∞∑
n=0

rcn <∞.

Using Borel-Cantelli Lemma, P(ξn = 1 infinitely often) = 0 which in turn implies

X̂n
2 (t) =

A2(nt)−M(nt)√
n

a.s.−→ 0.

Finally, we have

X̂n
1 (t) =

A1(nt)−M(nt)√
n

− (λ1 − λ2)nt√
n

=
A1(nt)− λ1nt√

n
− A2(nt)− λ2nt√

n
− A2(nt)−M(nt)√

n
.

Hence, the result follows from the continuous mapping theorem.

We conclude that when the matching probability q is kept as a constant in the diffusion approxi-

mation, it is not present in both the fluid limits and the diffusion limits. Moreover, we can compare

our results with those of an M/M/1 queue. When the arrival rates in probabilistic matching sys-

tems are not equal, the fluid and diffusion limits of queue length process i behaves in accordance

with that in an M/M/1 queue with arrival rate λi and service rate λj (see Chen and Yao (2001) [6]

for more details). When the arrival rates are identical, the diffusion limits are distinct from those

of an M/M/1 queue, due to the fact that in a probabilistic matching system, the next arriving

user i is possible to be matched immediately upon arrival which indicates that the accumulation

of user j when no user i is at present would not be a “waste” unlike the service time generated

in an empty M/M/1 queue. As a result, rather than having the one-sided regular function of the

net-input process, we only have the positive sign of the difference between the arrival processes. We
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suggest that this diffusion approximation would fit the system which has a relatively high match-

ing probability of each pair of users and thus the probability of an arriving user getting matched

increases significantly as the number of users from the other queue grows. However, the underlying

assumption above does not hold in those systems which have a very small matching probability for

each pair of users, because if q very close to 0, a user is not so likely to find a match upon arrival

even when there are many users in the other queue.

4 Fluid and Diffusion Limits for Systems with Small Matching

Probability

The matching probability disappears in the fluid and diffusion limits presented in Section 3 and this

indicates that at most one class of users accumulate in the system and the systems with matching

probability 0 < q < 1 behave very similar to the systems with matching probability 1. However,

in many real world problems the matching probability q is very small and we need tools that

explicitly addresses the probabilistic nature of the matcings. In this section, we suggest a second

type of diffusion approximation which scales q together with the space and time to get a better

description of the dynamics of those systems with small matching probabilities.

We often observe that the users are impatient and may leave the system without being matched

if they cannot match after waiting for sometime. We include this factor in the discussion of the

queue length process in the new asymptotic regime, adopting a similar approach to that of Ward

and Glynn [17]. We assume that each user has an exponentially distributed abandonment time

with rate γ, 0 ≤ γ < ∞, independent of others, where γ � λi, i = 1, 2. Hence, as we scale space,

time and the matching probability, we also let abandonment rate approach to zero.

4.1 Fluid Limits

Let Xn
i (t) to be number of class-i users in a probabilistic matching system where class-i users arrive

according to a Poisson process with λi, users abandon the system if they do not match after waiting

an exponential time γn = γ
n , (0 ≤ γ < ∞), the matching probability is qn = q

n , 0 < q < 1. Then,
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we define

X̄s,n(t) :=
Xn
i (nt)

n

to be the scaled system in this regime. Now our goal is to show that as n → ∞, the scaled

system approaches to the fluid limit X̄s(t), which is the unique solution to the following ordinary

differential equations (ODE):

X̄s
1(0) = X̄s

2(0) = 0, (4)

dX̄s
1(t)

dt
= λ1e

−qX̄s
2(t) − λ2(1− e−qX̄s

1(t))− γX̄s
1(t), (5)

dX̄s
2(t)

dt
= λ2e

−qX̄s
1(t) − λ1(1− e−qX̄s

2(t))− γX̄s
2(t). (6)

The equations (5)-(6) are in the form dx
dt = F (x) = (F1(x), F2(x))′, where F (·) is Lipschitz and

hence the initial value problem admits a unique solution. We first show that the solution X̄s(t) is

bounded when γ > 0.

Lemma 4. Let X̄s(t) = (X̄s
1(t), X̄s

2(t)) be the unique solution to (4)-(6) and γ > 0, then

sup
0≤t<∞

X̄s
i (t) < λi/γ, i = 1, 2

.

Proof. For any (x1, x2) such that x1 ≥ λ1/γ, we have

F1(x1, x2) = λ1e
−qx2 − λ2(1− e−qx1)− γx1 < λ1 − γx1 ≤ 0.

Using (4) this implies that X̄s
1(t) ≤ λ1/γ, for all t. Similar argument also holds for X̄s

2(t).

When the matching probability is scaled in a way that qn → 0, the techniques we use to derive

fluid and diffusion limits differ from the ones used in Section 3. In particular, we appeal to the

Laplace transform methods where a limiting kernel with the corresponding Laplace transform is

identified (see e.g. [8] for a brief review of these methods). For this purpose, we need the Lévy
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kernel for the Markov process X̄s,n(t) defined as follows:

Kn(x, dy) := λ1n(1− q

n
)nx2δ(y − (

1,

n
, 0))dy + λ2n(1− q

n
)nx1δ(y − (0,

1

n
))dy

+ (λ1n(1− (1− q

n
)nx2) + γnx2)δ(y + (0,

1

n
))dy

+ (λ2(1− (1− q

n
)nx1) + γnx1)δ(y + (

1,

n
, 0))dy,

where δ(y) is the Dirac delta function. Then, we can define the Laplace transform of operator

Kn(x, dy) as

mn(x, θ) =

∫
(0,∞)×(0,∞)

e〈θ,y〉Kn(x, dy)

= λ1n(1− q

n
)nx2e

θ1
n + λ2n(1− q

n
)nx1e

θ2
n

+ (λ1n(1− (1− q

n
)nx2) + γnx2)e−

θ2
n + (λ2n(1− (1− q

n
)nx1 + γnx1)e−

θ1
n . (7)

Now, we are ready to state our result for convergence to the fluid limit.

Theorem 5. For any δ > 0 and T > 0,

lim sup
n→∞

n−1 logP( sup
0≤t≤T

|X̄s,n
i (t)− X̄s

i (t)|> δ) < 0 (8)

and

X̄s,n
i (t)

a.s.−→ X̄s
i (t) u.o.c.,

where X̄s
i (t), i = 1, 2 is the unique solution to the system of ODE given by (4)-(6).

Proof. If γ = 0, set S = R≥0 × R≥0 and Tn = T , otherwise choose Ci > λi/γ for i = 1, 2, and set

S = [0, C1]× [0, C2] and Tn = inf{t ≥ 0 : X̄s,n(t) /∈ S} ∧ T . Then, Proposition 5.1 in [8] implies

lim sup
n→∞

n−1 logP( sup
0≤t≤Tn

|X̄s,n
i (t)− X̄s

i (t)|> δ) < 0 (9)

if we can show that the following three conditions hold:
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(i) There exists a η0 > 0 such that

sup
n

sup
x∈S

sup
|θ|≤η0

mn(x, nθ)

n
<∞

.

(ii) supx∈S

∣∣∣∂mn(x,θ)
∂θ |θ=0−F (x)

∣∣∣→ 0.

(iii) lim supn→∞ n
−1 logP(|X̄s,n

i (0)− X̄s
i (0)|> δ) < 0.

The third condition is trivially satisfied as we assume that a probabilistic matching system is

initially empty and we have X̄s,n(0) = 0 for all n. When γ > 0 the first condition follows as when

x ∈ S for any η0 > 0 and θ ≤ η0 we have

mn(x, nθ)

n
= λ1(1− q

n
)nx2eθ1 + λ2(1− q

n
)nx1eθ2

+ (λ1(1− (1− q

n
)nx2) + γx2)e−θ2 + (λ2(1− (1− q

n
)nx1) + γx1)e−θ1

≤ (λ1 + λ2)eη0 + λ1 + λ2 + γ(C1 + C2).

Similarly, when γ = 0, the supremum can be bounded by ≤ (λ1 + λ2)eη0 + λ1 + λ2. To prove the

second condition we write

∂mn(x, θ)

∂θ1

∣∣∣∣
θ1=0

= λ1(1− q

n
)nx2 − (λ2(1− (1− q

n
)nx1) + γx1),

∂mn(x, θ)

∂θ2

∣∣∣∣
θ2=0

= λ2(1− q

n
)nx1 − (λ1(1− (1− q

n
)nx1) + γx2).

Then it is easy to see pointwise convergence ∂mn(x,θ)
∂θ |θ=0→ F (x) and the uniform convergence

follows from continuity of the functions and compactness of the underlying set and (9) follows from

Proposition 5.1 in [8]. When γ = 0, Tn = T a.s., and when γ > 0 from (9), Lemma 4 and Ci > λi/γ

we conclude that Tn
P−→ T , which implies (8). The almost sure convergence is a simple application

of Borel-Cantelli lemma.

When there are abandonments (γ > 0), the right hand sides of (5) and (6) involve both e−qx

16



and x terms which makes it difficult to obtain an analytical solution. However, when the customers

do not abandon the system, the ODE can be solved analytically. Corollary 6 presents this special

case.

Corollary 6. When γ = 0, as n→∞,

X̄s,n
i (t)

a.s.−→ 1

q
ln(eλ1qt + eλ2qt − 1)− I{i=2}λ1t− I{i=1}λ2t u.o.c., i = 1, 2. (10)

Proof. Setting γ = 0 and taking the integral of (5) and (6), we see that

X̄s
1(t) + λ2t = X̄s

2(t) + λ1t =: y(t).

Then, we have

dy(t)

dt
= e−qy(t)(λ1e

λ1qt + λ2e
λ2qt)

and y(0) = 0 which has the unique solution y(t) = 1
q ln(eλ1qt + eλ2qt− 1) and the result follows.

In [3], certain performance measures are proven to be independent of the matching probability

q under some additional control policies. Specifically, Theorem 14 in [3] states that under an

admission control policy where the difference between long run average queue lengths of class-1

and class-2 users does not depend on the matching probability q. The following corollary also

indicates a similar property even under the presence of user abandonments.

Corollary 7. When γ > 0, as n→∞, X̄s,n
1 (t)− X̄s,n

2 (t)
a.s.−→ λ2−λ1

γ e−γt + λ1−λ2
γ .

Proof. Applying Theorem 5 and the continuous mapping theorem, X̄s,n
1 (t) − X̄s,n

2 (t) converges to

the unique solution of

dx(t)

dt
= λ1 − λ2 − γx(t) (11)

with initial condition x(0) = 0. Using integrating factors, the solution of this first order ODE can

be obtained as X̄s
1(t)− X̄s

2(t) = λ2−λ1
γ e−γt + λ1−λ2

γ .

Corollary 7 implies that when γ > 0, the matching probability q does not affect the difference

between the numbers of class-1 and class-2 users in the system. As t→∞, this difference converges
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to λ1−λ2
γ , which coincides with the results of [17] for M/M/1+M queue with has arrival rate λ1,

service rate λ2 and abandonment rate γ > 0.

Next, we analyze the asymptotic behaviour of the fluid limits as time goes to infinity. Corollary

6 assumes γ to be 0 and allows us to compare X̄s(t) with fluid limits X̄(t), given in Theorem

2. Different from X̄(t) which does not carry any information on the matching probability q, the

fluid limits in Corollary 6 depends on q. When t is small, X̄s
i (t) grows for both i = 1 and 2 as q

increases. However, as t becomes larger, the influence of the matching probability becomes weaker.

Proposition 8 shows that the fluid limits X̄s(t) converges to X̄(t) as t→∞.

Proposition 8. Suppose γ = 0, then as t→∞, |X̄i(t)− X̄s
i (t)|→ 0, t ≥ 0, i = 1, 2.

Proof. Without lost of generality, we assume that λ1 ≥ λ2 and using Corollary 6 we get

X̄s
1(t)− X̄1(t) =

1

q
ln(eλ1qt + eλ2qt − 1)− λ1t

= ln(eλ1qt + eλ2qt − 1)
1
q − λ1t

= ln
q
√
eλ1qt + eλ2qt − 1

q
√
eλ1qt

Since λ1 > λ2, as t→∞, |
q
√
eλ1qt+eλ2qt−1

q√
eλ1qt

|→ 1 and |X̄s
1(t)− X̄1(t)|→ 0.

In other words, we can explain the dynamics of a probabilistic matching system in the following

way: without considering the effect of user abandonments, if each pair of users gets harder to match

with each other, we observe more users waiting in the system. However if we run the system long

enough, the average of numbers of users in the system only depends on the arrival rates. Next

we show that for general abandonment rate γ ≥ 0, the fluid limits of the queue length processes

converge to a fixed point as t→∞.

Proposition 9. If γ > 0, the fluid limit X̄s
i (t)→ x∗i , i = 1, 2 as t→∞, where x∗i ∈ R satisfies the

following set of equations

λ1e
−qx∗2 − λ2(1− e−qx∗1)− γx∗1 = 0, (12)

λ2e
−qx∗1 − λ1(1− e−qx∗2)− γx∗2 = 0. (13)
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Proof. First, we prove that Equations (12) and (13) have a unique solution. Subtracting the second

equation from the first one x∗2 = x∗1 + λ2−λ1
γ and replacing this into (12) we get

λ1e
− q(λ2−λ1)

γ e−qx
∗
1 − λ2(1− e−qx∗1)− γx∗1 = 0.

The left hand side of the equation is decreasing in x∗1, equals to λ1e
− q(λ2−λ1)

γ > 0 if x∗1 = 0 and

goes to −∞ as x∗1 → ∞. Hence, using the intermediate value theorem we conclude that (12) and

(13) have a unique solution and x∗ = (x∗1, x
∗
2) is the unique fixed point of the system of equations

(4)-(6).

When λ1 6= λ2, X̄s(t) solving (4)-(6) converges to x∗ as t → ∞, if we can find a Lyapunov

function V (x) with the following properties (see e.g. Strogatz [16]):

1. V (x) > 0 for all x 6= x∗ and V (x∗) = 0.

2. dV (X̄s(t))
dt < 0 for all x 6= x∗.

Without loss of generality, we assume that λ1 > λ2 and define V (x) = λ1−λ2 +γ(x2−x1). Writing

V (x) as V (x) = λ1e
−qx2−λ2(1−e−qx1)−γx1− (λ2e

−qx1−λ1(1−e−qx2)−γx2), we have V (x∗) = 0

and V (x) 6= 0 for all x 6= x∗. Applying Corollary 7 we have x1 − x2 <
λ1−λ2
γ and hence, V (x) > 0.

The second condition follows as

dV (X̄s(t))

dt
= γ

(
dX̄s

2(t)

dt
− dX̄s

2(t)

dt

)
= λ2 − λ1 + γ(X̄s

1(t)− X̄s
2(t)) = −V (X̄s(t)) < 0.

Therefore, x∗ is globally asymptotically stable: for all initial conditions, X̄s(t)→ x∗ as t→∞.

When λ1 = λ2 = λ, Corollary 7 implies that X̄s
1(t) = X̄s

2(t). Denoting X̃(t) = X̄s
1(t) = X̄s

2(t)

and x̃∗ = x∗1 = x∗2 we need to show that X̃(t)→ x̃∗, t→∞, where X̃(t) and x̃∗ satisfy the following

equations:

X̃(t)

dt
= 2λe−qX̃(t) − λ− γX̃(t), (14)

0 = 2λe−qx̃
∗ − λ− γx̃∗ (15)
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The righthand side of (15) is a decreasing function of x̃∗ and can be seen to have a unique solution.

Equation (14) defines a gradient system with potential function U(x) = λx + 1
2γx

2 + 2λ
q e
−qx, i.e.,

it can be written as X̃(t)
dt = −5 U(X̃(t)) where U(x) is a continuously differentiable, single valued

scalar function. Hence, using Theorem 7.2.1 in Strogatz [16] X̃(t)→ x̃∗, t→∞.

The fixed point x∗ in Proposition 9 can be thought of as the long run average numbers of users

in the system. Now, we analyze how x∗ behaves for different values of the abandonment rate γ. It

is reasonable to expect that x∗ should decrease as abandonment rate increases, which always holds

for the user class with the higher arrival rate. However, Proposition 10 shows that for the class

with lower arrival rate x∗ first increases and then decreases as γ increases.

Proposition 10. Suppose λ1 ≥ λ2. Then the long run average number of user-1 x∗1 decreases as

the abandonment rate γ increases, while the long run average number of user-2 x∗2 increases when

λ1−λ2
γ >

γx∗1
qλ1(1−e−qx

∗
2 )+qγx∗2

and decrease when λ1−λ2
γ <

γx∗1
qλ1(1−e−qx

∗
2 )+qγx∗2

.

Proof. Manipulating Equation (12) to obtain x∗2, substituting in Equation (13) and doing cancel-

lations, we get

ln(λ2(1− e−qx∗1) + γx∗1) = −qx∗1 −
q(λ2 − λ1)

γ
+ lnλ1 (16)

Taking the implicit derivative of x∗1 with respect to γ, we obtain

x∗1 + γ
dx∗1
dγ

+
γ

q

d

dγ
[ln(λ2(1− e−qx∗1) + γx∗1)] +

ln(λ2(1− e−qx∗1) + γx∗1)

q
− lnλ1

q
= 0. (17)

Letting D1 = λ2(1 − e−qx
∗
1) + γx∗1, D2 = γλ2 + γ2x∗1 + γ2

q and substituting Equation (16) into

Equation (17) to get rid of the logarithm terms, we get

dx∗1
dγ

=
D1

D2
(
λ2 − λ1

γ
− γx∗1
qD1

) (18)

Since D1 and D2 are always positive, when λ1 ≥ λ2, the right hand side of Equation (18) is always

negative, and hence as γ increases x∗1 increases. Interchanging x∗1 and λ1 with x∗2 and λ2 the

right hand side of Equation (18) is positive when λ1−λ2
γ >

γx∗2
qλ1(1−e−qx

∗
2 )+qγx∗2

and negative when

λ1−λ2
γ <

γx∗2
qλ1(1−e−qx

∗
2 )+qγx∗2

. Hence, the conclusion for x∗2 follows.
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Proposition 10 shows that as γ increases, the limiting number of users for the class with lower

arrival rate first increases and then decreases and the limiting number of users for the class with

higher arrival rate decreases monotonically, which coincides with the observation in Figure 3. This

behavior can be explained as follows. As the abandonment rate increases, users from both classes

tend to abandon the system a lot faster and hence the arriving users from the class with lower

arrival rate are less likely find a match. The decrease in the number of matches is higher than the

increase in the abandonments and as a result we observe a certain level of accumulation in the limit

for users from the class with lower arrival rates.

4.2 Diffusion Limits

Now, we move to the discussion on the diffusion limits when the matching probability and the

abandonment rate are both scaled to study the fluctuations of the queue lengths around the fluid

limit X̄s(t). We define

X̂s,n
i (t) =

Xs,n
i (nt)− X̄s

i (nt)√
n

To prove weak convergence we again use convergence of generators utilizing the techniques in [8].

Theorem 11. Suppose X̄s(t) = (X̄s
1(t), X̄s

2(t))′ is the unique solution to the system of ODEs given

by (4)-(6). Denote

a1(t) = −qλ2e
−qX̄s

1(t),

a2(t) = −qλ1e
−qX̄s

2(t),

σ1(t) =

√
λ1e−qX̄

s
2(t) + λ2(1− e−qX̄s

1(t)) + γX̄s
1(t),

σ2(t) =

√
λ2e−qX̄

s
1(t) + λ1(1− e−qX̄s

2(t)) + γX̄s
2(t),

and further define

z(t) =

∫ t

0
eγsσ2(s)dB2(s)−

∫
eγsσ1(s)dB1(s),

v(t) =

∫ t

0
−a2(s)z(s)e(a1(s)+a2(s))sds+

∫ t

0
e(γ+a1(s)+a2(s))sσ1(s)dB1(s).
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Then we have X̂s,n(t)⇒ X̂s(t), where X̂s = (X̂s
1(t), X̂s

2(t))

X̂s
1(t) = e−γte(−a1(t)−a2(t))v(t) (19)

X̂s
2(t) = e−γt(e(−a1(t)−a2(t))v(t) + z(t)). (20)

Proof. We first show that if X̂s(t) is the unique solution to the stochastic differential equation

dX̂s(t) = σ(X̄s(t))dBt +∇F (X̄s(t))X̂s(t)dt, (21)

starting from X̂s(0) = (0, 0)∗, whereB = (B1, B2)∗ is a two-dimensional standard Brownian motion,

∇F (x) =

 ∂F1
x1

∂F1
x2

∂F2
x1

∂F2
x2

 =

 −qλ2e
−qx1 − γ −qλ1e

−qx2

−qλ2e
−qx1 −qλ1e

−qx2 − γ

 ,

σ(x) =

√λ1e−qx2 + λ2(1− e−qx1) + γx1 0

0
√
λ2e−qx1 + λ1(1− e−qx2) + γx2

 ,

and X̄s(t) = (X̄s
1(t), X̄s

2(t))′ is the unique solution to system of ODE given by (4)-(6). Then, we

have X̂s,n(t) ⇒ X̂s. Defining S as in the proof of Theorem 5, the weak convergence follows from

Lemma 5.5 in [8], if we can show the conditions below hold:

(a) F (x) is continuously differentiable on S,

(b) supx∈S
√
n
∣∣∣∂mn(x,θ)

∂θ |θ=0−F (x)
∣∣∣→ 0,

(c) ∂2m(x,θ)
∂θ2

|θ=0 is Lipschitz continuous in x on S, where m(x, θ) is defined by

m(x, θ) = λ1e
−qx2eθ1 + λ2e

−qx1eθ2 + (λ1(1− e−qx2) + γx2)e−θ2 + (λ2(1− e−qx1) + γx1)e−θ1 .

Condition (a) is trivial and condition (b) reduces to showing
√
n
((

1− q
n

)nx − e−qx) converges
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to 0, which is elementary calculus and hence (b) holds as well. Finally

∂2m(x, θ)

∂θ2

∣∣∣∣
θ=0

=

λ1e
−qx2 + λ2(1− e−qx1) + γx1 0

0 λ2e
−qx1 + λ1(1− e−qx2) + γx2


which is Lipschitz on R2

≥0. Using Lemma 5.5 in [8], X̂n ⇒ X̂s as n→∞, where X̂s(t) is the unique

solution to the stochastic differential equation (21).

Next we show that (19) and (20) together is the unique solution to (21) which can be expressed

as:

dX̂s(t)1 = (−a1(t)− γ)X̂s
1(t)dt− a2(t)X̂s

2(t)dt+ σ1(t)dB1(t)

dX̂s(t)2 = −a1(t)X̂s
1(t)dt− (a2(t)− γ)X̂s

2(t)dt+ σ2(t)dB2(t).

Defining zi(t) = eγtX̂s
i (t), i = 1, 2, we obtain

dz1(t) = eγtdX̂s
1(t) + γeγtX̂s

1(t)dt

= (−a1(t)− γ)eγtX̂s
1(t)dt− eγta2(t)X̂s

2(t)dt+ γeγtX̂s
1(t)dt+ eγtσ1(t)dB1(t)

= −a1(t)z1(t)dt− a2z2(t)dt+ eγtσ1(t)dB1(t), (22)

and similarly dz2(t) = −a1(t)z1dt − a2(t)z2(t)dt + eγtσ2(t)dB2(t). Furthermore, letting z(t) =

z2(t)− z1(t) we have

dz(t) = eγt(σ2(t)dB2(t)− σ1(t)dB1(t)). (23)

Solving Equation (23) directly, we obtain that z(t) =
∫ t

0 e
γsσ2(s)dB2(s) −

∫
eγsσ1(s)dB1(s). Sub-

stituting that z2(t) = z(t) + z1(t) into the Equation (22), we have

dz1(t) = (−a1(t)− a2(t))z1(t)dt− a2(t)z(t)dt+ eγtσ1(t)dB1(t).
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Let v(t) = e(a1(t)+a2(t))tz1(t) and we have

dv(t) = (a1(t) + a2(t))e(a1(t)+a2(t))tz1(t)dt+ e(a1(t)+a2(t))tdz1

= −a2(t)z(t)e(a1(t)+a2(t))tdt+ e(γ+a1(t)+a2(t))tσ1(t)dB1(t),

which further implies that v(t) =
∫ t

0 −a2(s)z(s)e(a1(s)+a2(s))sds +
∫ t

0 e
(γ+a1(s)+a2(s))sσ1(s)dB1(s).

Hence,

X̂s
1(t) = e−γtz1(t) = e−γte(−a1(t)−a2(t))v(t)

X̂s
2(t) = e−γt(z1(t) + z(t)) = e−γt(e(−a1(t)−a2(t))v1(t) + z(t)),

as desired.

Theorem 11 indicates that if the fluid limit X̄s(t) is given the diffusion limit can be fully

characterized analytically. However, as we have seen in Section 4.1, it is not always possible to

analytically solve the ODEs for the fluid limit. In the next section, we present numerical experiments

to study fluid and diffusion limits presented in this section.

5 Numerical Experiments

In Section 4, we show that when the matching probability and abandonment rate are scaled to go

to zero along with the time and space, the fluid and diffusion limits can be expressed as the unique

solutions to some systems of ODEs and SDEs which do not have explicit solutions in general. To

gain some insight into the solutions, we study numerical approximations in this section. We use

Euler and Euler-Maruyama method to obtain numerical solutions of ODEs (4)-(6) and SDEs (21),

respectively. (See Kloeden and Platen [13] for more details.)

To study the fluid limit which is the unique solution to the system of ODEs(4)-(6), we apply

Euler method with step size h = 10−6. In our first experiment, we test the effect of the matching

probability q on the fluid limits. First we consider the case λ1 < λ2 by setting λ1 = 200, λ2 =

400, γ = 0.5 and compute the fluid limits for q = 0.01, 0.02, 0.03. The results are given in Figure 1.
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(b) Fluid Limit of User 2 for different q

Figure 1: Fluid Limits when λ1 < λ2 for various q

We observe that for the class with lower arrival rate, the number of users in the system demonstrates

a very sharp increase at the beginning and then decreases approaching a limit as t goes to infinity.

We see that there is a considerable difference between the number of users corresponding to different

matcing probabilities for this class. On the other hand, the number of users for the class with higher

arrival rate grows monotonically converging to its supremum as t goes to infinity. Surprisingly, the

matching probability does not play a significant role for this class and the fluid limits corresponding

to different matching probabilities are very close.

To test the case where λ1 = λ2, we performed the same experiment by taking λ1 = λ2 = 200.

Figure 5 demonstrates that the number of users for both classes increase monotonically as t goes

to infinity approaching to the supremum, which is very similar to the behavior of the class with

higher arrival rate when the rates are not equal. However, in this case the matching probability

has a major effect on the limiting number of users and as q increases the number of users in the

system decreases. Also as q gets larger we see that the number of users increases to its supremum

faster and the fluid limit is steeper.

Next we study how the effect of the abandonment rate γ on the number of users in the system.

In this set of experiments, we set the arrival rates λ1 = 200, λ2 = 400 and the matching probability

q = 0.01 and vary the abandonment rate. Figure 3 shows that the shape of fluid limits are not
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(a) Fluid Limit of User 1 and 2 for different q
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(b) Fluid Limit of User 1 and 2 for different q

Figure 2: Fluid Limits when λ1 = λ2 for various q

affected by the changes in the abandonment rate, i.e., the number of users for the class with lower

arrival rate first increases and then decreases and the number of users for the class with higher

arrival rate decreases monotonically. We also see that when there are abandonments the number of

users for the class with lower arrival rate does not converge to 0 as t goes to infinity. In agreement

with Proposition 10, we see that the limiting number of users for the class with lower arrival rate

increases in our experiments as the abandonment rate increases.

Now, we discuss numerical approximation to diffusion limit, which is the unique solution to

the system of SDEs (21). In our experiments, we apply the Euler- Maruyama method with the

step size h = 10−6. We again start with the case when the arrival rates are not equal and set

λ1 = 200, λ2 = 400. Figures 4 and 5 demonstrate some sample paths. We see that the fluctuations

for the class with higher arrival rates are always bigger. When q is fixed we see that the changes in

γ does not have a major effect on fluctuations. We also see that the fluctuations for the class with

lower arrival rate diminish as t increases. As q increases the fluctuations diminish a lot faster.
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(a) Fluid Limit of User 1 for various γ

0 2 4 6 8 10 12 14 150

100

200

300

400

500

600

700

800

900

1000

t

x2

Fluid Limit of User−2, λ1=200, λ2=400, q=0.01

 

 

γ=0.2
γ=1.0
γ=1.8

(b) Fluid Limit of User 2 for various γ

Figure 3: Fluid Limits when λ1 < λ2 for various γ
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(a) Diffusion Limit of User 1 for various γ
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Figure 4: Diffusion Limits when λ1 < λ2 for various γ
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(a) Diffusion Limit of User 1 for various q
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Figure 5: Diffusion Limits when λ1 < λ2 for various q
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(a) Diffusion Limit of User 1 for various q
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Figure 6: Diffusion Limits when λ1 = λ2 for various q and γ
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6 Conclusion and Future Work

In this work, we propose two different scalings to obtain fluid and diffusion approximations to the

queue length processes of probabilistic matching systems. For the first approach, the space and time

are scaled while the matching probability is kept fixed. Under this scaling, the matching probability

q does not play any role in the fluid limit and the minimum of the queue lengths converges to zero.

We suggest that this scaling is used when the matching probability is considerably high.

The second scaling considers the systems in which the probability to match for each pair of

users is small. The effect of abandonments is also taken into account and the matching probability

and the departure rate are scaled along with time and space in this regime. The limiting processes

enable us to address the matching probability explicitly. Unfortunately, the resulting system of

ODE cannot be solved analytically in general, although, when there are no abandonments it is

possible to obtain an analytical solution. In [3], some performance measures are shown to be

insensitive to the matching probability under certain admission control policies. Using fluid limits,

we show that the difference between the average queue lengths of different classes of users is also

independent of the matching probability. We also analyze the asymptotic behaviour of the fluid

limits in this scaling. First we show that when abandonment rate is zero, the two fluid limits,

obtained with and without scaling the matching probability, converges to each other with time. We

further show that when there are abandonments, the fluid limits converge to a unique fixed point,

which represents the long run average number of users in the system. Conducting analysis on the

fixed point, we reveal that as the abandonment rate increases, the number of users for the class

with lower arrival rate first experiences an increase and then decrease while the number of users

for the class with higher arrival rate decreases monotonically.

As analytical expressions are not available for fluid and diffusion limits, we resort to numerical

methods to study the corresponding ODEs and SDEs. We see that for the class with higher arrival

rate, the number of users in the system increases monotonically. On the other hand, the users from

the class with lower arrival rate first tend to accumulate in the system and then decrease to a limit

as time goes to infinity. This limit is different from zero and increases as the abandonment rate

increases agreeing with our theoretical analysis. This indicates that there are always a significant
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number of users waiting in the system from both classes.

The probabilistic matching systems exhibit many interesting properties and we believe the fluid

and diffusion limits introduced in this work will be helpful in many directions. First, the approxi-

mations introduced here can be used to study the performance of admission control policies which

are intractable using exact methods. Another promising research direction is to identify optimal

and asymptotically optimal policies to maximize profit generated by charging users admission fees.

The probabilistic matching systems studied in this work can also be extended to include different

types of users within each class where each type has a different probability to match with users of

other class.
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